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1. Introduction

Consider a stochastic process S = (St)t�0 on a filtered probability space (⌦,F , IF, P ). Assume
S is arbitrage-free in the sense that there exists an equivalent martingale measure (EMM) R

for S, i.e. a probability measure R equivalent to P such that S is a (local or maybe �-)mar-
tingale under R. Let Q be another probability measure which is (maybe locally) equivalent
to P and think of Q as an alternative reference model. We ask the following two questions:

1) Knowing only that S admits an EMM R, can we find another EMM R0 whose density
dR0

dP has some additional integrability I(P ) under P? (This question does not need the
introduction of Q.)

2) Suppose S admits an EMM R0 whose density dR0

dP with respect to P has the integra-

bility I(P ) under P . Can we then also find an EMM R00 whose density dR00

dQ with respect to
Q has the (same) integrability I(Q) under Q?

It is well known from the classic Dalang–Morton–Willinger (DMW) theorem that the
answer to both questions is positive in finite discrete time — we can even find an EMM with
a bounded density. In contrast, both questions in the above form have negative answers in
continuous time, as the following simple example illustrates.

Example 1.1. Let N = (Nt)t�0 be a standard Poisson process with intensity 1 and IF the
P -augmentation of the filtration generated by N . Consider the process

St = Nt � f(t) = Nt � t +
tR
0

�
1� ḟ(s)

�
ds, t � 0,

for a deterministic function f . Since the Poisson martingale Mt = Nt � t, t � 0, has the
predictable representation property in IF , there is at most one candidate for an EMM R for S,
and it can be formally obtained via the Girsanov transformation removing the instantaneous
drift 1�ḟ from S. But if ḟ lacks su�cient integrability, the density dR

dP of that single candidate
will fail to have any good integrability, so that 1) has a negative answer. Moreover, if we
take as new reference measure the EMM Q = R, then R00 = Q has a density dR00

dQ ⌘ 1 with

arbitrary integrability I(Q), while the only possible choice R0 = Q gives dR0

dP without nice

integrability if ḟ is bad. So also 2) (with P and Q interchanged) has a negative answer.

One key insight from our results in this paper is that in some sense (made precise below),
Example 1.1 already contains the ingredients for everything that can go wrong in continuous
time. To explain this rigorously, we need to introduce some concepts. A crucial point for
these is that we formulate all our results locally, i.e. by means of localisation, as follows.

We now start properly with a probability space (⌦,F , P ) with a right-continuous filtra-
tion IF 0 = (F0

t )t�0 and F0
1 =

W
t�0

F0
t , and an IRd-valued adapted RCLL process S = (St)t�0.
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For any probability R on (⌦,F), we write as usual R
loc⇡ P if R|Ft is equivalent to P |Ft for

any t � 0, where IF = IFR = (Ft)0t1 is the augmentation of IF 0 with respect to 1
2 (R+P ).

For R
loc⇡ P , we introduce the set

De,�(S,R) := {local R-martingales Z > 0 with Z0 = 1 | ZS is an R-�-martingale}

of R-�-martingale densities for S. We recall that an IRd-valued �-martingale Y is a stochastic
process of the form Y =

R
 dM =  .M with an IRd-valued local martingale M and a one-

dimensional predictable M -integrable process  > 0. Equivalently, there exists a bounded
one-dimensional predictable process ' > 0 such that '.Y is an IRd-valued local martingale.
If Y = ZS and Z > 0 is a local martingale, then '.Y = '.(ZS) is a local martingale if and
only if Z('.S) is, and this property then extends to all one-dimensional bounded predictable
' > 0; see Lemma 2.9 below. Basic references for notations and results from stochastic
calculus are Dellacherie/Meyer (1982) and Jacod/Shiryaev (2003), DM and JS from now on.

If S describes the discounted prices of d risky assets in a financial market containing
also a bank account with constant discounted price 1, the set De,�(S,R) appears naturally
via arbitrage considerations from mathematical finance; see for instance Stricker/Yan (1998).
Indeed, if S is a P -semimartingale and satisfies the classic no-arbitrage condition NFLVR, the
fundamental theorem of asset pricing (FTAP) states that there exists a probability P ⇤ equiv-
alent to P with P ⇤ = P on F0 such that S is a P ⇤-�-martingale; see Delbaen/Schachermayer
(1998) or Chapter 14 of Delbaen/Schachermayer (2006). By the Bayes rule, the density
process Z⇤ with respect to P of this equivalent �-martingale measure P ⇤ for S is then in
De,�(S, P ); see Proposition 5.1 of Kallsen (2004). Note that if De,�(S,R) 6= ;, then S is an
R-semimartingale; this follows by applying Itô’s formula to S = (ZS)/Z with Z 2 De,�(S,R).

Because the condition NFLVR is formulated only in terms of semimartingales and the
spaces L0, L1, it is invariant under an equivalent change of measure. The same holds for
the condition De,�(S, P ) 6= ; : If Q is locally equivalent to P , then De,�(S, P ) 6= ; holds
i↵ De,�(S,Q) 6= ;. The proof is straightforward: If DQ;P is the density process of Q with
respect to P and ZP is in De,�(S, P ) so that ZP S is a P -�-martingale, the Bayes rule directly

yields that ZQ := ZP DQ;P
0 /DQ;P is in De,�(S,Q). The converse is symmetric. Moreover, the

condition De,�(S, P ) 6= ; is also equivalent to saying that S satisfies the condition NUPBR
(which is strictly weaker than NFLVR); see for instance Kardaras (2012) for d = 1 or Takaoka/
Schweizer (2014).

