
A result on integral functionals with infinitely many constraints

Tahir Choulli Martin Schweizer ⇤

University of Alberta ETH Zürich
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1. Introduction

In the context of an optimisation problem for an integral functional subject to finitely many
linear equality constraints, Borwein/Lewis (1991) prove the following very useful result.

Theorem 1.1. [Borwein/Lewis (1991), Theorem 2.9] Suppose (T, µ) is a finite measure

space and x 2 Lp
+(T ) \ {0}, with p 2 [1,1]. Suppose further that a1, . . . , an 2 Lq(T ), with

q conjugate to p, are pseudo-Haar (i.e. linearly independent on every µ-nonnull subset of T ).

Then there exist " > 0 and y 2 L1(T ) with y � " µ-a.e. and such that

Z
T

x(t)ai(t)µ(dt) =
Z
T

y(t)ai(t)µ(dt) for i = 1, . . . , n.

In words, if the n constraint functions ai are pseudo-Haar and if there is some x 6⌘ 0 in
Lp

+(T ) which satisfies the constraints
R

T x(t)ai(t)µ(dt) = bi, i = 1, . . . , n, then there is even
some y in the (norm-)interior of L1+ (T ) which also satisfies the same constraints. Our goal is
to prove a version of this result for a setting with infinitely many, measurably parametrised
constraints.

2. The result

Our original motivation for this work came from arbitrage theory, and we explain this in
more detail in Section 5 below. However, for the sake of clarity, we directly present here the
abstract setup. We start from a measurable space (⌦̄,P) with a finite measure ⇡̄ on P and
the completion P ⇡̄ of P with respect to ⇡̄. Let  = (!̄, dx) be a P-measurable random
measure on (IRd,B(IRd)); so (!̄, · ) is a measure on (IRd,B(IRd)) for (⇡̄-almost) all !̄ 2 ⌦̄,
and ( · , B) is P-measurable for each B 2 B(IRd). (This is sometimes also called a transition

kernel from (⌦̄,P) to B(IRd).) Define e⌦ := ⌦̄⇥ IRd and eP := P ⇡̄ ⌦ B(IRd) and suppose that

(2.1) e⇡ := ⇡̄ ⌦ 

is a finite measure on (e⌦, eP). For later use, we also introduce the notations

Lp(e⇡) := Lp(e⌦, eP, e⇡) := Lp(e⌦, eP, e⇡; IR),

Lp
d(⇡̄) := Lp(⌦̄,P ⇡̄, ⇡̄; IRd)

for p 2 [0,1] and d 2 IN . We write E⇡̄ and E⇡̃ for the integrals with respect to ⇡̄ and e⇡.
Our main result is then
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Theorem 2.1. Suppose that

(2.2) C :=
����
Z

IRd

|x|(!̄, dx)
����

L1(⇡̄)

< 1.

Let f0 : e⌦! [0,1) be a eP-measurable function satisfying

����
Z

IRd

|x|f0(!̄, x)(!̄, dx)
����

L1(⇡̄)

< 1,(2.3)

f0 > 0 e⇡-a.e.,(2.4) Z
IRd

xf0(!̄, x)(!̄, dx) = b(!̄) ⇡̄-a.e.(2.5)

(Note that b is then P ⇡̄-measurable and bounded.) Then there exists a eP-measurable function

f⇤0 : e⌦! [0,1) which is bounded by a constant e⇡-a.e. and satisfies

f⇤0 > 0 e⇡-a.e.,(2.6) Z
IRd

xf⇤0 (!̄, x)(!̄, dx) = b(!̄) ⇡̄-a.e.(2.7)

In comparison to Theorem 1.1, the space T from there corresponds to IRd, and the
n constraints are replaced by the !̄-dependent function b on ⌦̄. To put Theorem 1.1 into
perspective, define a linear operator � on eP-measurable functions f : e⌦! IR by

