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Summary. Let S be an Rd-valued semimartingale and (ψn) a sequence of
C-valued integrands, i.e. predictable, S-integrable processes taking values in
some given closed set C(ω, t) ⊆ Rd which may depend on the state ω and time
t in a predictable way. Suppose that the stochastic integrals (ψn·S) converge to
X in the semimartingale topology. When can X be represented as a stochastic
integral with respect to S of some C-valued integrand? We answer this with
a necessary and sufficient condition (on S and C), and explain the relation to
the sufficient conditions introduced earlier in (Czichowsky, Westray, Zheng,
Convergence in the semimartingale topology and constrained portfolios, 2010;
Mnif and Pham, Stochastic Process Appl 93:149–180, 2001; Pham, Ann Appl
Probab 12:143-172, 2002). The existence of such representations is equivalent
to the closedness (in the semimartingale topology) of the space of all stochastic
integrals of C-valued integrands, which is crucial in mathematical finance
for the existence of solutions to most optimisation problems under trading
constraints. Moreover, we show that a predictably convex space of stochastic
integrals is closed in the semimartingale topology if and only if it is a space
of stochastic integrals of C-valued integrands, where each C(ω, t) is convex.
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1 Introduction

In mathematical finance, proving the existence of a solution to optimi-
sation problems like superreplication, utility maximisation or quadratic
hedging usually boils down to the same abstract problem: One must
show that a subsequence of (predictably) convex combinations of an
optimising sequence of wealth processes, i.e. stochastic integrals with
respect to the underlying price process S, converges and that the limit
is again a wealth process, i.e. can be represented as a stochastic integral
with respect to S. As the space of all stochastic integrals is closed in
the semimartingale topology, this is the suitable topology to work with.

For applications, it is natural to include trading constraints by re-
quiring the strategy (integrand) to lie pointwise in some set C; this
set is usually convex to keep the above procedure applicable, and one
would like it to depend on the state and time as well. Examples of
interest include no shortselling, no borrowing or nonnegative wealth
constraints; see e.g. [4, 16]. As pointed out by Delbaen [8] and Karatzas
and Kardaras [16], a natural and convenient formulation of constraints
is in terms of correspondences, i.e. set-valued functions. This is the
approach we also advocate and use here.

For motivation, consider a sequence of (predictably convex combina-
tions of) strategies and suppose (as usually happens by the convexifica-
tion trick) that this converges pointwise. Each strategy is predictable,
so constraints should also be “predictable” in some sense. To have the
limit still satisfy the same restrictions as the sequence, the constraints
should moreover be of the form “closure of a sequence (ψn(ω, t)) of ran-
dom points”, since this is where the limit will lie. But if each ψn(ω, t)
is a predictable process, the above closure is then a predictable corre-
spondence by the Castaing representation (see Proposition 2.3). This
explains why correspondences come up naturally.

In our constrained optimisation problem, assuming that we have
predictable, convex, closed constraints, the same procedure as in the
unconstrained case yields a sequence of wealth processes (integrals)
converging to some limit which is a candidate for the solution of our
problem. (We have cheated a little in the motivation — the integrals
usually converge, not the integrands.) This limit process is again a
stochastic integral, but it still remains to check that the correspond-
ing trading strategy also satisfies the constraints. In abstract terms,
one asks whether the limit of a sequence of stochastic integrals of con-
strained integrands can again be represented as a stochastic integral
of some constrained integrand or, equivalently, if the space of stochas-
tic integrals of constrained integrands is closed in the semimartingale
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topology. We illustrate by a counterexample that this is not true in gen-
eral, since it might happen that some assets become redundant, i.e. can
be replicated on some predictable set by trading in the remaining ones.
This phenomenon occurs when there is linear dependence between the
components of S.

As in [4, 3, 19, 21], one could resolve this issue by simply assuming
that there are no redundant assets; then the closedness result is true for
all constraints formulated via closed (and convex) sets. Especially in
Itô process models with a Brownian filtration, such a non-redundancy
condition is useful (e.g. when working with artificial market comple-
tions), but it can be restrictive. Alternatively, as in [15, 25, 6], one
can study only constraints given by polyhedral or continuous convex
sets. While most constraints of practical interest are indeed polyhedral,
this is conceptually unsatisfactory as one does not recover all results
from the case when there are no redundant assets. A good formulation
should thus account for the interplay between the constraints C and
redundancies in the assets S.

To realise this idea, we use the projection on the predictable range of
S. This is a predictable process taking values in the orthogonal projec-
tions in Rd; it has been introduced in [24, 9, 8], and allows us to uniquely
decompose each integrand into one part containing all relevant infor-
mation for its stochastic integral and another part having stochastic
integral zero. This reduces our problem to the question whether or not
the projection of the constraints on the predictable range is closed.
Convexity is not relevant for that aspect. Since that approach turns
out to give a necessary and sufficient condition, we recover all previous
results in [4, 19, 21, 15, 6] as special cases; and in addition, we obtain
for constant constraints C(ω, t) ≡ C that closedness of the space of C-
constrained integrands holds for all semimartingales if and only if all
projections of C in Rd are closed. The well-known characterisation of
polyhedral cones thus implies in particular that the closedness result for
constant convex cone constraints is true for arbitrary semimartingales
if and only if the constraints are polyhedral.

For a general constraint set C(ω, t) which is closed and convex, the
set of stochastic integrals of C-constrained integrands is the prime ex-
ample of a predictably convex space of stochastic integrals. By adapt-
ing arguments from [8], we show that this is in fact the only class of
predictably convex spaces of stochastic integrals which are closed in
the semimartingale topology. So this paper makes both mathematical
contributions to stochastic calculus and financial contributions in the
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modelling and handling of trading constraints for optimisation prob-
lems from mathematical finance.

The remainder of the article is organised as follows. In Section 2, we
formulate the problem in the terminology of stochastic processes and
provide some results on measurable correspondences and measurable
selectors. These are needed to introduce and handle the constraints.
Section 3 contains a counterexample which illustrates where the dif-
ficulties arise and motivates in a simple setting the definition of the
projection on the predictable range. The main results discussed above
are established in Section 4. Section 5 gives the construction of the
projection on the predictable range as well as two proofs omitted in
Section 4. Finally, Section 6 briefly discusses some related work.

2 Problem formulation and preliminaries

Let (Ω,F , P ) be a probability space with a filtration F = (Ft)0≤t<∞
satisfying the usual conditions of completeness and right-continuity.
For all notation concerning stochastic integration, we refer to the book
of Jacod and Shiryaev [14].

Set Ω := Ω × [0,∞). The space of all Rd-valued semimartingales
is denoted by S0,d(P ) := S0(P ; Rd), or simply S(P ) if the dimension

is clear. The Émery distance (see [10]) of two semimartingales X and
Y is d(X,Y ) = sup|ϑ|≤1

(∑
n∈N 2−nE

[
1 ∧ |(ϑ · (X − Y ))n|

])
, where

(ϑ · X)t :=
∫ t
0 ϑsdXs stands for the vector stochastic integral, which

is by construction a real-valued semimartingale, and the supremum is
taken over all Rd-valued predictable processes ϑ bounded by 1. With
this metric, S(P ) is a complete topological vector space, and the cor-
responding topology is called the semimartingale topology. For brevity,
we say “in S(P )” for “in the semimartingale topology”. For a given
Rd-valued semimartingale S, we write L(S) for the space of Rd-valued,
S-integrable, predictable processes ϑ and L(S) for the space of equiva-
lence classes [ϑ] = [ϑ]S = {ϕ ∈ L(S) | ϕ ·S = ϑ ·S} of processes in L(S)
which yield the same stochastic integral with respect to S, identifying
processes equal up to P -indistinguishability. By Theorem V.4 in [20],
the space of stochastic integrals {ϑ · S | ϑ ∈ L(S)} is closed in S(P ).
Equivalently, L(S) is a complete topological vector space with respect
to dS

(
[ϑ], [ϕ]

)
= d(ϑ ·S,ϕ ·S), where ϑ and ϕ are representatives of the

equivalence classes [ϑ] and [ϕ].
In this paper, we generalise the above closedness result from [20] to

integrands restricted to lie in a given closed set, in the following sense.
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Let C(ω, t) be a non-empty, closed subset of Rd which may depend on ω
and t in a predictably measurable way. Definition 2.2 below makes this
precise: C should be a predictable correspondence with closed values.
Denote by

C := CS :=
{
ψ ∈ L(S)

∣∣ ψ(ω, t) ∈ C(ω, t) for all (ω, t)
}

(2.1)

the set of C-valued or C-constrained integrands for S. If (ψn) is a
sequence in CS such that (ψn · S) converges to some X in the semi-
martingale topology, does there exist a ψ in CS such that X = ψ · S ?
In general, the answer is negative, as a simple counterexample in the
next section illustrates, and so we ask under which conditions the above
is true. By the closedness in S(P ) of the space of all stochastic inte-
grals, the limit X can always be represented as some stochastic integral
ϑ · S. Thus it is enough to decide whether or not there exists for the
limit class [ϑ] a representative ψ which is C-valued. Equivalently, one
can ask whether CS · S is closed in S(P ) or if the corresponding set

[C] := [C]S :=
{
[ϑ] ∈ L(S)

∣∣ [ϑ] ∩ C 6= ∅
}

of equivalence classes of elements of CS is closed in
(
L(S), dS

)
.