Our first main result is

Theorem 1.2. Let S = (St)t�0 be an IRd-valued adapted RCLL process and assume that

De,�(S, P ) 6= ;. Then there exist ZP 2 De,�(S, P ) and Z(1) with the following property: For

any one-dimensional bounded predictable ' > 0 such that ZP ('.S) is a local P -martingale,

we have a decomposition

'.S = X(1) + X(0)
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such that Z(1) is a locally bounded P -�-martingale density for X(1), and such that X(0)

admits a P -�-martingale density, is quasi-left-continuous and has the form

(1.1) X(0) =
1P

n=1
( eBn + '⌧n�X(0)

⌧n I[[⌧n,1[[) = eB +
1P

n=1
'⌧n�X(0)

⌧n I[[⌧n,1[[,

where eB and each eBn = I]]⌧n�1,⌧n]]
. eBn are continuous and of finite variation and (⌧n)n2IN is

a sequence of stopping times with ⌧n %1 P -a.s. Note that Z(1) does not depend on '.

A more detailed version of Theorem 1.2 is given below in Theorem 8.1, but the above
version is su�cient to convey the first main message. If a process S admits a P -�-martingale
density, then at least one of its integrals '.S with ' > 0 bounded predictable admits a local
P -martingale Z > 0 such that Z('.S) is also a local P -martingale. As pointed out above,
the same is then true for all such integrals '.S. According to Theorem 1.2, any such integral
'.S has one part X(1) which admits a locally bounded P -�-martingale density Z(1) — which
can even be chosen to work simultaneously for all ' —, and a second part X(0) which is an
at most countable sum of quasi-left-continuous single-jump processes each with a continuous
drift part. This shows that for question 1), at least in localised form, the only possible
di�culties come from those parts of S that have the same basic structure as Example 1.1.

Our second main result deals with the part X(0) from Theorem 1.2. To explain this, we
need to look ahead a bit. In (4.3) in Section 4, we decompose S � S0 = Sa + Si, where Si is
quasi-left-continuous, and the precise version (in Theorem 8.1) of Theorem 1.2 shows that

'.S = ('.Sa + X̄(1)) + X(0)

so that X(0) is quasi-left-continuous like Si and comes from Si only.

Theorem 1.3. In the setting of Theorem 1.2, suppose that the quasi-left-continuous process

X(0) has as in (1.1) the form

(1.2) X(0) =
1P

n=1
( eBn + '⌧n�X(0)

⌧n I[[⌧n,1[[) = ('eb).A + '.(x ⇤ µ(0)),

where µ(0) is the jump measure of X(0), ⌫(0)(dt, dx) = F (0)
t (dx) dAt its compensator and A

controls the characteristics of S. Define, with  (x) = x
1+|x| on IRd, the predictable process

(1.3) eR(0) := I{eb6=0}F
(0)- ess sup

z2IRd

(�z>eb)�R
IRd

(z> (x))� F (0)(dx)
.

(This is well defined, as remarked below in Sections 6 and 8, and argued in detail in Section 9.)

Recall that X(0) admits a P -�-martingale density and let � : [0,1) ! IR with �(0) = 0 be

strictly convex, in C1, of at least linear growth, and uniformly bounded from below. If

(1.4)
TR
0

F (0)
t (IRd)

����↵(t) eR(0)
t

��� dAt < 1 P -a.s. for each T 2 (0,1)
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for a measurable function ↵ : [0,1) ! IR which is uniformly strictly positive on compact in-

tervals, then X(0) admits a P -�-martingale density Z in L�
loc(P ), i.e. with sup

0tTn

Zt 2 L�(P )

for each n, for a sequence (Tn)n2IN of stopping times with Tn %1 P -a.s.

Again, a more detailed version is given below in Theorem 8.3, and again the current
version is enough to convey the key message of the result. If we have (a '-integral of) a
single-jump process with a continuous drift part (or even a countable sum of such processes)
and if that process admits a P -�-martingale density, then we can find another P -�-martin-
gale density with local integrability in L� if we have a local control in L� on the drift-to-
jump ratio of the process, as measured by the quantity eR(0) in (1.3), where the control is
quantified by (1.4). (We believe that this result is essentially sharp, in view of Example 1.1
and Theorem 10.1 below. But we do not investigate this in detail here, for reasons of space.)

In combination, Theorems 1.2 and 1.3 show clearly what can be said about nicely in-
tegrable �-martingale densities in continuous time. Always assuming that the basic process
S admits at least one P -�-martingale density, one can split any integral '.S into an un-
problematic part X(1) = '.Sa + X̄(1) (which even admits a locally bounded P -�-martingale
density) and a part X(0) consisting of single jumps with continuous drifts. The drift-to-jump
behaviour of X(0) then completely determines, in a very precise quantitative sense, how much
(local) integrability we can expect for a P -�-martingale density for X(0) or S.

Remark 1.4. If we assume instead of (1.4) that eR(0) is locally bounded, then X(0) admits
a P -�-martingale density Z which is even locally bounded. For more details, we refer to
Remark 8.5 below. ⇧

Remark 1.5. If S is continuous, the whole situation is much simpler: If De,�(S, P ) 6= ;,
then S even admits a P -�-martingale density which is locally bounded away from 0 and 1.

We can actually give two di↵erent arguments. For the first, in terms of the present paper,
we start with some Z̄ = E(N̄) in De,�(S, P ) and use the Jacod decomposition in Theorem 2.4
below to write N̄ = � .S + N 0 with some S-integrable predictable process � and some local
P -martingale N 0 null at 0 with [S,N 0] ⌘ 0. Then the product rule readily shows that also
¯̄Z := E(� .S) is in De,�(S, P ), and locally bounded away from 0 and 1, as it is continuous.