(2.8) �(f)(!̄) :=
Z

IRd

xf(!̄, x)(!̄, dx),

provided that
R

IRd |xf(!̄, x)|(!̄, dx) < 1 ⇡̄-a.e. so that �(f) : ⌦̄! IRd is ⇡̄-a.e. well defined.
Because |xf(!̄, x)|  |x| kfkL1(⇡̃) ⇡̄-a.e., we easily see from (2.2) that � maps L1(e⇡) into
L1d (⇡̄). Moreover, (2.3) shows that �(f0) is ⇡̄-a.e. well defined and equals b 2 L1d (⇡̄) by
(2.5). Finally, (2.4) imposes that f0 is strictly positive. The statement of Theorem 2.1
is then that the value �(f0) (“constraint b”) can be realised by � in another function f⇤0 ,
i.e. �(f0) = �(f⇤0 ), such that f⇤0 is still strictly positive and in addition uniformly bounded.

With the above formulation, one can see that Theorem 2.1 is like an infinite-dimensional
version of Theorem 1.1. The key di↵erence is that the linear (integral) operator � now takes
values in the infinite-dimensional space L1d (⇡̄), while Borwein/Lewis (1991) have only IRn

as range space for their constraints. Because the proofs of both results ultimately rest on a
separation argument, it is clear that Theorem 2.1 will need more involved techniques, and it
is also not surprising that the setup and the assumptions are slightly di↵erent.
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We end this section by outlining how the proof of Theorem 2.1 can be reduced to a
specific property of the mapping � in (2.8). Throughout the rest of this section, we assume
that we are in the setup of Theorem 2.1. We first note that � from (2.8) is obviously linear.
Moreover, using (2.2) easily gives

|�(f)|  CkfkL1(⇡̃) ⇡̄-a.e.,

so that � : L1(e⇡) ! L1d (⇡̄) is continuous for the norm topologies on both spaces, and also
when we consider on L1(e⇡) the norm topology and on L1d (⇡̄) the weak⇤ topology �(L1, L1).
The key point of the proof will be to show that

(2.9) � :
�
L1(e⇡), k · kL1(⇡̃)

�
!

�
L1d (⇡̄),�(L1, L1)

�
is open.

Once we have this, the rest of the proof is simple. In fact, we have �(0) = 0, and (2.9) implies
that for any � > 0, the image �(U�(0)) of the open ball

U�(0) :=
�
f 2 L1(e⇡)

�� kfkL1(⇡̃) < �
 

is open in L1d (⇡̄) for the weak⇤ topology �(L1, L1). The sequence fm := f0 ^m, m 2 IN , is
in L1(e⇡) and converges pointwise to f0 as m ! 1, and omitting the argument !̄, we have
⇡̄-a.e. ��x�f0(x)� fm(x)

���  |x|f0(x) 2 L1
�
(dx)

�
due to (2.3). By dominated convergence, we therefore obtain that

ym(!̄) :=
Z

IRd

x
�
f0(!̄, x)� fm(!̄, x)

�
(!̄, dx) �! 0 ⇡̄-a.e. as m !1.

Using again (2.3) gives |ym| 
R

IRd |x|f0(x)(dx) 2 L11 (⇡̄), and multiplying with z 2 L1
d(⇡̄)

and integrating with respect to ⇡̄ shows via dominated convergence that ym ! 0 in L1d (⇡̄)
for the weak⇤ topology �(L1, L1). So for m large enough, we get ym 2 �(U�(0)) which
means that ym = �(f̃m) for some f̃m 2 U�(0). But this means in turn that f̃m 2 L1(e⇡) with
|f̃m| < � e⇡-a.e. and, from the definitions of ym and �, that

Z
IRd

xf0(!̄, x)(!̄, dx) = ym(!̄) +
Z

IRd

xfm(!̄, x)(!̄, dx)(2.10)

=
Z

IRd

x
�
f̃m(!̄, x) + fm(!̄, x)

�
(!̄, dx) ⇡̄-a.e.