As already explained, this question arises naturally in mathemati-
cal finance for various optimisation problems under trading constraints;
see [11], [21], [22], [19], [15] and [5]. But not all papers make it equally
clear whether the procedure outlined in the introduction can be or is
being used. For [19] and [15], this is clarified in [5]. Under additional
assumptions, the closedness of CS · S in the semimartingale topology
is sufficient to apply the results of Föllmer and Kramkov [11] on the
optional decomposition under constraints, which give a dual character-
isation of payoffs that can be superreplicated by constrained trading
strategies. This is used in [21], [22] and [17] to prove the existence of
solutions to constrained utility maximisation problems. The results in
[11] are formulated more generally for sets of (special) semimartingales
which are predictably convex.

Definition 2.1. A set S of semimartingales is called predictably con-
vex if h ·X + (1−h) ·Y ∈ S for all X and Y in S and all [0, 1]-valued
predictable processes h. Analogously, a set C ⊆ L(S) of integrands is
predictably convex if hϑ + (1 − h)ϕ ∈ C for all ϑ and ϕ in C and all
[0, 1]-valued predictable processes h.

The prime example of predictably convex sets of integrands is given
by C-constrained integrands when C is convex-valued. Theorem 4.11
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below shows that all predictably convex spaces C of integrands must
be of this form if C · S is in addition closed in S(P ).

To formulate precisely the assumptions on the (random and time-
dependent) set C, we adapt the language of measurable correspon-
dences to our framework of predictable measurability and recall for
later use some of the results in this context. Note that the general re-
sults we exploit do not depend on special properties of the predictable
σ-field on Ω. However, we do use that the range space Rd is metric
and σ-compact; this ensures by Proposition 1A in [23] or the proof
of Lemma 18.2 in [1] that weak measurability and measurability for a
closed-valued correspondence coincide in our setting.

Definition 2.2. A mapping C : Ω → 2Rd

is called an (Rd-valued) cor-
respondence. Its domain is dom(C) :=

{
(ω, t)

∣∣ C(ω, t) 6= ∅
}
. We call

a correspondence C predictable if C−1(F ) :=
{
(ω, t)

∣∣ C(ω, t)∩F 6= ∅
}

is a predictable set for each closed F ⊆ Rd. A correspondence has pre-
dictable graph if its graph gr(C) :=

{
(ω, t, x) ∈ Ω × Rd

∣∣ x ∈ C(ω, t)
}

is in P ⊗B(Rd). A predictable selector of a predictable correspondence
C is a predictable process ψ which satisfies ψ(ω, t) ∈ C(ω, t) for all
(ω, t) ∈ dom(C).

The following results ensure the existence of predictable selectors in
all situations relevant for us.

Proposition 2.3 (Castaing). For a correspondence C : Ω → 2Rd

with
closed values, the following are equivalent:

1) C is predictable.
2) dom(C) is predictable and there exists a Castaing representation of

C, i.e. a sequence (ψn) of predictable selectors of C such that

C(ω, t) = {ψ1(ω, t), ψ2(ω, t), . . .} for each (ω, t) ∈ dom(C).

Proof. See Corollary 18.14 in [1] or Theorem 1B in [23].

Proposition 2.4 (Aumann). Let C : Ω → 2Rd

be a correspondence
with non-empty values and predictable graph and µ a finite measure on(
Ω,P

)
. Then there exists a predictable process ψ with ψ(ω, t) ∈ C(ω, t)

µ-a.e.

Proof. See Corollary 18.27 in [1]. ⊓⊔

The proof of Proposition 2.4 is based on the following result on
projections to which we refer later.
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Proposition 2.5. Let (R,R, µ) be a σ-finite measure space, Rµ the
σ-field of µ-measurable sets and A in Rµ⊗B(Rd). Then the projection
πR(A) of A on R belongs to Rµ.

Proof. See Theorem 18.25 in [1]. ⊓⊔

Measurability and graph measurability of a correspondence are
linked as follows.

Proposition 2.6. Let C : Ω → 2Rd \ {∅} be a correspondence. If C

is predictable, its closure correspondence C given by C(ω, t) := C(ω, t)
has a predictable graph.

Proof. See Theorem 18.6 in [1]. ⊓⊔

Since we require in (2.1) for our integrands ψ that ψ(ω, t) ∈ C(ω, t)
for all (ω, t), we shall assume, as motivated in the introduction, that
C is predictable and has closed values. Then Proposition 2.3 guaran-
tees the existence of predictable selectors. Moreover, we shall use that
predictable measurability of a correspondence is preserved under trans-
formations by Carathéodory functions and is stable under countable
unions and intersections. Recall that a function f : Ω × Rn → Rm is
called Carathéodory if f(ω, t, x) is predictable with respect to (ω, t) and
continuous in x.

Proposition 2.7. Let C : Ω → 2Rd

be a predictable correspondence
with closed values and f : Ω × Rm → Rd and g : Ω × Rd → Rm

Carathéodory functions. Then C ′ and C ′′ given by

C ′(ω, t) = {y ∈ Rm | f(ω, t, y) ∈ C(ω, t)}

and
C ′′(ω, t) = {g(ω, t, x) | x ∈ C(ω, t)}

are predictable correspondences with closed values.

Proof. See Corollaries 1P and 1Q in [23]. ⊓⊔

Proposition 2.8. Let Cn : Ω → 2Rd

for each n ∈ N be a predictable
correspondence with closed values and define the correspondences C ′

and C ′′ by C ′(ω, t) =
⋂
n∈N

Cn(ω, t) and C ′′(ω, t) =
⋃
n∈N

Cn(ω, t). Then C ′

and C ′′ are predictable and C ′ is closed-valued.

Proof. See Theorem 1M in [23] and Lemma 18.4 in [1]. ⊓⊔
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To establish a relation between predictably convex spaces of inte-
grands and C-valued integrands, we later use the following result, which
is a reformulation of the contents of Theorem 5 in [8]. We view an
Rd-valued predictable process on Ω as a P-measurable Rd-valued map-

ping on Ω, take some probability µ on
(
Ω,P

)
and denote by B(0, r)

L∞

and B(0, r) the closures of a ball of radius r in L∞(Ω,P, µ; Rd
)

and in

Rd, respectively. Predictable convexity is understood as in the second
part of Definition 2.1.

Proposition 2.9. Let K be a predictably convex and µ-weak∗-compact

subset of B(0, r)
L∞

with 0 ∈ K. Then there exists a predictable corre-

spondence K : Ω → 2B(0,r) \ {∅}, whose values are convex and compact
and contain zero, such that

K =
{
ϑ ∈ L∞(Ω,P, µ; Rd

) ∣∣∣ ϑ(ω, t) ∈ K(ω, t) µ-a.e.
}
.

Proof. In the proof of Theorem 5 in [8], the set Cλ defined there for
λ > 0 contains zero and is by Lemmas 10 and 11 in [8] a predictably

convex and weak∗-compact subset of B(0, λ)
L∞

. No other properties of
Cλ are used. So we can modify the proof of Theorem 5 in [8] by replacing
the use of the Radon–Nikodým theorem of Debreu and Schmeidler
(Theorem 2 in [7]) with that of Artstein (Theorem 9.1 in [2]). This
yields that K := Φr constructed in that proof is predictably measurable
and has not only (as argued in [8]) predictable graph. Replacing the

correspondence K coming from this construction by K ∩ B(0, r) then

gives that K is valued in 2B(0,r). ⊓⊔

3 A motivating example

In this section, we give a simple example of a semimartingale Y and a
predictable correspondence C with non-empty, closed, convex cones as
values such that CY ·Y is not closed in S(P ). This illustrates where the
problems with our basic question arise and suggests a way to overcome
them. The example is the same as Example 2.2 in [6], but we use it
here for a different purpose and with different emphasis.