Using di↵erent terminology, we can alternatively argue as follows. If S is continuous
and admits a P -�-martingale density, it is well known that S satisfies the structure condition
(SC) under P , and so the P -minimal martingale density bZ(P ) exists. Since this is continuous
like S, we obtain the same conclusion as above. For more details on the above results and
terminologies, we refer to Hulley/Schweizer (2010). ⇧

To the best of our knowledge, the existing literature has no general results similar to
Theorems 1.2 or 1.3. At best, we are aware of some remotely related work. Under additional
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integrability or continuity assumptions, Stricker (1990) has given necessary and su�cient
arbitrage-type conditions on S such that there exists an equivalent martingale measure R for
S with dR

dP 2 Lp(P ). In finite discrete time, the classic result of Dalang/Morton/Willinger
(1990) shows that absence of arbitrage for S is equivalent to the existence of an EMM R for S

with dR
dP 2 L1. Also in finite discrete time, Rokhlin (2010) has given a necessary and su�cient

condition for the existence of an EMM R for S with dR
dP bounded below by some given random

variable f > 0; an abstract variant of this result can be found in Rokhlin/Schachermayer
(2006). Rásonyi (2001) (for finite discrete time) and Kabanov/Stricker (2001) have shown
that the set of equivalent (�-)martingale measures R for S with bounded density dR

dP 2 L1

is dense, for the total variation norm, in the set of all E(�)MMs for S. (Earlier uses of this
result without complete proofs appear in Jacka (1992) and Kramkov (1996).) The paper of
Kabanov/Stricker (2001) also has a variant of the last denseness result with boundedness
replaced by some integrability. However, almost all these papers either have extra conditions
on S or work in and exploit a setting of finite discrete time. In addition, they also study
di↵erent questions than we do here and mostly use quite di↵erent techniques.

Another distantly related result can be found in Theorem 1.4 of Prokaj/Rásonyi (2011);
see also Theorem 2.2.2 of Kabanov/Safarian (2010). It shows that for a process S in discrete
time, one can find martingale measures for S arbitrarily close (in the total variation norm)
to the original measure P and such that they also make integrable an arbitrary (but a priori
given) process. One referee has pointed out that some of our proofs and the above result
have in common that they are based on the same idea as the key step in the proof of the
DMW theorem: They exploit the one-step characterisation of absence of arbitrage to obtain
a martingale measure with bounded density. However, neither Prokaj/Rásonyi (2011) nor
Kabanov/Safarian (2010) give any continuous-time version of that result. Moreover, one key
aspect of our paper is that we must go substantially beyond a DMW framework since our
single-jump processes have an additional nonzero drift. As discussed in detail in Section 9,
this seemingly small di↵erence is at the root of many technical and conceptual di�culties we
encounter.

Apart from the two main theorems presented above, our paper involves several major
and innovative contributions. One is Theorem 7.1 which shows a continuous-time analogue
of the classic DMW theorem: If S is a process consisting of at most countably many jumps at
predictable times, then S admits a P -�-martingale density if and only if it admits a locally
bounded P -�-martingale density. This can be viewed as a generalisation of Theorem 5 in
Stricker (1990). The proof uses with Theorem 2.1 from Choulli/Schweizer (2015) a result of
independent interest — we extend a theorem of Borwein/Lewis (1991) on integral functionals
subject to linear equality constraints from finitely to (maybe uncountably) infinitely many
constraints. Next, the key step for the proof of Theorem 1.3 or 8.3, given in Theorem 9.2,
uses novel ideas and techniques. To construct a nicely integrable P -�-martingale density for
a single-jump process X(0) with continuous drift, we first provide an infinite-dimensional
extension of a key lemma in Kabanov/Stricker (2001). In addition, we construct the desired
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P -�-martingale density Z(0) by solving an optimisation problem (whose objective functional
is linked to the function � specifying the desired integrability) under constraints (given by the
�-martingale condition for the product Z(0)X(0)). This innovative construction is crucial in
helping us to circumvent issues of measurable selection which otherwise become quite delicate.

The paper is structured as follows. Section 2 presents a classic decomposition, going back
to Grigelionis (1973) and Jacod (1979), to describe any local P -martingale null at 0 in terms
of four stochastic processes (called Jacod parameters) computed with respect to some given
semimartingale (here, usually S). It also contains other auxiliary results of general interest.
Section 3 recalls concepts like L� and proves corresponding results on local integrability of
exponential local martingales. Section 4 prepares the ground by showing how one can break
up our general process S into simpler pieces with extra properties. One decomposition splits
S as S�S0 = Sa +Si into an accessible part Sa and a quasi-left-continuous part Si. Another
is to simply write

(1.5) S � S0 = S � S0 =
1P

n=1
(S⌧n � S⌧n�1) =

1P
n=1

I]]⌧n�1,⌧n]]
.S

for a sequence (⌧n)n2IN of stopping times with ⌧0 := 0 and ⌧n %1 P -a.s.
The work on S starts in earnest in Section 5. For a predictable bounded ' > 0 such that

X := '.S has a P -local martingale density, we study X⌧ �X� = I]]�,⌧ ]]
.X, as representative

for X⌧n � X⌧n�1 , and we show how to split o↵ from this a single-jump process X(0) with
continuous drift such that the remaining part of X⌧ �X� admits a locally bounded P -�-mar-
tingale density; see Theorem 5.1. Moreover, all ingredients “live” only on ]]�, ⌧ ]] so that we can
later piece things together for X via (1.5). Section 6 shows how to construct a P -�-martingale
density in L�

loc for X⌧�X� if S is quasi-left-continuous and if we have an L�-control on X(0);
this is done for X(0) via Theorem 6.1 which is formulated, but not yet proved there. Section 7
constructs in Theorem 7.1 a locally bounded P -�-martingale density for the accessible part
Sa of S. In Section 8, we combine the previous work to establish in Theorems 8.1 and 8.3
the general versions of the main results presented in Theorems 1.2 and 1.3. Sections 9 and 10
contain the proof of Theorem 6.1 (which is restated with more details in Theorem 9.2). As
already mentioned, this part contains two major conceptual innovations, discussed in detail
after Theorem 9.2.