Now suppose first that instead of (2.4), we even have

(2.40) f0 � 2� > 0 e⇡-a.e. for some � > 0.
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Because |f̃m|  � e⇡-a.e. and fm = f0 ^m � 2� e⇡-a.e. by (2.40), the function f⇤� := f̃m + fm

then satisfies � = ��+2�  f̃m +fm = f⇤�  �+fm  �+m e⇡-a.e., and so f⇤� is in L1(e⇡) and
satisfies (2.6) and (2.7), due to (2.10) and (2.5). We even have instead of (2.6) the stronger
property

(2.60) f⇤� � � > 0 e⇡-a.e.

In general, if we only have (2.4), we set f̂0 := f0I{f0�2�} and define the random measure ̂

by ̂(!̄, dx) := I{f0(!̄,x)�2�}(!̄, dx). Then ̂ satisfies (2.2) like , and f̂0 satisfies (2.3) and
(2.40) with e⇡ = ⇡̄ ⌦  replaced by ⇡̄ ⌦ ̂. Moreover, we haveZ

IRd

xf̂0(!̄, x)̂(!̄, dx) =
Z

IRd

xf̂0(!̄, x)(!̄, dx)(2.50)

=: b̂(!̄) = b(!̄)�
Z

IRd

xf0(!̄, x)I{f0(!̄,x)<2�}(!̄, dx).

So the above argument gives by (2.60) an f̂⇤� � � ⇡̄ ⌦ ̂-a.e. with

(2.70)
Z

IRd

xf̂⇤� (!̄, x)̂(!̄, dx) = b̂(!̄)

and which is bounded by a constant ⇡̄ ⌦ ̂-a.e. From (2.70), the definition of b̂ in (2.50) and
the definition of ̂, we then see that

f⇤0 := f̂⇤� + f0I{f0<2�}

satisfies both (2.6) and (2.7). Hence we have the assertion of Theorem 2.1. q.e.d.

3. The proof that � is open

In this section, we prove the key result (2.9) that � is open under an extra condition, (3.3)
below, on the random measure . We then show in the next section how to remove this
assumption and prove Theorem 2.1. We first need some concepts. Define, using e⇡ = ⇡̄ ⌦ ,

E :=
�
y 2 L0(⌦̄,P ⇡̄, ⇡̄; IRd)

�� y>x 2 L1(e⇡)
 
,(3.1)

kykE := ky>xkL1(⇡̃) = E⇡̄

" Z
IRd

|y>(!̄)x|(!̄, dx)

#
.

Because |y>x|  |y||x|, using (2.2) gives
R

IRd |y>(!̄)x|(!̄, dx)  C|y| ⇡̄-a.e. and therefore

(3.2) kykE = ky>xkL1(⇡̃)  CkykL1
d(⇡̄).
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A major step in the proof of (2.9) will be to show that k · kE and k · kL1
d(⇡̄) are actually

equivalent and that E = L1
d(⇡̄). We start with a preliminary result.

Lemma 3.1. Suppose that

(3.3) for ⇡̄-almost all !̄, the measure (!̄, · ) on (IRd,B(IRd)) has full support.

Then (E, k · kE) is a Banach space.

Proof. First of all, k · kE from (3.1) clearly satisfies positive homogeneity and the triangle
inequality. If kykE = 0, then ky>xkL1(⇡̃) = 0 so that y>x = 0 e⇡-a.e. This means that for
⇡̄-a.a. !̄, we have y(!̄)>x = 0 (!̄, dx)-a.e. on IRd, and so the full support property (3.3)
implies that y = 0 ⇡̄-a.e. So k · kE is a norm on E.

To check completeness of (E, k ·kE), let (yn)n2IN be a Cauchy sequence. Then (y>n x)n2IN

is by (3.1) a Cauchy sequence in L1(e⇡) and hence convergent in L1(e⇡) to some f 2 L1(e⇡).
Along a subsequence still denoted by (y>n x)n2IN , we then have e⇡-a.e. convergence so that

f(!̄, x) = lim
n!1

yn(!̄)>x (!̄, dx)-a.e., for ⇡̄-a.a. !̄.