Let W = (W 1,W 2,W 3)⊤ be a 3-dimensional Brownian motion and
Y = σ ·W , where

σ =




1 0 0
0 1 −1
0 −1 1


 .
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The matrix σ and hence ĉ = σσ⊤ have a non-trivial kernel spanned
by w = 1√

2
(0, 1, 1)⊤, i.e. Ker(ĉ) = Ker(σ) = Rw = span{w}. By con-

struction, the stochastic integral of each R3-valued predictable process
valued in Ker(ĉ) dP ⊗ dt-a.e. is zero, and vice versa. Thus the equiva-
lence class [ϑ]Y of any given ϑ ∈ L(Y ) is given by

[ϑ]Y = {ϑ+ hw | h is a real-valued predictable process}

up to dP ⊗ dt-a.e. equality, since adding a representative of 0 to some
element of L(Y ) does not change its equivalence class. Let K be the
closed and convex cone

K =
{
(x, y, z)⊤ ∈ R3

∣∣ x2 + y2 ≤ z2, z ≥ 0
}

and C the (constant) predictable correspondence with non-empty and
closed values given by C(ω, t) = K for all (ω, t) ∈ Ω. Define the se-
quence of (constant) processes (ψn) by ψn = (1,

√
n2 − 1, n)⊤ for each

n ∈ N. In geometric terms, K is a circular cone around the z-axis, and
(ψn) is a sequence of points on its surface going to infinity. (Instead of n,
any sequence zn → ∞ in [1,∞) would do as well.) Each ψn is C-valued,
and we compute ψn ·Y = (σψn) ·W = W 1 +

(√
n2 − 1−n

)
(W 2−W 3).

Using this explicit expression yields by a simple calculation that
ψn · Y → W 1 locally in M2(P ) and therefore in S(P ); see [6] for details.
However, the (constant) process e1 := (1, 0, 0)⊤ leading to the limiting
stochastic integral e1 ·Y = W 1 does not have values in C, and since its
equivalence class is

{
e1 + hw

∣∣ h is a real-valued predictable process
}
,

also no other integrand equivalent to e1 does. Thus CY ·Y is not closed
in S(P ).

To see why this causes problems, define τ := inf
{
t > 0

∣∣ |Wt| = 1
}

and set S := Y τ . The arguments above then imply that the sequence
(ψn ·Y τ ) is bounded from below (uniformly in n, t, ω) and converges in
S(P ) to (W 1)τ , which cannot be represented as ψ · S for any C-valued
integrand ψ. Thus the set CS · S does not satisfy Assumption 3.1 of
the optional decomposition theorem under constraints in [11]. But for
instance the proof of Proposition 2.13 in [17] (see p. 1835) explicitly
uses that result of [11] in a setting where constrained integrands could
be given by C-valued integrands as above. So technically, the argument
in [17] is not valid without further assumptions (and Theorem 4.5 and
Corollary 4.9 below show ways to fix this).

What can we learn from the counterexample? The key point is that
the convergence of stochastic integrals ψn · Y need not imply the point-
wise convergence of their integrands. Without constraints, this causes
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no problems; by Mémin’s theorem, the limit is still some stochastic in-
tegral of Y , here e1 ·Y . But if we insist on having C-valued integrands,
the example shows that we ask for too much. Since K is closed, we can
deduce above that (|ψn|) must diverge (otherwise we should get along
a subsequence a limit, which would be C-valued by closedness), and
in fact |ψn| =

√
2n → ∞. But at the same time, (σψn) converges to

e1 = (1, 0, 0)⊤ — and this observation brings up the key idea of not
looking at ψn, but at suitable projections of ψn linked (via σ) to the
integrator Y .

To make this precise, denote the orthogonal projection on Im(σσ⊤)
by

ΠY = 1d×d − ww⊤ =




1 0 0
0 1

2 −1
2

0 −1
2

1
2


 .

Then ΠY ψn =
(
1, 1

2(
√
n2 − 1−n),−1

2(
√
n2 − 1−n)

)⊤
converges to the

limit integrand (1, 0, 0)⊤ = e1. We might worry about the obvious fact
that ΠY ψn does not take values in C; but for the stochastic integrals,
this does not matter because (ΠY ψn)·Y = ψn·Y . Indeed, any ϑ ∈ L(Y )
can be written as a sum ϑ = ΠY ϑ + (ww⊤)ϑ of one part with values
in Im(σσ⊤) and another part orthogonal to the first one; and since
σ⊤w = 0 implies that

(
(ww⊤)ϑ

)
· Y = (ϑ⊤ww⊤σ)⊤ ·W = 0, the claim

follows. Going a little further, we even have for any ϑ ∈ L(Y ) and any
Rd-valued predictable process ϕ that

ϕ ∈ L(Y ) with ϕ · Y = ϑ · Y ⇐⇒ ΠY ϕ = ΠY ϑ dP ⊗ dt-a.e., (3.1)

by using that Ker(σσ⊤) ∩ Im(σσ⊤) = {0} and that σ⊤(ΠY v) = σ⊤v
for all v ∈ Rd to check the Y -integrability of ϕ. The significance of
(3.1) is that the stochastic integral ϑ · Y is uniquely determined by
ΠY ϑ, and so ΠY ϑ gives a “minimal” choice of a representative of the
equivalence class [ϑ]Y . Moreover, ΠY gives via (3.1) a simple way to
decide whether or not a given Rd-valued predictable process ϕ belongs
to the equivalence class [ϑ]Y .

Coming back to the set K, we observe that

ΠYK =

{(
x,

1

2
(y − z),−1

2
(y − z)

)⊤
∣∣∣∣∣ x

2 + y2 ≤ z2, z ≥ 0

}

is the projection of the cone K on the plane through the origin and with
the normal vector (0, 1, 1)⊤. In geometric terms, the projection of each
horizontal slice of the cone transforms the circle above the x-y-plane
into an ellipse in the projection plane having the origin as a point of its
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boundary. As we move up along the z-axis, the circles become larger,
and so do the ellipses which in addition flatten out towards the line
through the origin and the point e1 = (1, 0, 0)⊤. But since they never
reach that line although they come arbitrarily close, ΠYK is not closed
in Rd — and this is the source of all problems in our counterexample.
It explains why the limit e1 = limn→∞ΠY ψn is not in ΠYK, which
implies by (3.1) that there cannot exist any C-valued integrand ψ such
that ΠY ψ = e1. But the insight about ΠYK also suggests that if we
assume for a predictable correspondence C that

ΠYC(ω, t) is closed dP ⊗ dt-a.e., (3.2)

we ought to get that CY · Y is closed in S(P ). This indeed works (see
Theorem 4.5), and it turns out that condition (3.2) is not only sufficient,
but also necessary.

The above explicit computations rely on the specific structure of Y ,
but they nevertheless motivate the approach for a general semimartin-
gale S. We are going to define a predictable process ΠS taking values
in the orthogonal projections in Rd and satisfying (3.1) with dP ⊗ dt
replaced by a suitable measure on

(
Ω,P

)
to control the stochastic in-

tegrals with respect to S. The process ΠS will be called the projection
on the predictable range and will allow us to formulate and prove our
main results in the next section.

4 Main results

This section contains the main results (Theorems 4.5 and 4.11) as well
as some consequences and auxiliary results. Before we can formulate
and prove them, we need some facts and results about the projection
on the predictable range of S. For the reader’s convenience, the actual
construction of ΠS is postponed to Section 5.

As in [14], Theorem II.2.34, each semimartingale S has the canonical
representation

S = Sc + Ã+ [x1{|x|≤1}] ∗ (µ− ν) + [x1{|x|>1}] ∗ µ

with the jump measure µ of S and its predictable compensator ν. Then
the triplet (b, c, F ) of predictable characteristics of S consists of a pre-
dictable Rd-valued process b, a predictable nonnegative-definite matrix-
valued process c and a predictable process F with values in the set of
Lévy measures such that
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Ã = b · B, [Sc, Sc] = c ·B and ν = F ·B, (4.1)

where B :=
∑d

i=1

(
[Sc, Sc]i,i + Var(Ãi)

)
+ (|x|2 ∧ 1) ∗ ν.