2. Positive local martingales and the Jacod decomposition

Let X = (Xt)t�0 be an IRd-valued semimartingale on a filtered probability space (⌦,F , IF, P )
with the usual conditions. Our goal here is to describe all local P -martingales N = (Nt)t�0 in
terms of certain parameters relative to X, and to make explicit what this entails if Z = E(N)
is strictly positive and ZX is a �-martingale. Many of the results presented in this section
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can be found in the literature; but they are less well known than they deserve to be, and the
proofs one can find are not always very detailed. Since our arguments rely heavily on these
techniques, we have therefore opted for a largely self-contained exposition.

We first fix notations, following JS. The jump measure of X is denoted by µ = µX , and
its P -compensator by ⌫ = ⌫P . The characteristics of X with respect to a fixed truncation
function h are B = b .A =

R
b dA, C = c .A, ⌫P (dt, dx) = FP

t (dx) dAt, where the dominating
process A is null at 0, increasing, predictable and RCLL (hence locally bounded); B, b are
IRd-valued, C, c are d ⇥ d-matrix-valued processes, and each FP

t is a random measure on
(IRd,B(IRd)) with FP

t ({0}) = 0. For a product-measurable function W � 0 on ⌦⇥[0,1)⇥IRd,

we need the processes W ⇤ µt :=
tR
0

R
IRd

Ws(x)µ(ds, dx), t � 0, and

(2.1) cWt :=
R

IRd

Wt(x) ⌫P ({t}, dx), t � 0,

with values in [0,+1]; see JS, II.1.24. If W is measurable with respect to eP = P ⌦ B(IRd),

then cW is by JS, Lemma II.1.25, predictable and given by

(2.2) cW = p
�
W (�X)I{�X 6=0}

�
,

where pY is the predictable projection of the process Y . In particular, for W ⌘ 1, we have

(2.3) at := b1t = ⌫P ({t}, IRd) = p
�
I{�X 6=0}

�
t
, t � 0.

We also need the measure MP
µ = P ⌦µ on ⌦⇥ [0,1)⇥ IRd given by

R
W dMP

µ = E[W ⇤µ1].
Other unexplained notations can be found in JS.

Lemma 2.1. We have, up to an evanescent predictable set,

(2.4) {a = 1} ✓ {�X 6= 0}.

If 1⇤µ is P -a.s. finite-valued (which means that for P -almost all !, X.(!) has on any compact

interval at most finitely many jumps), then the (predictable) process

(2.5)
1

1� a
I{a<1} = (1� a)�1I{a<1} is locally bounded,

and therefore also (1 � a + bf)�1I{a<1} is locally bounded for any measurable f � 0 on

⌦ ⇥ [0,1) ⇥ IRd. More generally, for any eP-measurable function W such that |W | ⇤ ⌫P

is P -a.s. finite-valued, the predictable process (1 �cW )�1I{bW<1} is well defined and locally

bounded. In particular, this is true for any eP-measurable and finite-valued function W if

1 ⇤ µ is P -a.s. finite-valued.
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Proof. This partly follows the proof of Theorem 11.14 in He/Wang/Yan (1992). By (2.3),
we have 0  a  1 and the process a is thin. For any predictable stopping time T with
[[T ]] ✓ {a = 1}, (2.3) yields

E[µ([[T ]]⇥ IRd)] = E
⇥
I{�XT 6=0}I{T<1}

⇤
= E

⇥
aT I{T<1}

⇤
= P [T < 1]

so that we get µ([[T ]]⇥ IRd) = 1 P -a.s. on {T < 1}. Since T was arbitrary and a is thin, this
implies (2.4). For (2.5), we first note that for any � 2 (0, 1),

(1� a)�1I{a<1}  (1� �)�1I{a�} + (1� a)�1I{�<a<1}.

If the process 1 ⇤ µ is P -a.s. finite-valued, then so is its compensator V := 1 ⇤ ⌫P , and V is
RCLL. For any � > 0, the set {s  t | �Vs > �} is therefore finite P -a.s. for each fixed t. But
�Vs = ⌫P ({s}, IRd) = as by (2.3), and so for P -almost all !, any compact interval contains
at most finitely many s with as(!) > �. Therefore the process

sup
0st

(1� as)�1I{as<1}  (1� �)�1 + sup
0st

(1� as)�1I{�<as<1}, t � 0,

is increasing and P -a.s. finite-valued, because the last supremum is actually a maximum over
those finitely many s. So (1 � a)�1I{a<1} is prelocally bounded, and since it is predictable
like a, it is therefore locally bounded; see DM, VIII.11. This proves (2.5). The argument for
W is analogous; we simply replace the process 1 ⇤ ⌫P by W ⇤ ⌫P , which has finite variation
by assumption, and we use (2.1) instead of (2.3). In particular, if 1 ⇤µ is P -a.s. finite-valued,
then so is |W | ⇤ µ and hence also |W | ⇤ ⌫P . q.e.d.

The next result is classic.

Proposition 2.2. [Jacod (1979), Théorème 3.75] Recall that the IRd-valued semimartin-

gale X is fixed. Every (real-valued) local P -martingale N null at 0 can be written as

N = W ⇤ (µ� ⌫P ) + g ⇤ µ + N̄ .

More explicitly, with

U := MP
µ (�N | eP),

we have that

(2.6) g := �N � U is in H1
loc(µ)

(which means that g : ⌦ ⇥ [0,1) ⇥ IRd ! IR is measurable, the signed measure g.MP
µ is

eP-�-finite, MP
µ (g | eP) = 0, and (g2 ⇤ µ)1/2 is locally integrable), that

(2.7) W := U +
bU

1� a
I{a<1} is in G1

loc(µ),
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which means that W is eP-measurable and

⇣ P
0<s.