Due to the full support condition (3.3), we therefore must have f(!̄, x) = y1(!̄)>x for some
IRd-valued function y1 on ⌦̄, and choosing for x the unit vectors ei 2 IRd, i = 1, . . . , d, shows
that y1(!̄) = limn!1 yn(!̄) ⇡̄-a.e. Hence y1 is P ⇡̄-measurable and y>1 x = f 2 L1(e⇡), so
that the limit of the sequence (yn) is y1 2 E. So E is complete. q.e.d.

We know from (3.2) that k · kE  Ck · kL1
d(⇡̄) so that clearly L1

d(⇡̄) ✓ E. We shall
see eventually that the two spaces coincide, but before then, we have to distinguish the dual
spaces L1d (⇡̄) and E0 to avoid confusion and misleading statements. Let us write h · , · iE,E0

for the dual pairing on (E,E0) and

hy, ziL1,L1 = E⇡̄[y>z] for y 2 L1
d(⇡̄), z 2 L1d (⇡̄).

Any h 2 E0 is a continuous linear functional on E ◆ L1
d(⇡̄); so its restriction to L1

d(⇡̄) can be
identified with some z = zh 2 L1d (⇡̄) and we have

(3.4) hy, hiE,E0 = hy, zhiL1,L1 = E⇡̄[y>zh] for all y 2 L1
d(⇡̄) ✓ E.

Conversely, if we start from z 2 L1d (⇡̄), then y 7! E⇡̄[y>z] = hy, ziL1,L1 is well defined
for y 2 L1

d(⇡̄), but not necessarily for y from the larger space E. However, we can say more
if z 2 �(L1(e⇡)) ✓ L1d (⇡̄), due to (2.2). Indeed, we then have z = �(f) =

R
IRd xf(x)(dx)

for some f 2 L1(e⇡) and therefore

|E⇡̄[y>z]| =
�����E⇡̄

" Z
IRd

y>xf(x)(dx)

#�����  kfkL1(⇡̃)E⇡̄

" Z
IRd

|y>x|(dx)

#
= kfkL1(⇡̃)kykE .
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So y 7! E⇡̄[y>z] = E⇡̄[y>�(f)] is then well defined for y 2 E and a continuous linear
functional on E, hence in E0. So we can identify �(L1(e⇡)) with a subset of E0 by setting
hf : E ! IR, y 7! E⇡̄[y>�(f)] = hy, hf iE,E0 , and then we have that

(3.5) hy, hf iE,E0 = E⇡̄[y>�(f)] = hy,�(f)iL1,L1 for y 2 L1
d(⇡̄) ✓ E.

The above arguments make it clear that “�(L1(e⇡)) ✓ E0 ✓ L1d (⇡̄) ” up to suitable
identifications. The next result shows that the di↵erences in the “inclusions” cannot be big.

Lemma 3.2. Suppose that  satisfies the full support condition (3.3). Then �(L1(e⇡)) is

dense in L1d (⇡̄) for the weak⇤ topology �(L1, L1).

Proof. For brevity, write X := L1(e⇡), Z := L1d (⇡̄) and denote by · the closure for

�(L1, L1). Then we want to show that �(X ) = Z. If there exists some z 2 Z \ �(X ), the
Hahn–Banach theorem yields the existence of some ↵ 2 IR and y 2 Z 0 = L1

d(⇡̄), the dual of
Z for the weak⇤ topology �(L1, L1) we work with here, such that

E⇡̄[y>z] = hy, ziL1,L1 < ↵  hy,�(f)iL1,L1 = E⇡̄[y>�(f)] for all f 2 X .

Since X and Z are both linear, we can choose ↵ = 0 and obtain equality in “”; so we get

E⇡̄[y>z] < 0 = E⇡̄[y>�(f)] for all f 2 L1(e⇡).