Note that B is locally bounded since it is predictable and in-
creasing. Therefore P ⊗ B is σ-finite on

(
Ω,P

)
and there exists a

probability measure PB equivalent to P ⊗ B. By the construction of
the stochastic integral, S-integrable, predictable processes which are
PB-a.e. equal yield the same stochastic integral with respect to S (up
to P -indistinguishability). Put differently, ϕ = ϑ PB-a.e. implies for
the equivalence classes in L(S) that [ϕ] = [ϑ]. But the converse is not
true; a sufficient and necessary condition involves the projection ΠS on
the predictable range of S, as we shall see below. Because S is now (in
contrast to Section 3) a general semimartingale, the actual construc-
tion of ΠS and the proof of its properties become more technical and
are postponed to the next section. We give here merely the definition
and two auxiliary results.

Definition 4.1. The projection on the predictable range of S is a pre-
dictable process ΠS : Ω → Rd×d which takes values in the orthogonal
projections in Rd and has the following property: If ϑ ∈ L(S) and ϕ
is predictable, then ϕ is in L(S) with ϕ · S = ϑ · S if and only if
ΠSϑ = ΠSϕ PB-a.e. We choose and fix one version of ΠS.

Remark 4.2. There are many possible choices for a process B satisfying
(4.1). However, the definition of ΠS is independent of the choice of B in
the sense that (with obvious notation) ΠS,Bϑ = ΠS,Bϕ PB-a.e. if and
only if ΠS,B′

ϑ = ΠS,B′

ϕ PB′-a.e. This is because stochastic integrals
of S do not depend on the choice of B.

As illustrated by the example in Section 3, the convergence in S(P )
of stochastic integrals does not imply in general that the integrands
converge PB-a.e. But like in the example, a subsequence of the projec-
tions of the integrands on the predictable range does.

Lemma 4.3. Let (ϑn) be a sequence in L(S) such that ϑn ·S → ϑ ·S in
S(P ). Then there exists a subsequence (nk) such that ΠSϑnk → ΠSϑ
PB-a.e.

Lemma 4.4. Let C : Ω → 2Rd \ {∅} be a predictable correspondence
with closed values and such that the projection on the predictable range
of S is not closed, i.e.

F̃ =
{
(ω, t) ∈ Ω

∣∣ ΠS(ω, t)C(ω, t) is not closed
}
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has outer PB-measure > 0. Then there exist ϑ ∈ L(S) and a sequence
(ψn) of C-valued integrands such that ψn ·S → ϑ ·S in S(P ), but there
is no C-valued integrand ψ such that ψ · S = ϑ · S. Equivalently, there

exists a sequence
(
[ψn]

)
in [C]S such that [ψn]

L(S)→ [ϑ] but [ϑ] /∈ [C]S ,

i.e. [C]S is not closed in L(S).

Lemmas 4.3 and 4.4 as well as the existence of ΠS will be shown
in Section 5. Admitting that, we can now prove our first main result;
related work in [16] is discussed in Section 6. Recall the definition of
C := CS from (2.1).

Theorem 4.5. Let C : Ω → 2Rd \ {∅} be a predictable correspondence
with closed values. Then CS ·S is closed in S(P ) if and only if the pro-
jection of C on the predictable range of S is closed, i.e. ΠS(ω, t)C(ω, t)
is closed PB-a.e. Equivalently: There exists a C-valued integrand ψ with
X = ψ ·S for any sequence (ψn) of C-valued integrands with ψn ·S → X
in S(P ) if and only if the projection of C on the predictable range of S
is closed.

Proof. “⇒”: This implication follows immediately from Lemma 4.4.
“⇐”: Let (ψn) be a sequence in C with ψn ·S → X in S(P ). Then there
exist by Mémin’s theorem ϑ ∈ L(S) with X = ϑ·S and by Lemma 4.3 a
subsequence, again indexed by n, with ΠSψn → ΠSϑ PB-a.e. So it re-
mains to show that we can find a C-valued representative ψ of the limit
class [ϑ] = [ΠSϑ]. To that end, we observe that the PB-a.e. closedness
of ΠS(ω, t)C(ω, t) implies that ΠSϑ = limn→∞ΠSψn ∈ ΠSC PB-a.e.
By Proposition 2.7, the correspondences given by {ΠS(ω, t)ϑ(ω, t)},
C ′(ω, t) = {ΠS(ω, t)ϑ(ω, t)} ∩ΠS(ω, t)C(ω, t) and

C ′′(ω, t) =
{
z ∈ Rd

∣∣ ΠS(ω, t)z ∈ C ′(ω, t)
}
∩ C(ω, t)

are predictable and closed-valued. Indeed,ΠSϑ is a predictable process,
and

{
z ∈ Rd

∣∣ ΠS(ω, t)z ∈ C ′(ω, t)
}

and ΠSC = ΠSC are the pre-
image and (the closure of) the image of a closed-valued correspondence
under a Carathéodory function, respectively. Thus C ′ and C ′′ are the
intersections of two predictable and closed-valued correspondences and
therefore predictable by Proposition 2.8. So there exists by Proposition
2.3 a predictable selector ψ of C ′′ on

dom(C ′′) =
{
(ω, t)

∣∣ ΠS(ω, t)ϑ(ω, t) ∈ ΠS(ω, t)C(ω, t)
}
.

This ψ can be extended to a C-valued integrand by using any pre-
dictable selector on the PB-nullset

(
dom(C ′′)

)c
. By construction, ψ is

then in C and satisfies ΠSψ = ΠSϑ PB-a.e., so that ψ ∈ [ϑ] by the
definition of ΠS. This completes the proof. ⊓⊔
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Theorem 4.5 gives as necessary and sufficient condition for the
closedness of the space of C-constrained integrals of S that the projec-
tion of the constraint set C on the predictable range of S is closed. This
uses information from both the semimartingale S and the constraints
C, as well as their interplay. We shall see below how this allows to
recapture several earlier results as special cases.

Corollary 4.6. Suppose that S = S0 +M +A is in S2
loc(P ) and define

the process a via A = a ·B. If

[0]M =
{
ha
∣∣ h is real-valued and predictable

}
(4.2)

up to PB-a.e. equality, then CS · S is closed in S(P ) for all predictable

correspondences C : Ω → 2Rd \ {∅} with closed values.

Proof. By Lemma 5.1 below, (4.2) implies [0]S = [0]M ∩ [0]A = {0} and
therefore ΠS = 1d×d by (5.2) below. So the projection of any closed-
valued correspondence C on the predictable range of S is closed, which
gives the assertion by Theorem 4.5. ⊓⊔

In applications from mathematical finance, S often satisfies the so-
called structure condition (SC), i.e. S = S0 + M + A is in S2

loc(P )
and there exists an Rd-valued predictable process λ ∈ L2

loc(M) such
that A = λ · 〈M,M〉 or, equivalently, a = ĉλ PB-a.e.; this is a weak
no-arbitrage type condition. In this situation, Lemma 5.1 below gives
[0]M ⊆ [0]A, and thus condition (4.2) holds if and only if [0]M = {0}
(up to PB-a.e. equality), which means that ĉ is PB-a.e. invertible. This
is the case covered in Lemma 3.1 in [21], where one has conditions only
on S but not on C. Basically this ensures that there are no redundant
assets, i.e. every stochastic integral is realised by exactly one integrand
(up to PB-a.e. equality).

The opposite extreme is to place conditions only on C that ensure
closedness of CS · S for arbitrary semimartingales S, as in Theorem
3.5 of [6]. We recover this as a special case in the following corollary;
note that in a slight extension over [6], the constraints need not be
convex. Recall that a closed convex set K ⊆ Rd is called continuous if
its support function δ(v|K) = supw∈K w

⊤v is continuous for all vectors
v ∈ Rd with |v| = 1; see [13].

Corollary 4.7. Let C : Ω → 2Rd \ {∅} be a predictable correspondence
with closed values. Then CY ·Y is closed in S(P ) for all semimartingales
Y if with probability 1, for all t ≥ 0 all projections ΠC(ω, t) of C(ω, t)
are closed in Rd.