�
Ws(�Xs)I{�Xs 6=0} �cWs

�2⌘1/2
is locally integrable,

and that

(2.8) N̄ is a local P -martingale null at 0 with {�N̄ 6= 0} ✓ {�X = 0}.

Moreover, we can and do choose a version of U with

(2.9) {bU 6= 0} ✓ {a < 1}, so that bU = 0 on {a = 1}.

If we know that �N > �1, then also U > �1 MP
µ -a.e., and setting

(2.10) f := U + 1 > 0

then gives by (2.3)

(2.11) W = f � 1 +
bf � a

1� a
I{a<1}.

The next result collects some additional properties that we need later.

Lemma 2.3. In the setting of Proposition 2.2, the process bU is locally bounded and the

processes sup
0<s.

|fs(�Xs)|I{�Xs 6=0} and sup
0<s.

|gs(�Xs)|I{�Xs 6=0} are locally integrable. If

1 ⇤ µ is finite-valued P -a.s., then also cW is locally bounded.

Proof. In view of (2.7), (2.1), (2.3) and (2.9), we have

(2.12) cW = bU + a
bU

1� a
I{a<1} = bU 1

1� a
I{a<1}

and therefore

(2.13) W (�X)I{�X 6=0} �cW = U(�X)I{�X 6=0} �cWI{�X=0}.

Due to (2.5) in Lemma 2.1, the last assertion follows if we prove that bU is locally bounded.
Set Yt := Ut(�Xt)I{�Xt 6=0}; then bU = pY by (2.2) and hence |bU | = |pY |  p|Y | by Jensen’s
inequality. Moreover, (2.13) gives for any s  t that

|Ys| 
⇣ P

0<rt

�
Ur(�Xr)

�2
I{�Xr 6=0}

⌘1/2
= (U2 ⇤ µt)1/2(2.14)

=
⇣ P

0<rt

�
Wr(�Xr)�cWr

�2
I{�Xr 6=0}

⌘1/2


⇣ P

0<rt

�
Wr(�Xr)I{�Xr 6=0} �cWr

�2⌘1/2
=: Vt.
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By Proposition 2.2, the increasing process V is locally integrable because W is in G1
loc(µ). As

f = U +1, this gives the first half of the second assertion, and moreover V has a compensatoreV . Because |Y |  V , we get |bU |  p|Y |  pV = V� + p(�V ) = V� +�eV  V� + eV , where
the second equality uses DM, Theorem VI.76. But V� is locally bounded, and so is eV since
it is predictable and RCLL. Hence bU is locally bounded as well. Finally, the assertion about
g is proved in exactly the same way as that for f , exploiting instead of W 2 G1

loc(µ) that g is
in H1

loc(µ) so that (g2 ⇤ µ)1/2 is locally integrable. q.e.d.

Now apply the Kunita–Watanabe decomposition under P to N̄ and the continuous local
martingale part Xc of X to write N̄ = � .Xc + N 0, where � is a (predictable) Xc-integrable
process and N 0 a local P -martingale null at 0 and strongly P -orthogonal to Xc. By the
continuity of Xc, this means that hXc, N 0i ⌘ 0; so also [X,N 0] = hXc, N 0i+

P
�X�N 0 ⌘ 0

because �N 0 = �N̄ vanishes on {�X 6= 0} by (2.8). In summary, we have proved

Theorem 2.4. (Jacod decomposition) Recall that the IRd-valued semimartingale X is

fixed. Every local P -martingale N null at 0 can be written as

(2.15) N = � .Xc + W ⇤ (µ� ⌫P ) + g ⇤ µ + N 0,

where � is Xc-integrable, W = U + bU
1�aI{a<1} 2 G1

loc(µ), g 2 H1
loc(µ), and N 0 is a local

P -martingale null at 0 with

(2.16) [X,N 0] ⌘ 0.

If �N > �1, then W = f � 1 + bf�a
1�a I{a<1}, where f > 0 is eP-measurable, and then

(2.17) f + g > 0 MP
µ -a.e.

Proof. The only statement left to prove is (2.17). But we have MP
µ -a.e. that g = �N � U

by (2.6) and f = U + 1 by (2.10), so f + g = �N + 1 > 0. q.e.d.

In the sequel, we call (�,W, g,N 0) or (�, U, g,N 0), or (�, f, g,N 0) for �N > �1, the
Jacod parameters of N (under P , with respect to X).

Remark 2.5. The decomposition (2.15) in Theorem 2.4 has already been given (without de-
tails) in Choulli/Stricker (2006), Theorem 2.1, or in Choulli/Stricker/Li (2007), Theorem 2.1.
Both contain the additional integrability assertion that (for every T 2 (0,1))

(2.18)
TR
0

R
IRd\{0}

|Us(x)| ⌫P (ds, dx) < 1 P -a.s.,
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but do not give a proof for this. Our subsequent results do not need (2.18). ⇧

For later use, we explicitly compute the jumps of N in terms of its Jacod parameters.

Lemma 2.6. If the local P -martingale N null at 0 is given by the Jacod decomposition

(2.15), then its jumps are

(2.19) �N =
�
f(�X) + g(�X)� 1

�
I{�X 6=0} +

�
�N 0 �cW�

I{�X=0}

with f = U + 1. As a consequence, �N > �1 if and only if

(
f(�X) + g(�X) > 0 on {�X 6= 0},

1�cW +�N 0 > 0 on {�X = 0}.