For f := I{y>x>0}, this yields by (2.8) and (2.1) that

0 = E⇡̄

"
y>(!̄)

Z
IRd

xf(!̄, x)(!̄, dx)

#
= E⇡̃

⇥
(y>x)I{y>x>0}

⇤

and therefore y>x  0 e⇡-a.e. In the same way, f := I{y>x<0} gives y>x � 0 e⇡-a.e., and again
using (2.1), we thus obtain that

y(!̄)>x = 0 for (!̄, · )-a.a. x 2 IRd, for ⇡̄-a.a. !̄.

But now the full support condition (3.3) implies that y = 0 ⇡̄-a.e., which contradicts the fact
that E⇡̄[y>z] < 0. So �(X ) = Z. q.e.d.

The next result is central in our proof.

Proposition 3.3. Suppose that  satisfies the full support condition (3.3). Then the norms

k · kE and k · kL1
d(⇡̄) are equivalent on L1

d(⇡̄) ✓ E, and we have E = L1
d(⇡̄).

Proof. For brevity, we write Lp for Lp
d(⇡̄) in this proof, for p 2 {1,1}.
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1) We already know from (3.2) that k · kE  Ck · kL1 and hence L1 ✓ E. Suppose we
know that both norms are equivalent on L1. For y 2 E, we then define yn := yI{ky|n} 2 L1

to get first yn ! y pointwise and hence by dominated convergence yn ! y in E since y 2 E.
So (yn) is a sequence in L1 and Cauchy for k · kE , hence also for k · kL1 by the equivalence
of norms, and so yn ! y1 in L1 for some y1 2 L1. But we already know that yn ! y

pointwise; so we must have y1 = y ⇡̄-a.e., and so y = y1 2 L1, giving E ✓ L1.
2) We claim (and prove in Step 4) below) that

for all z 2 L1, there exist ↵ > 1 > " > 0 such that(3.6) �
y 2 L1

�� kykE  "
 
✓
�
y 2 L1

�� |hy, ziL1,L1 |  ↵
 
.

We then claim (and prove in Step 3) below) that (L1, k ·kE) is a Banach space. Once we have
that, we look at the identity map from (L1, k · kL1) to (L1, k · kE). This is linear, surjective,
continuous due to (3.2), and injective because k · kE is a norm by Lemma 3.1. So part (c) of
Corollary 2.12 in Rudin (1991) implies that the norms k · kE and k · kL1 are equivalent.

3) We next argue, using (3.6), the claim in 2) that (L1, k·kE) is a Banach space. For that,
it is enough to show that L1 is complete for the norm k·kE on L1 ✓ E. Let (yn)n2IN ✓ L1 ✓ E

be a Cauchy sequence for k·kE . Then yn ! y in E for some y 2 E since (E, k·kE) is a Banach
space by Lemma 3.1, and (yn) is bounded in E in the usual sense that supn2IN kynkE < 1.
We need to show that y is even in L1. By (3.6), we can fix any z 2 L1 and find ↵, "

(depending on z) such that

|hy0, ziL1,L1 | 
↵

"
ky0kE for all y0 2 E.

For every z 2 L1 = (L1)0, we thus obtain

sup
n2IN

|hyn, ziL1,L1 | 
↵(z)
"(z)

sup
n2IN

kynkE < 1,

and so the sequence (yn)n2IN is bounded in L1 with respect to the weak topology �(L1, L1).
As (L1, k · kL1) is locally convex, Theorem 3.18 in Rudin (1991) implies that (yn)n2IN is also
bounded in L1 for the norm topology so that we have

(3.7) sup
n2IN

kynkL1 < 1.

Now yn ! y in E means that y>n x ! y>x in L1(e⇡), hence e⇡-a.e. along a subsequence
(ynk)k2IN . Since e⇡ = ⇡̄ ⌦ , we thus have

ynk(!̄)>x �! y(!̄)>x as k !1, (!̄, dx)-a.e. on IRd, for ⇡̄-a.a. !̄.