Closed spaces of stochastic integrals with constrained integrands 15

In particular, if with probability 1, every C(ω, t), t ≥ 0, is compact,
or polyhedral, or a continuous and convex set, then CY · Y is closed in
S(P ) for all semimartingales Y .

Proof. If a set is compact or polyhedral, all its projections have the
same property (see Corollary 2.15 in [18]) and are thus closed. For a
continuous convex set, every projection is closed by Theorem 1.3 in
[13]. Now if with probability 1, for all t ≥ 0 all projections ΠC(ω, t) of
C(ω, t) are closed, the projection ΠYC of C on the predictable range
of every semimartingale Y is closed P ⊗BY -a.e. So CY · Y is closed in
S(P ) by Theorem 4.5. ⊓⊔

Combining Theorem 4.5 with the example in Section 3, we obtain
the following corollary. It is formulated for fixed sets K, but can prob-
ably be generalised to predictable correspondences C by using measur-
able selections.

Corollary 4.8. Suppose (Ω,F , P ) is sufficiently rich. Fix K ⊆ Rd and
define as in (2.1) KY =

{
ψ ∈ L(Y )

∣∣ ψ(ω, t) ∈ K for all (ω, t)
}
. Then

KY · Y is closed in S(P ) for all Rd-valued semimartingales Y if and
only if all projections ΠK of K in Rd are closed.

Proof. The “if” part follows immediately from Theorem 4.5. For the
converse, assume by way of contradiction that there is a projection Π
in Rd such that ΠK is not closed. Let W be a d-dimensional Brownian
motion and set Y = Π⊤·W . ThenΠ is the projection on the predictable
range of Y , and therefore KY · Y is not closed by Theorem 4.5. ⊓⊔

If the constraints are not only convex, but also cones, a charac-
terisation of convex polyhedra due to Klee [18] gives an even sharper
result.

Corollary 4.9. Let K ⊆ Rd be a closed convex cone. Then KY · Y is
closed in S(P ) for all Rd-valued semimartingales Y if and only if K is
polyhedral.

Proof. By Corollary 4.8, KY · Y is closed in S(P ) if and only if all
projections ΠK are closed in Rd. But Theorem 4.11 in [18] says that
all projections of a convex cone are closed in Rd if and only if that cone
is polyhedral. ⊓⊔

Remark 4.10. Armed with the last result, we can briefly come back to
the proof of Proposition 2.13 in [17]. We have already pointed out in
Section 3 that the argument in [17] uses the optional decomposition
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under constraints from [11], without verifying its Assumption 3.1. In
view of Corollary 4.9, we can now be more precise: The argument in [17]
as it stands (i.e. without assumptions on S) only works for polyhedral
cone constraints; for others, one could by Corollary 4.9 construct a
semimartingale S giving a contradiction.

We now turn to our second main result. Recall again the definition of
C from (2.1) and note that for a correspondence C with convex values,
C is the prime example of a predictably convex space of integrands. The
next theorem shows that this is actually the only class of predictably
convex integrands if we assume in addition that the resulting space C ·S
of stochastic integrals is closed in S(P ). The result and its proof are
inspired from Theorems 3 and 4 in [8], but require quite a number of
modifications.

Theorem 4.11. Let C ⊆ L(S) be non-empty. Then C · S is predictably
convex and closed in the semimartingale topology if and only if there

exists a predictable correspondence C : Ω → 2Rd\{∅} with closed convex
values such that the projection of C on the predictable range of S is
closed, i.e. ΠS(ω, t)C(ω, t) is closed PB-a.e., and such that we have
C · S = CS · S, i.e.

C · S = {ψ · S | ψ ∈ C}
= {ψ · S | ψ ∈ L(S) and ψ(ω, t) ∈ C(ω, t) for all (ω, t)}.

Proof. “⇐”: The pointwise convexity of C immediately implies that
CS · S is predictably convex, and closedness follows from Theorem 4.5.
“⇒”: Like at the end of Section 2, we view predictable processes on Ω
as P-measurable random variables on Ω = Ω×[0,∞). Since we are only
interested in a non-empty space of stochastic integrals with respect to
S, we lose no generality if we replace C by {ϑ−ϕ ∈ L(S) | ϑ ∈ [C]} for
some ϕ ∈ C and identify this with a subspace of L0

(
Ω,P, PB ; Rd

)
which

contains zero. Indeed, if the assertion is true for C−ϕ with a correspon-
dence C̃, it is also true for C with C = C̃ + ϕ, which is a predictable
correspondence by Proposition 2.7. In order to apply Proposition 2.9,
we truncate C to get

C
q =

{
ψ ∈ C

∣∣ ‖ψ‖L∞ ≤ q
}

= C ∩B(0, q)
L∞

for q ∈ Q+.

Then Cq inherits predictable convexity from C and is thus a convex

subset of B(0, q)
L∞

. Moreover, Cq is closed with respect to convergence
in PB-measure since its elements are uniformly bounded by q and C ·S
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is closed in S(P ); this uses the fact, easily proved via dominated con-
vergence separately for the M - and A-integrals, that for any uniformly
bounded sequence of integrands (ψn) converging pointwise, the stochas-
tic integrals converge in S(P ). By a well-known application of the
Krein–Šmulian and Banach–Alaoglu theorems (see Theorems A.62 and
A.63 and Lemma A.64 in [12]), Cq is thus weak∗-compact, and Proposi-

tion 2.9 gives a predictable correspondence Cq : Ω → 2B(0,q) \ {∅} with
convex compact values containing zero such that

C
q =

{
ψ ∈ L0

(
Ω,P, PB ; Rd

) ∣∣ ψ(ω, t) ∈ Cq(ω, t) PB-a.e.
}
.

By the definition of Cq we obtain, after possibly modifying the sets on
a PB-nullset, that

Cq2(ω, t) ∩B(0, q1) = Cq1(ω, t) for all (ω, t) ∈ Ω (4.3)

for 0 < q1 ≤ q2 < ∞ by Lemma 12 in [8], since the graph of each Cq

is predictable by Proposition 2.6. Using the characterisation of closed
sets in metric spaces as limit points of converging sequences implies
with (4.3) that the correspondence C given by

C(ω, t) :=
⋃

q∈Q+

Cq(ω, t)

has closed values. Moreover, each C(ω, t) is convex as the union of an
increasing sequence of convex sets, and it only remains to show that
C · S = C · S.

Suppose first that ψ is in C. By predictable convexity and since
0 ∈ C, ψn := 1{|ψ|≤n}ψ is in Cn and therefore Cn- and hence C-valued.
Since (ψn) converges pointwise to ψ, the closedness of C implies that
ψ is C-valued, so that ψ ∈ C and C · S ⊆ C · S. Conversely, if ψ is in C,
then ψn := 1{|ψ|≤n}ψ is Cn-valued and hence in Cn ⊆ C. But (ψn · S)
converges to ψ ·S in S(P ) and C ·S is closed in S(P ). So the limit ψ ·S
is in C · S and hence ψ ∈ C and C · S ⊆ C · S. Finally, C · S = C · S is
closed in S(P ), and therefore ΠSC is closed PB-a.e. by Theorem 4.5.
This completes the proof. ⊓⊔

Remark 4.12. 1) Theorem 4.11 can be used as follows. Start with any
convex-valued correspondence C, form the space C ·S of corresponding
stochastic integrals and take its closure in S(P ). Then Theorem 4.11
tells us that we can realise this closure as a space of stochastic integrals
from C̃-constrained integrands, for some predictable correspondence C̃

with convex and closed values. In other words, C · SS(P )
= C̃ · S; and
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one possible choice of C̃ is C̃ =
(
ΠS
)−1

(C). Another possible choice

would be C̃ = C + N, where N denotes the correspondence of null
investments for S; see Section 6.

2) If we assume in Theorem 4.11 that C ⊆ Lploc(S) for p ∈ [1,∞),
then C · S ⊆ Sploc(P ), and C · S is closed in Sp(P ) if and only if there
exists C as in the theorem. This can be useful for applications (e.g.,
mean-variance hedging under constraints, with p = 2).

5 Projection on the predictable range

In this section, we construct the projection ΠS on the predictable range
of a general semimartingale S in continuous time. The idea to introduce
such a projection comes from [24] and [9], where it was used to prove
the fundamental theorem of asset pricing in discrete time. It was also
used for a continuous local martingale in [8] to investigate the structure
of m-stable sets and in particular the set of risk-neutral measures.