Proof. The second assertion clearly follows from (2.19). By (2.6), �N = g + U = f + g � 1
MP

µ -a.e. On the other hand, (2.15) gives

�N = W (�X)I{�X 6=0} �cW + g(�X)I{�X 6=0} +�N 0(2.20)

=
�
W (�X)�cW + g(�X)

�
I{�X 6=0} +

�
�N 0 �cW�

I{�X=0},

because �X�N 0 = �[X,N 0] = 0 by (2.16) and hence �N 0 = 0 on {�X 6= 0}. But we have

seen in (2.7) and (2.12) that W �cW = U = f � 1 MP
µ -a.e., and so (2.19) follows. q.e.d.

Our next result tells us how information about E(N) gives us information about the
Jacod parameters of N . We say that a measurable function  : ⌦ ⇥ [0,1) ⇥ IRd ! IR is
µ-locally bounded if there exist stopping times (Tn)n2IN increasing to +1 P -a.s. such that
for each n,  I]]0,Tn]] is bounded (uniformly in (!, t, x)) µ-almost everywhere P -a.s. (MP

µ -a.e.,
in other words). If  does not depend on x 2 IRd, this reduces to the usual notion of local
boundedness; the point here is that the stopping times Tn do not depend on x.

Proposition 2.7. Suppose that the local P -martingale N null at 0 is given by the Jacod

decomposition (2.15) and f = U + 1.
1) If E(N) > 0, then

(2.21) 1�cW > 0 and 1 +
�N 0

1�cW > 0, both on {�X = 0}.

2) If E(N) > 0, then f > 0 and f + g > 0, MP
µ -a.e. If �N � �1 + � > �1 with a

constant �, we even have f + g � � > 0 and f � � > 0, MP
µ -a.e. If E(N) > 0 is even locally

bounded, then N is locally bounded, and f and f + g are both µ-locally bounded.

11



Proof. 1) This is similar to the argument for (2.4) in Lemma 2.1. Since E(N) > 0 implies

�N > �1, we get 1�cW +�N 0 > 0 on {�X = 0} or, since �N 0 = 0 on {�X 6= 0} by (2.16),

(2.22) (1�cW )I{�X=0} +�N 0 � 0.

Taking predictable projections and using (2.3) and the fact that N 0 is a local P -martingale

(so that p�N 0 = 0) gives (1�cW )(1� a) � 0. Because a < 1 on {�X = 0} by Lemma 2.1,

we get 1�cW � 0 on {�X = 0}. Now I{bW=1}�N 0 = I{bW=1}I{�X=0}�N 0 � 0 by (2.16) and

(2.22), and since p(I{bW=1}�N 0) = I{bW=1}
p�N 0 = 0, we must have cW < 1 on {�N 0 6= 0}

up to an evanescent predictable set. So �N 0 = 0 on {cW = 1}, and since 1�cW +�N 0 > 0

on {�X = 0}, we must have 1�cW > 0 on {�X = 0} to avoid a contradiction. Dividing by

1�cW then yields (2.21).
2) Clearly N = 1

E(N)�
.E(N) is locally bounded if E(N) > 0 is. Then �N is locally

bounded as well, and we can by localisation assume that 1+�N  C P -a.s. for some constant
C < 1. Using only E(N) > 0 to get �N > �1 then yields by (2.19) that 0 < f + g  C

P -a.s. on {�X 6= 0}, i.e. MP
µ -a.e., with even a uniform lower bound � > 0 if 1 +�N � �.

Because f is eP-measurable and MP
µ (g | eP) = 0 since g 2 H1

loc(µ), we also get by “conditioning

on eP under MP
µ ” that 0 < f  C MP

µ -a.e., again with a uniform lower bound � > 0 if
1 +�N � �. Finally, the proof makes it clear that the lower bounds on f and f + g do not
need local boundedness of E(N). q.e.d.

We next refine the proof technique from Lemma 2.3 to improve a part of Lemma 2.1.
Note that Ū is just an abstract function not related to X or N .

Lemma 2.8. 1) Let Ū be a eP-measurable function on ⌦⇥ [0,1)⇥ IRd such that b̄U < 1 and

(2.23) V :=
⇣ P

0<s.

�
Ūs(�Xs)

�2
I{�Xs 6=0}

⌘1/2
= (Ū2 ⇤ µ)1/2 is locally integrable.

Then the predictable process

(2.24) (1� b̄U)�1 =
1

1� b̄U is locally bounded.

2) Let N be any local P -martingale null at 0 with E(N) > 0. For the Jacod parameters

(�, f, g,N 0) of N , we then have that

(2.25) the process (1� a + bf)�1 is locally bounded.

3) Suppose that 1 ⇤ µ is finite-valued P -a.s. and f > 0 is any eP-measurable function

which is µ-locally bounded. Then

(2.26) the process (1� a + bf)�1 is locally bounded.
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Proof. 2) We know from Theorem 2.4 and Proposition 2.7 that f is eP-measurable and f > 0

MP
µ -a.e. So Ū := �f + 1 < 1 MP

µ -a.e. and therefore b̄U = � bf + a < a  1. Moreover, (2.7)

and (2.12) give W � cW = U = f � 1 = �Ū MP
µ -a.e. so that we get (2.23) with the same

estimate as in (2.14). Hence (2.25) follows from (2.24).
3) We again choose Ū := �f + 1 and write kfkx,1 for the essential supremum of f with

respect to the variable x. Then we get Ū2 ⇤µ  (1+kfkx,1)2 ⇤µ, and 1⇤µ is RCLL, adapted,
finite-valued by assumption and has bounded jumps. So it is locally bounded, and the same
is true for (1 + kfkx,1)2 ⇤ µ because f is µ-locally bounded. So the process V resulting in
(2.23) from this Ū is even locally bounded, and we can again use part 1) to get (2.26).