The full support condition (3.3) therefore yields |ynk | �! |y| ⇡̄-a.e. as k ! 1, and Fatou’s
lemma together with (3.7) gives kykL1  lim infk!1 kynkkL1  supn2IN kynkL1 < 1. So y

is in L1 and (L1, k · kE) is complete.
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4) To finish the proof, we now argue (3.6). More precisely, we show that for every
z 2 L1, we can find ↵ > 1 > " > 0 with

(3.8)
�
y 2 L1

�� kykE  "
 
✓ L1 \ Vw,E = L1 \ Vw,L1

w,E ✓
�
y0 2 L1

�� |hy0, ziL1,L1 |  ↵
 
,

where Vw,E is a neighbourhood of 0 in E for the weak topology of E, and Vw,L1
w,E the

closure, in the same topology, of a neighbourhood of 0 for the weak topology of L1. The
first inclusion in (3.8) is clear since any weak neighbourhood contains a strong one. For
the equality, we look at the identity from L1 ✓ E to E, both with their respective weak
topologies. By the result (7) in Section 8 of Köthe (1965), this mapping is nearly open which

means that Vw,L1
w,E is a weak neighbourhood Vw,E of 0, for any weak neighbourhood Vw,L1

of 0.
For the second inclusion in (3.8), we now fix z 2 L1 and take any y 2 L1 \ Vw,L1

w,E .
Take a net (y�) in Vw,L1 ✓ L1 converging to y in �(E,E0) so that we have

(3.9) hy�, hiE,E0
��!hy, hiE,E0 for every h 2 E0.

By Lemma 3.2, �(L1(e⇡)) is dense in L1 for �(L1, L1); we take a net (f�) in L1(e⇡) with

(3.10) hy0,�(f�)iL1,L1
��!hy0, ziL1,L1 for every y0 2 L1.

Finally, as seen before Lemma 3.2, we can identify �(L1(e⇡)) with a subset of E0 and hence
find as in (3.5) for each � an h� 2 E0 with

(3.11) hy0, h�iE,E0 = hy0,�(f�)iL1,L1 for every y0 2 L1 ✓ E.

Now |hy, hiE,E0 |  const. for all h 2 E0 because y 2 Vw,L1
w,E . So (3.9) implies that also

|hy�, hiE,E0 |  const. for all h 2 E0 and all �. By (3.11), then, |hy�,�(f�)iL1,L1 |  const.
for all � and all �, and therefore by (3.10), applied for a fixed �, also |hy�, ziL1,L1 |  const.
for all �. But hy�, ziL1,L1 = hy�, hziE,E0 by (3.4) and so (3.9) yields |hy, hziE,E0 |  const.

So if y 2 L1 \ Vw,L1
w,E , using again (3.4) gives |hy, ziL1,L1 | = |hy, hziE,E0 |  const., and so

we have the third inclusion in (3.8) and hence (3.6). q.e.d.

Now define the mapping  : L0(⌦̄,P ⇡̄, ⇡̄; IRd) ! L0(e⌦, eP, e⇡; IR) by  (y) := y>x. Then
as in the argument for (3.2), we obtain from (2.2) that

k (y)kL1(⇡̃) = ky>xkL1(⇡̃) = kykE  CkykL1
d(⇡̄).

So : L1
d(⇡̄) ! L1(e⇡) is well defined, linear and continuous for the respective norm topologies.
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Lemma 3.4. Suppose that  satisfies the full support condition (3.3). Then  (L1
d(⇡̄)) is

closed in L1(e⇡) for the norm topology.

Proof. If  (yn) = y>n x, n 2 IN , converges in L1(e⇡), this means that (yn)n2IN converges in
E. By Lemma 3.1, using the full support property (3.3), we then know that the limit y is in
E, and E = L1

d(⇡̄) by Proposition 3.3. So limn!1 (yn) = y>x =  (y) 2  (L1
d(⇡̄)). q.e.d.

With all the above preparations, we can now almost prove (2.9).

Proposition 3.5. Suppose that  satisfies the full support condition (3.3). Then

(2.9) � :
�
L1(e⇡), k · kL1(⇡̃)

�
!