As already explained before Definition 4.1, a sufficient condition for
ϕ · S = ϑ · S (up to P -indistinguishability) or, equivalently, ϕ = ϑ in
L(S) or [ϕ] = [ϑ], is that ϕ = ϑ PB-a.e. If we again view predictable
processes on Ω as P-measurable random variables on Ω = Ω × [0,∞),
i.e. elements of L0

(
Ω,P; Rd

)
, then ϕ = ϑ PB-a.e. is the same as saying

that ϕ = ϑ in L0
(
Ω,P, PB ; Rd

)
. But to get a necessary and sufficient

condition for [ϑ] = [ϕ], we need to understand not only what 0 ∈ L(S)
looks like, but rather the precise structure of (the equivalence class)
[0]. This is achieved by ΠS .

The construction of ΠS basically proceeds by generalising that of
ΠY in the example in Section 3 and adapting the steps in [9] to con-
tinuous time. The idea is as follows. We start by characterising the
equivalence class [0] as a linear subspace of L0

(
Ω,P, PB ; Rd

)
. Since

this subspace satisfies a certain stability property, we can construct
predictable processes e1, . . . , ed which form an “orthonormal basis” of
[0] in the sense that [0] equals up to PB-a.e. equality their linear com-
binations with predictable coefficients, i.e.

[0] =

{
d∑

j=1

hjej

∣∣∣∣∣ h
1, . . . , hd are real-valued predictable

}
(5.1)

up to PB-a.e. equality. But these linear combinations contribute 0 to
the integral with respect to S; so we filter them out to obtain the part
of the integrand which determines the stochastic integral, by defining
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ΠS := 1d×d − d∑

j=1

ej(ej)⊤. (5.2)

This construction then yields the projection on the predictable range
as in Definition 4.1.

To describe [0] = [0]S as a linear subspace of L0
(
Ω,P, PB ; Rd

)
, we

exploit that although we work with a general semimartingale S, we
can by Lemma I.3 in [20] switch to an equivalent probability Q un-
der which S is locally square-integrable. Since the stochastic integral
and hence [0]S are invariant under a change to an equivalent mea-
sure, any representation we obtain Q ⊗ B-a.e. also holds PB-a.e., as
PB ∼ P ⊗ B ∼ Q ⊗ B. Let S = S0 + MQ + AQ be the canoni-
cal decomposition of S under Q into an Rd-valued square-integrable

Q-martingale MQ ∈ M2,d
0 (Q) null at 0 and an Rd-valued predictable

process AQ ∈ A1,d(Q) of Q-integrable variation Var(AQ) also null at
0. By Propositions II.2.9 and II.2.29 in [14], there exist an increasing,
locally Q-integrable, predictable process BQ, an Rd-valued process aQ

and a predictable Rd×d-valued process ĉQ whose values are positive
semidefinite symmetric matrices such that

(AQ)i = (aQ)i · BQ and
〈
(MQ)i, (MQ)j

〉Q
= (ĉQ)ij · BQ (5.3)

for i, j = 1, . . . , d. By expressing the semimartingale characteristics
of S under Q by those under P via Girsanov’s theorem, writing AQ

and
〈
MQ,MQ

〉Q
in terms of semimartingale characteristics and then

passing to differential characteristics with B as predictable increasing
process, we obtain that we can and do choose BQ = B in (5.3); see
Theorem III.3.24 and Propositions II.2.29 and II.2.9 in [14]. Using the
canonical decomposition of S under Q as auxiliary tool then allows us
to give the following characterisation of [0]S .

Lemma 5.1. Let Q ∼ P such that S = S0 +MQ+AQ ∈ S2
loc(Q). Then

1) [0]M
Q

=
{
ϕ ∈ L0

(
Ω,P; Rd

) ∣∣ ĉQ ϕ = 0 PB-a.e.
}
.

2) [0]A
Q

=
{
ϕ ∈ L0

(
Ω,P; Rd

) ∣∣ (aQ)⊤ϕ = 0 PB-a.e.
}
.

3) [0]S = [0]M
Q ∩ [0]A

Q

.

Moreover, [0]M
Q

, [0]A
Q

and [0]S all do not depend on Q.

Proof. The last assertion is clear since the stochastic integral of a semi-
martingale (like MQ, AQ, S) is invariant under a change to an equiva-
lent measure. Because also PB ∼ Q⊗B, we can argue for the rest of the
proof under the measureQ. Then the inclusions “⊇” follow immediately
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from the definition of the stochastic integral with respect to a square-
integrable martingale and a finite variation process, since the conditions
on the right-hand side ensure that ϕ is in L2(MQ) and L1(AQ). For
the converse, we start with ϕ ∈ [0]S and set ϕn := 1{|ϕ|≤n}ϕ. Then

ϕn · S = 0 implies that ϕn ·MQ = 0 and ϕn · AQ = 0 by the unique-
ness of the Q-canonical decomposition of ϕn · S; this uses that ϕn is
bounded. Therefore we can reduce the proof of “⊆” for 3) to that for

1) and 2). So assume now that ϕ is in either [0]M
Q

or [0]A
Q

so that
ϕn ·MQ = 0 or ϕn · AQ = 0. But ϕn is bounded, hence in L2(MQ) or
L1(AQ), for each n, and by the construction of the stochastic integral,
we obtain that ĉQ ϕn = 0 or (aQ)⊤ϕn = 0 Q⊗B-a.e. and hence PB-a.e.
Since (ϕn) converges pointwise to ϕ, the inclusions “⊆” for 1) and 2)
follow by passing to the limit. ⊓⊔

The following technical lemma, which is a modification of Lemma
6.2.1 in [9], gives the announced “orthonormal basis” of [0]S in the
sense of (5.1).

Lemma 5.2. Let U ⊆ L0
(
Ω,P, PB ; Rd

)
be a linear subspace which is

closed with respect to convergence in PB-measure and satisfies the fol-
lowing stability property:

ϕ11F + ϕ21F c ∈ U for all ϕ1 and ϕ2 in U and F ∈ P .

Then there exist ej ∈ L0
(
Ω,P, PB ; Rd

)
for j = 1, . . . , d such that

1) {ej+1 6= 0} ⊆ {ej 6= 0} for j = 1, . . . , d− 1;
2) |ej(ω, t)| = 1 or |ej(ω, t)| = 0;
3) (ej)⊤ek = 0 for j 6= k;
4) ϕ ∈ U if and only if there are h1, . . . , hd in L0

(
Ω,P, PB ; R

)
with

ϕ =
∑d

j=1 h
jej , i.e.

U =

{
d∑

j=1

hjej

∣∣∣∣∣ h
1, . . . , hd are real-valued predictable

}
.

Proof. The predictable processes e1, . . . , ed with the properties 1)–4)
are the column vectors of the measurable projection-valued mapping
constructed in Lemma 6.2.1 in [9]. Therefore their existence follows
immediately from the construction given there. ⊓⊔

By Lemma I.3 in [20], there always exists a probability measure Q
as in Lemma 5.1, and therefore the space [0]S satisfies the assumptions
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of Lemma 5.2. So we take a “basis” e1, . . . , ed as in the latter result
and define ΠS as in (5.2) by

ΠS := 1d×d − d∑

j=1

ej(ej)⊤.

Then ΠS(ω, t) is the projection on the orthogonal complement of the
linear space spanned in Rd by e1(ω, t), . . . , ed(ω, t) so that ΠS(ω, t)γ is
orthogonal to all ei(ω, t) for each γ ∈ Rd; and Lemma 5.2 says that each
element of [0]S is a (random and time-dependent) linear combination
of e1, . . . , ed, and vice versa. In particular, ϑ−ΠSϑ is in [0]S for every
predictable Rd-valued ϑ. The next result shows that ΠS satisfies the
properties required in Definition 4.1. Note that ΠS is only defined up
to PB-nullsets since the ej are; so we have to choose one version for ΠS

to be specific.