1) For � 2 (0, 1), define an increasing sequence (⌧n)n2IN of stopping times by ⌧0 := 0 and

⌧n+1 := inf
n
t > ⌧n

��� ⌧n(Ū2 ⇤ µ)t =
P

⌧n<st

�
Ūs(�Xs)

�2
I{�Xs 6=0} > �2

o
.

Moreover, define processes V n, n 2 IN0, by

V n
t := ⌧n(Ū2 ⇤ µ)t =

⇣ P
⌧n<st

�
Ūs(�Xs)

�2
I{�Xs 6=0}

⌘1/2
 Vt.

By definition, each V n is adapted, RCLL, increasing, and finite-valued due to (2.23). There-
fore V n

⌧n+1
� �2 on {⌧n+1 < 1}, and so we must have ⌧n % 1 P -a.s., again due to (2.23),

because Vt �
1P

n=0
V n

⌧n+1
= +1 on { sup

n2IN
⌧n  t}. From the definitions, we also have V n

t�  �

P -a.s. for t  ⌧n+1.

Now fix ⌘ 2 (0, 1) and write (1� b̄U)�1 = (1� b̄U)�1I{ ˆ̄U�1�⌘} + (1� b̄U)�1I{ ˆ̄U<1�⌘}. The

second summand is bounded by 1/⌘ so that we focus on Y := (1� b̄U)�1I{ ˆ̄U�1�⌘}. Because

Y is predictable, it will by DM, VIII.11 be locally bounded if we show that it is prelocally
bounded, which is equivalent to

(2.27) sup
0st

Ys < 1 P -a.s. for all t � 0.

Because ⌧n %1 P -a.s., (2.27) will follow if we show that

(2.28) sup
⌧n<st^⌧n+1

Ys < 1 P -a.s. on {t > ⌧n}.

Denoting by fV n the compensator of V n, which exists thanks to (2.23) since V n  V , we

obtain as in the proof of Lemma 2.3 that b̄Us  | b̄Us|  V n
s� + p(�V n)s = V n

s� + �fV n
s for

⌧n < s  ⌧n+1. This implies that

�
s 2 (⌧n, ⌧n+1]

�� b̄Us � 1� ⌘
 
✓
�
s 2 (⌧n, ⌧n+1]

���fV n
s � 1� ⌘ � V n

s�
 

✓
�
s 2 (⌧n, ⌧n+1]

���fV n
s � 1� ⌘ � �

 
=: �n.
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But each set �n \ [0, t] is P -a.s. finite since fV n is RCLL, and so (2.28) holds because

sup
⌧n<s⌧n+1

Ys = max
⌧n<s⌧n+1

(1� b̄Us)�1I{ ˆ̄Us�1�⌘} < 1 P -a.s.

Thus Y is locally bounded and therefore (1� b̄U)�1 is so, too. q.e.d.

Much of our work below depends on describing when a product Y E(N) is a �-martingale.
For ease of reference, we formulate this as a lemma. Note that the equivalence of 1) and 3)
is just the definition of a �-martingale.

Lemma 2.9 Let Y = (Yt)t�0 be an IRd-valued semimartingale and Z = E(N) > 0, where

N is a local martingale null at 0 with �N > �1. Then the following are equivalent:

1) Y Z = Y E(N) is a �-martingale.

2) Y + [Y,N ] is a �-martingale.

3) There is a bounded predictable process ' > 0 such that '.(Y Z) is a local martingale.

4) There is a bounded predictable process ' > 0 such that ('.Y )Z is a local martingale.

5)  .(Y Z) is a �-martingale for every bounded predictable process  > 0.
6) ( .Y )Z is a �-martingale for every bounded predictable process  > 0.

Proof. First of all, 1) is equivalent to 3) by the definition of a �-martingale. Next, the
product rule and Z = E(N) = 1 + Z� .N give

(2.29) Y Z = Y E(N) = Y� .Z + Z� .Y + Z� .[N,Y ] = Y� .Z + Z� .(Y + [Y,N ]).

Since Y� .Z is like Z a local martingale and Z�, 1/Z� are both predictable, > 0 and locally
bounded, we see that 1) and 2) are equivalent. Moreover, 1) implies 5) by Proposition
III.6.42 in JS, and of course 5) implies 1). In the same way, 2) is equivalent to saying that
 .(Y + [Y,N ]) =  .Y + [ .Y,N ] is a �-martingale for every bounded predictable process
 > 0, which is in turn equivalent to 6) by using the equivalence of 1) and 2) with  .Y
instead of Y . Finally, the same computation as in (2.29) yields

'.(Y Z)� ('.Y )Z = ('Y�).Z + ('Z�).Y + '.[Y,Z]� ('.Y )� .Z � (Z�').Y � '.[Y,Z].

Because this is a local martingale like Z, we see that 3) and 4) are equivalent. q.e.d.

To characterise the properties in Lemma 2.9 further via Jacod parameters, we choose
A such that it dominates the characteristics of both X and Y and write µY , ⌫Y,P , bY , FY,P

etc. to distinguish quantities for Y from those for X. We first need an explicit expression for
Y + [Y,N ]. To formulate that, we recall from Theorem II.2.34 in JS the canonical represen-
tation of Y as

(2.30) Y = Y0 + Y c + h ⇤ (µY � ⌫Y,P ) + (x� h) ⇤ µY + BY
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with BY = bY .A, and introduce the d⇥d-matrix-valued process cY,X via hY c,Xci = cY,X .A.
The typical example for Y in the next result is Y = I�

.X for some predictable set �.

Lemma 2.10. Recall that the IRd-valued semimartingale X is fixed and consider a local

P -martingale N null at 0 given by the Jacod decomposition (2.15). Suppose that µY ⌧ µ, so

the IRd-valued semimartingale Y can only jump if X does, that �Y
�X 2 {0, 1} on {�X 6= 0},

and that (N 0)c from (2.15) is strongly P -orthogonal to Y c. If we set f = U + 1, then

(2.31) Y + [Y,N ] = Y0 + Y c + h ⇤ (µY � ⌫Y,P ) + (bY + cY,X�).A +
�
x(f + g)� h

�
⇤ µY .