�
L1d (⇡̄),�(L1, L1)

�
is open.

Proof. The mapping  : L1
d(⇡̄) ! L1(e⇡), y 7! y>x is linear and continuous. Its adjoint

 ⇤ : L1(e⇡) ! L1d (⇡̄) is by Theorem 4.10 of Rudin (1991) uniquely characterised by the
property that

h (y), fiL1(⇡̃),L1(⇡̃) = hy, ⇤(f)iL1
d(⇡̄),L1d (⇡̄)

for all y 2 L1(e⇡) and f 2 L1(e⇡). But due to (2.1) and (2.8),

h (y), fiL1(⇡̃),L1(⇡̃) = E⇡̃[ (y)f ]

= E⇡̄

" Z
IRd

y>(!̄)xf(!̄, x)(!̄, dx)

#

= E⇡̄[y>�(f)]

= hy,�(f)iL1
d(⇡̄),L1d (⇡̄)

shows that ⇤ equals�. By Lemma 3.4, the range of is closed in L1(e⇡), and so Theorem 4.14
of Rudin (1991) implies that the range of  ⇤ = � is closed for the weak⇤ topology �(L1, L1)
on L1d (⇡̄). But by Lemma 3.2, �(L1(e⇡)) is dense in L1d (⇡̄) for �(L1, L1), and so we must
have �(L1(e⇡)) = L1d (⇡̄). This means that

� :
�
L1(e⇡), k · kL1(⇡̃)

�
!

�
L1d (⇡̄),�(L1, L1)

�

is linear, continuous (as seen before (2.9)) and surjective, i.e. onto. So part (a) of Corol-
lary 2.12 of Rudin (1991) implies that � is open, and the proof is complete. q.e.d.
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4. Proof of Theorem 2.1

We have seen at the end of Section 2 that Theorem 2.1 follows if we can show the result
(2.9) that � is open. Proposition 3.5 has proved this openness under the extra full support
condition (3.3) on . It remains to get rid of this.

Proof of Theorem 2.1. Let us introduce

Y :=
�
y 2 L0(⌦̄,P ⇡̄, ⇡̄; IRd)

�� for ⇡̄-a.a. !̄, y(!̄) 2 lin
�
supp(!̄, · )

� 
.

Then Y is a vector space, so is then Y \ L1d (⇡̄), and the weak⇤ topology �(L1, L1) makes
Y \ L1d (⇡̄) a topological vector space which is locally convex by Theorem 3.10 of Rudin
(1991). Moreover, y 2 L0(⌦̄,P ⇡̄, ⇡̄; IRd) is 0 in Y if and only if y>x = 0 (dx)-a.e. ⇡̄-a.e., i.e.,
e⇡-a.e. This allows us to show with the same argument as for Lemma 3.1 that (Y\E, k ·kE) is
a Banach space, without needing (3.3). Also without (3.3), we can then show that �(L1(e⇡))
is dense in Y \L1d (⇡̄) =: Z as in the proof of Lemma 3.2. Next we have Y \L1

d(⇡̄) ✓ Y \E,
and going through the proof of Proposition 3.3 allows us to argue that we even have equality
because the norms k · kE and k · kL1

d(⇡̄) are equivalent on Y \ L1
d(⇡̄). To see this, we replace

E by Y \E and Lp
d(⇡̄) by Y \Lp

d(⇡̄) for p 2 {1,1} throughout the proof of Proposition 3.3,
and we note in Step 3) there that also (Y \ L1, k · kL1) is locally convex and that yn ! y

in Y \ E implies even without (3.3) that |ynk | ! |y| ⇡̄-a.e. along a subsequence. Finally,
we can also prove like in Lemma 3.4, but without using (3.3), that  (Y \ L1

d(⇡̄)) is closed
in L1(e⇡). The argument in the proof of Proposition 3.5, with Lp

d(⇡̄) replaced by Y \ Lp
d(⇡̄)

for p 2 {1,1}, then goes through as before and yields (2.9), without needing (3.3). This
completes the proof. q.e.d.