Lemma 5.3 (Projection on the predictable range of S). For a
semimartingale S, the projection ΠS on the predictable range of S ex-
ists, i.e. there exists a predictable process ΠS : Ω → Rd×d which takes
values in the orthogonal projections in Rd and has the following prop-
erty: If ϑ ∈ L(S) and ψ is an Rd-valued predictable process, then

ψ ∈ L(S) with ψ · S = ϑ · S ⇐⇒ ΠSψ = ΠSϑ PB-a.e. (5.4)

Proof. If we define ΠS as above, Lemma 5.2 implies that ΠS is pre-
dictable and valued in the orthogonal projections in Rd, and it only
remains to check (5.4). So take ϑ ∈ L(S) and assume first that
ΠSϑ = ΠSψ PB-a.e. The definition of ΠS and Lemma 5.1 then
yield that ϑ − ΠSϑ and ΠSϑ − ΠSψ are in [0]S , which implies
that ΠSϑ = ϑ −

(
ϑ − ΠSϑ

)
and ΠSψ are in L(S) and also that

ϑ ·S = (ΠSϑ) ·S = (ΠSψ) ·S. Because also ψ−ΠSψ is in [0]S ⊆ L(S),
we conclude that ψ ∈ L(S) with ϑ ·S = ψ ·S. Conversely, if ψ ·S = ϑ ·S,
then ψ−ϑ ∈ [0]S , and we always have (ψ−ϑ)−ΠS(ψ−ϑ) ∈ [0]S . There-
fore ΠS(ψ−ϑ) ∈ [0]S which says by Lemma 5.2 that for PB-a.e. (ω, t),
ΠS(ψ−ϑ)(ω, t) is a linear combination of the ei(ω, t). But the column
vectors of ΠS are orthogonal to e1, . . . , ed for each fixed (ω, t), and so
we obtain ΠS(ψ − ϑ) = 0 PB-a.e., which completes the proof. ⊓⊔

With the existence of the projection on the predictable range es-
tablished, it remains to prove Lemmas 4.3 and 4.4, which we recall for
convenience.
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Lemma 4.3. Let (ϑn) be a sequence in L(S) such that ϑn ·S → ϑ ·S in
S(P ). Then there exists a subsequence (nk) such that ΠSϑnk → ΠSϑ
PB-a.e.

Proof. As in the proof of Theorem V.4 in [20], we can switch to a

probability measureQ ∼ P such that dQ
dP

is bounded, S−S0 = MQ+AQ

is in M2,d(Q) ⊕ A1,d(Q) and ϑn · S → ϑ · S in M2,d(Q) ⊕ A1,d(Q)
along a subsequence, again indexed by n. Since ϑn · S → ϑ · S in
M2,1(Q) ⊕A1,1(Q), we obtain by using (4.1) with BQ = B that

EQ

[∫ ∞

0
(ϑns − ϑs)

⊤ĉQs (ϑns − ϑs)dBs +

∫ ∞

0

∣∣(ϑns − ϑs)
⊤aQs

∣∣dBs
]
−→ 0

as n→ ∞, which implies that there exists a subsequence, again indexed
by n, such that

(ϑn−ϑ)⊤ĉQ(ϑn−ϑ) → 0 and |(ϑn−ϑ)⊤aQ| → 0 Q⊗B-a.e. (5.5)

Since PB ∼ Q⊗B, Lemma 5.1 gives

[0]S =
{
ϕ ∈ L0

(
Ω,P; Rd

) ∣∣ ĉQϕ = 0 and (aQ)⊤ϕ = 0 Q⊗B-a.e.
}
.

Let e1, . . . , ed be predictable processes from Lemma 5.2 which satisfy
properties 1)–4) for [0]S and set

U =
{
ψ ∈ L0

(
Ω,P; Rd

) ∣∣∣ ψ⊤ϕ = 0 Q⊗B-a.e. for all ϕ ∈ [0]S
}
,

V =
{
ψ ∈ L0

(
Ω,P; Rd

) ∣∣∣ ψ⊤ϕ = 0 Q⊗B-a.e. for all ϕ ∈ [0]M
Q
}

so that loosely speaking, U⊥ = [0]S and V ⊥ = [0]M
Q

. Then [0]M
Q ∩ U

and [0]A
Q∩V satisfy the assumptions of Lemma 5.2 and thus there exist

predictable processes u1, . . . , ud and v1, . . . , vd with the properties 1)–4)

for [0]M
Q ∩ U and [0]A

Q ∩ V , respectively. By the definition of U and

V we also obtain, using [0]S = [0]M
Q ∩ [0]A

Q

, that

(ej)⊤uk = (ej)⊤vk = (uj)⊤vk = 0 Q⊗B-a.e. for j, k = 1, . . . , d

and

[0]M
Q

=

{
d∑

j=1

hjej +

d∑

k=1

hd+kuk

∣∣∣∣∣ h
1, . . . , h2d real-valued predictable

}
,

[0]A
Q

=

{
d∑

j=1

hjej +

d∑

k=1

hd+kvk

∣∣∣∣∣ h
1, . . . , h2d real-valued predictable

}



Closed spaces of stochastic integrals with constrained integrands 23

up to Q⊗B-a.e. equality. Therefore ΠMQ

and ΠAQ

can be written as

ΠMQ

= 1d×d − d∑

j=1

ej(ej)⊤ −
d∑

k=1

uk(uk)⊤,

ΠAQ

= 1d×d − d∑

j=1

ej(ej)⊤ −
d∑

k=1

vk(vk)⊤,

and we have
(

d∑

k=1

vk(vk)⊤
)
ΠAQ

ϑn =

(
d∑

k=1

vk(vk)⊤
)
ϑn, (5.6)

all up to Q⊗B-a.e. equality. Since ΠMQ

(ϑn−ϑ) and ΠAQ

(ϑn−ϑ) are
by Lemma 5.1 Q⊗B-a.e. valued in Im(ĉQ) and Im

(
(aQ)⊤

)
, respectively,

(5.5) yields ΠMQ

ϑn → ΠMQ

ϑ and ΠAQ

ϑn → ΠAQ

ϑ Q⊗B-a.e. From
the latter convergence and (5.6), it follows that

(
d∑

k=1

vk(vk)⊤
)
ϑn →

(
d∑

k=1

vk(vk)⊤
)
ϑ Q⊗B-a.e.,

and since Q⊗B ∼ PB and

ΠS = ΠMQ

+

d∑

k=1

vk(vk)⊤ Q⊗B-a.e.,

we obtain that ΠSϑn → ΠSϑ PB-a.e. by combining everything. ⊓⊔
The only result whose proof is now still open is Lemma 4.4. This

provides the general (and fairly abstract) version of the counterexample
in Section 3, as well as the necessity part for the equivalence in Theorem
4.5.

Lemma 4.4. Let C : Ω → 2Rd \ {∅} be a predictable correspondence
with closed values and such that the projection on the predictable range
of S is not closed, i.e.

F̃ =
{
(ω, t) ∈ Ω

∣∣ ΠS(ω, t)C(ω, t) is not closed
}

has outer PB-measure > 0. Then there exist ϑ ∈ L(S) and a sequence
(ψn) of C-valued integrands such that ψn ·S → ϑ ·S in S(P ), but there
is no C-valued integrand ψ such that ψ · S = ϑ · S. Equivalently, there

exists a sequence
(
[ψn]

)
in [C]S such that [ψn]

L(S)→ [ϑ] but [ϑ] /∈ [C]S ,

i.e. [C]S is not closed in L(S).
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Proof. The basic idea is to construct a ϑ ∈ L(S) which is valued in

ΠSC \ΠSC on some F ∈ P with F ⊆ F̃ and PB(F ) > 0, and in C on
F c. Then there exists no C-valued integrand ψ ∈ [ϑ] by the definition of
ΠS since ΠSϑ /∈ ΠSC on F ; but one can construct a sequence (ψn) of

C-valued integrands with ΠSψn → ΠSψ pointwise since ΠSϑ ∈ ΠSC.
However, this is technically a bit more involved for several reasons:
While C, ΠSC and ΠSC are all predictable, (ΠSC)c need not be;

so F̃ need not be predictable, and one cannot use Proposition 2.3 to
obtain a predictable selector. In addition, ΠSC \ ΠSC need not be
closed-valued.