Remark 4.1. Intuitively, the full support condition (3.3) is the analogue of the assumption in
Theorem 1.1 that the constraint functions ai are pseudo-Haar. The above argument exploits
the measurable structure of our constraints in Theorem 2.1 to get rid of this condition, after
having exploited its consequences in Section 3. ⇧

5. An application in arbitrage theory

In this section, we briefly sketch (without going into details) how Theorem 2.1 can be used in
arbitrage theory. We start with a filtered probability space (⌦,F , IF, P ), where IF = (Ft)t�0

is a filtration satisfying the usual conditions of right-continuity and P -completeness. We
are given an IRd-valued stochastic process S = (St)t�0 on (⌦,F , IF, P ), and we want to
construct an equivalent �-martingale measure (E�MM) Q for S (i.e., a probability measure
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Q equivalent to P such that S becomes under Q a �-martingale). More precisely, we assume
that there exists some E�MM Q0 for S, and we want to obtain another E�MM Q⇤

0 such

that the density dQ⇤
0

dP has some a priori specified integrability (actually boundedness, in that
particular application).

The existence of Q0 implies that S is under P a semimartingale, and so we can choose a
good version A for the process dominating the semimartingale characteristics of S. In more
detail, A = (At)t�0 is an increasing predictable process with RCLL (right-continuous with
left limits) trajectories null at 0, and we denote by ⇡̄ := P ⌦ A the induced measure on the
product space ⌦̄ := ⌦ ⇥ [0,1) with the product-�-field F̄ := F ⌦ B([0,1)). We call P the
predictable �-field on ⌦̄ and denote by P ⇡̄ its completion with respect to ⇡̄. We can and do
also assume that A1 is integrable so that ⇡̄ is a finite measure, and we write !̄ = (!, t). All
this fits perfectly into the abstract setup from Section 2.

In the application, our process S had one single random jump at some random time, and
this allowed us to parametrise our martingale measures by functions f on e⌦. Moreover, the
�-martingale condition for S under a general Q ⇡ P translated into a drift condition which
(expressed in terms of the semimartingale characteristics of S) had exactly the form of the
!̄-dependent constraints (2.5). Theorem 2.1 then (essentially) gave us that the existence of

some E�MM Q0 even implies the existence of an E�MM Q⇤
0 whose density dQ⇤

0
dP is bounded.

We say here “essentially” because the precise formulation and result still involve quite a
number of additional technicalities; see Section 7 of Choulli/Schweizer (2015) for more details.

Remark 5.1. Experts in arbitrage theory will no doubt have noticed the similarity between
Theorem 2.1 and the main result (Theorem 2.4 there) behind the version of the fundamental
theorem of asset pricing due to Dalang/Morton/Willinger (1990). Another very similar result
can be found in Delbaen/Schachermayer (1998); see Lemma 3.5 and the subsequent remarks
on pages 226 and 228. Hence the experts may wonder if we could not use one of these results
directly to obtain Theorem 2.1. However, this is not possible, and the reason is a combination
of two circumstances. One is that in contrast to the above results, the random measure  is
a transition kernel, but not a transition probability — (!̄, · ) is for each !̄ a finite measure,
but we have on its mass (!̄, IRd) no control which is uniform in !̄. (We remark that we
genuinely need this generality for our application.) The second is that b in (2.5) is not 0 in
general, which reflects the fact that a single-jump process in continuous time can – in contrast
to discrete time – have a nonvanishing drift prior to the jump. Any attempt to reduce our
problem to the classic results via a normalisation will therefore first destroy the boundedness
of b, and in the final un-normalisation also destroy in general any boundedness property of
the auxiliary integrand ef⇤0 , say, that one might have obtained from the classic results. These
issues are also discussed in Choulli/Schweizer (2015) in Sections 7 and 9.1. So Theorem 2.1
is really a new result. ⇧
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