We first argue that F̃ is PPB
-measurable. Let B(0, n) be a closed

ball of radius n in Rd. Then ΠS
(
C ∩ B(0, n)

)
is compact-valued as C

is closed-valued. Since C is predictable and ΠS(ω, t)x with x ∈ Rd is a

Carathéodory function, ΠSC is predictable by Proposition 2.7. By the

same argument, ΠS
(
C ∩ B(0, n)

)
= ΠS

(
C ∩B(0, n)

)
is predictable

since C ∩ B(0, n) is, and then so is ΠSC =
∞⋃
n=1

ΠS
(
C ∩ B(0, n)

)
as

a countable union of predictable correspondences; see Proposition 2.8.
Then Proposition 2.6 implies that ΠSC and ΠS

(
C∩B(0, n)

)
have pre-

dictable graph; hence so does ΠSC. Therefore gr(ΠSC)∩
(
gr(ΠSC)

)c

is P ⊗ B(Rd)-measurable, and so by Proposition 2.5,

F̃ =
{
(ω, t) ∈ Ω

∣∣ ΠS(ω, t)C(ω, t) is not closed
}

=
{
(ω, t) ∈ Ω

∣∣ ΠS(ω, t)C(ω, t) \ΠS(ω, t)C(ω, t) 6= ∅
}

= πΩ

(
gr(ΠSC) ∩

(
gr(ΠSC)

)c)

is indeed PPB
-measurable. Thus there exists a predictable set F ⊆ F̃

with PB(F ) > 0.

Now fix some C-valued integrand ψ̃ ∈ L(S) and define the corre-
spondence C ′ by

C ′(ω, t) =

{
ΠS(ω, t)C(ω, t) \ΠS(ω, t)C(ω, t) for (ω, t) ∈ F,
ψ̃(ω, t) else.

Then C ′ has non-empty values and predictable graph and therefore
admits a PB-a.e. predictable selector ϑ by Proposition 2.4. By possibly
subtracting a predictable PB-nullset from F , we can without loss of
generality assume that ϑ takes values in C ′. Moreover, the predictable
sets Fn := F ∩ {|ϑ| ≤ n} increase to F and so we can, by shrinking
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F to some Fn if necessary, assume that ϑ is uniformly bounded in
(ω, t) on F . Let {ϕm | m ∈ N} be a Castaing representation of C

as in Proposition 2.3. Then ΠSC = {ΠSϕm | m ∈ N}, and because

ϑ ∈ ΠSC, we can find for each n ∈ N a predictable process ψn such

that ΠS(ω, t)ψn(ω, t) ∈ ϑ(ω, t) + B(0, 1
n
) on F and ψn = ψ̃ on F c.

Note that on F , we have ϑ ∈ ΠSC ⊆ ΠSRd and therefore ΠSϑ = ϑ; so
ΠSϑ = 1Fϑ + 1F cΠSψ̃ and this shows that ΠSψn → ΠSϑ uniformly
in (ω, t) by construction. Since ΠSϑ ∈ L(S) because ϑ is bounded
on F , we thus first get ΠSψn ∈ L(S), hence ψn ∈ L(S), and then
also that ψn · S → ϑ · S in S(P ) by dominated convergence. But now
{ΠSϑ} ∩ ΠSC = ∅ on F shows by Lemma 5.3 that there exists no
C-valued integrand ψ ∈ [ϑ] and therefore [ϑ] /∈ [C]. This ends the
proof. ⊓⊔

6 Related work

We have already explained how our results generalise most of the ex-
isting literature on optimisation problems under constraints. In this
section, we discuss the relation to the work of Karatzas and Kardaras
[16].

We start by introducing the terminology of [16]. For a given S with
triplet (b, c, F ), the linear subspace of null investments N is given by
the predictable correspondence

N(ω, t) :=
{
z ∈ Rd

∣∣ z⊤c(ω, t) = 0, z⊤b(ω, t) = 0

and F (ω, t)({x | z⊤x 6= 0}) = 0
}

(see Definition 3.6 in [16]). Note that we use F instead of ν and that our
B is slightly different than in [16]. But this does not affect the definition

of N. As in Definition 3.7 in [16], a correspondence C : Ω → 2Rd

is said
to impose predictable closed convex constraints if

0) N(ω, t) ⊆ C(ω, t) for all (ω, t) ∈ Ω,
1) C(ω, t) is a closed and convex set for all (ω, t) ∈ Ω, and
2) C is predictable.

To avoid confusion, we call constraints with 0)–2) KK-constraints in
the sequel.

In the comment following their Theorem 4.4 on p. 467 in [16],
Karatzas and Kardaras (KK) remark that C · S is closed in S(P ) if
C describes KK-constraints. For comparison, our Theorem 4.5 starts
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with C which is predictable and has closed values, and shows that C ·S
is then closed in S(P ) if and only if ΠSC is closed PB-a.e. So we do
not need convexity of C, and our condition on C and S is not only
sufficient, but also necessary.

Before explaining the connections in more detail, we make the simple
but important observation that

0) plus 1) imply that C + N = C (for all (ω, t) ∈ Ω). (6.1)

Indeed, each N(ω, t) is a linear subspace, hence contains 0, and so
C ⊆ C + N. Conversely, 1

ε
z ∈ N ⊆ C for every z ∈ N and ε > 0 due

to 0); so for every c ∈ C, (1 − ε)c + z ∈ C by convexity and hence
c+ z = lim

εց0
(1 − ε)c + z is in C by closedness, giving C + N ⊆ C.

As a matter of fact, KK say, but do not explicitly prove, that C ·S is
closed in S(P ). However, the clear hint they give suggests the following
reasoning. Let (ϑn) be a sequence in C such that (ϑn ·S) → X in S(P ).

By the proof of Theorem V.4 in [20], there exist ϑ̃n ∈ [ϑn] and ϑ ∈ L(S)

such that ϑ · S = X and ϑ̃n → ϑ PB-a.e. From the description of N in
Section 3.3 in [16], ϑ̃n ∈ [ϑn] translates into ϑ̃n − ϑn ∈ N PB-a.e. or

ϑ̃n ∈ ϑn+N PB-a.e. Because each ϑn has values in C, (6.1) thus shows

that each ϑ̃n can be chosen to be C-valued, and by the closedness of
C, the same is then true for the limit ϑ of (ϑ̃n). Hence we are done.

In order to relate the KK result to our work, we now observe that

0) plus 1) imply that ΠSC is closed PB-a.e.

To see this, we start with the fact that the null investments N and [0]S

are linked by

[0]S = {ϕ | ϕ is Rd-valued predictable with ϕ ∈ N PB-a.e.}; (6.2)

see Section 3.3 in [16]. Recalling that ΠS is the projection on the or-
thogonal complement of [0]S , we see from (6.2) that the column vectors
of ΠS are PB-a.e. a generating system of N⊥ so that the projection
of ϑ ∈ L(S) on the predictable range of S can be alternatively de-
fined PB-a.e. as a predictable selector of the closed-valued predictable
correspondence {ϑ + N} ∩ N⊥ or PB-a.e. as the pointwise projection
ΠN(ω,t)ϑ(ω, t) in Rd of ϑ(ω, t) on N(ω, t), which is always a predictable
process. This yields ΠSC = {C + N} ∩ N⊥ PB-a.e.; but by (6.1),
C + N = C due to 0) and 1), and so ΠSC is PB-a.e. closed like C and
N⊥.

In the KK notation, we could reformulate our Theorem 4.5 as saying
that for a predictable and closed-valued C, the space C · S is closed in
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S(P ) if and only if C + N is closed PB-a.e. This is easily seen from
the argument above showing that ΠSC = {C + N} ∩ N⊥ PB-a.e. If C
is also convex-valued, 0) is a simple and intuitive sufficient condition;
it seems however more difficult to find an elegant formulation without
convexity.

The difference between our constraints and the KK formulation in
[16] is as follows. We fix a set C of constraints and demand that the
strategies should lie in C pointwise, so that ϑ(ω, t) ∈ C(ω, t) for all
(ω, t). KK in contrast only stipulate that ϑ(ω, t) ∈ C(ω, t)+N(ω, t) or,
equivalently, that [ϑ] ∈ [C]. At the level of wealth (which is as usual
in mathematical finance modelled by the stochastic integral ϑ ·S), this
makes no difference since all N-valued processes have integral zero.
But for practical checking and risk management, it is much simpler if
one can just look at the strategy ϑ and tick off pointwise whether or
not it lies in C. If S has complicated redundancy properties, it may
be quite difficult to see whether one can bring ϑ into C by adding
something from N. Of course, when discussing the closedness of the
space of integrals ϑ · S, we face the same level of difficulty when we
have to check whether ΠSC is closed PB-a.e. But for actually working
with given strategies, we believe that our formulation of constraints is
more natural and simpler to handle.
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