Proof. By assumption, we have �X = �Y 6= 0 on {�Y 6= 0}. Hence (2.19) and (2.15) give

[Y,N ] = hY c, Nci+
P
�Y�N(2.32)

= hY c,� .Xci+
P�

f(�X) + g(�X)� 1
�
�Y I{�X 6=0}

= (cY,X�).A +
�
x(f + g � 1)

�
⇤ µY ,

and adding (2.30) and (2.32) yields (2.31). q.e.d.

The next result is a slight variation of Lemma 2.4 in Choulli/Stricker/Li (2007). It deals
with �-martingales instead of local martingales. In the arguments below and also later, we
use several times the following simple fact: For any product-measurable W � 0, the process
C := W ⇤ µY is locally integrable if and only if C0 := MP

µY (W | eP) ⇤ ⌫Y,P is, and C0 = Cp is
then the compensator of C.

Lemma 2.11. Recall that the IRd-valued semimartingale X is fixed. Suppose that the local

P -martingale N null at 0 is given by the Jacod decomposition (2.15) with f = U + 1 and

that Z = E(N) > 0. Let Y be an IRd-valued semimartingale with µY , bY , cY,X , FY,P and

suppose that µY ⌧ µ, that �Y
�X 2 {0, 1} on {�X 6= 0}, and that (N 0)c from (2.15) is strongly

P -orthogonal to Y c. Then ZY is a P -�-martingale if and only if for P ⌦A-almost all (!, t),
we have one of the three equivalent properties

V (1) :=
R

IRd

��x�ft(x) + MP
µY (g | eP)(t, x)

�
� h(x)

��FY,P
t (dx) < 1,(2.33)

V (11) :=
R

{|x|>1}
|x|
�
ft(x) + MP

µY (g | eP)(t, x)
�
FY,P

t (dx) < 1,(2.34)

V (2) :=
R

IRd

MP
µY

�
|x(f + g)� h|

�� eP�(t, x)FY,P
t (dx) < 1,(2.35)

as well as

(2.36) bY
t + cY,X

t �t +
R

IRd

⇣
x
�
ft(x) + MP

µY (g | eP)(t, x)
�
� h(x)

⌘
FY,P

t (dx) = 0.
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Proof. By definition, ZY is a P -�-martingale i↵ there is a bounded predictable ' > 0 such
that '.(ZY ) is a local P -martingale. Using Z = 1 + Z� .N and comparing the expressions

'.(ZY ) = ('Y�).Z + (Z�').Y + '.[Z, Y ],

Z('.Y ) = ('.Y )� .Z + (Z�').Y + '.[Z, Y ] = ('.Y )� .Z + Z� .('.Y + '.[N,Y ])

shows that

'.(ZY ) is a local P -martingale i↵ Z('.Y ) or, equivalently, '.Y + [N,'.Y ] is.

By Lemma 2.10 and its proof, '.Y + [N,'.Y ] = '.(Y c + h ⇤ (µY � ⌫Y,P )) + D' with

(2.37) D' :=
�
'(bY +cY,X�)

�.A+
⇣
'
�
x(f +g)�h

�⌘
⇤µY = '.�(x�h)⇤µY +BY +[Y,N ]

�
,

and so ZY is a P -�-martingale i↵ D' is a local P -martingale for some bounded predictable
' > 0. Note in (2.37) that in the first representation, the first summand in D' is predictable
and locally P -integrable, and that both summands are of finite variation due to the second
representation. We also point out that the property g 2 H1

loc(µ) and the assumptions on µY

and �Y
�X imply that g.MP

µY is eP-�-finite so that MP
µY (g | eP) is well defined.

1) Suppose first that ZY is a P -�-martingale and take some ' as above. Then D' is
a local P -martingale and D̄ := ('(x(f + g) � h)) ⇤ µY is a P -special semimartingale and of
finite variation, hence of locally P -integrable variation D0 := |D̄|var = ('|x(f + g)� h|) ⇤µY .
Therefore its P -compensator exists, is also of locally P -integrable variation, and is given by

D̄p = MP
µY

�
'(x(f + g)� h)

�� eP� ⇤ ⌫Y,P

= '
�
xMP

µY (f + g | eP)� h
�
⇤ ⌫Y,P

=
R
't

R
IRd

�
xMP

µY (f + g | eP)(t, x)� h(x)
�
FY,P

t (dx) dAt.

Note above that MP
µY (f + g | eP) is well defined in [0,+1] since f + g � 0 MP

µ -a.e., hence

also MP
µY -a.e. Next, the compensator of D0 exists as well and is of locally integrable vari-

ation, which implies (2.35) because ' > 0. Finally, (2.36) follows by noting that the pro-
cess ('(bY + cY,X�)).A + D̄p = D' � (D̄ � D̄p) is predictable, of finite variation and a local
P -martingale, hence constant. We also use for (2.36) that f is eP-measurable, and we point
out that MP

µY (g | eP) need not vanish though MP
µ (g | eP) does.

2) Conversely, (2.35) implies that the bounded predictable process ' > 0 given by

1/'t := 1 + |bY
t |+ |cY,X

t �t|+
R

IRd

MP
µY

�
|x(f + g)� h|

�� eP�(t, x)FY,P
t (dx)

is well defined, and ('bY ).A, ('cY,X�).A, ('MP
µY (|x(f + g)� h| | eP)) ⇤ ⌫Y,P all have locally

P -integrable variation since their variations are bounded above by A. As a consequence, also
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D̄ = '(x(f+g)�h)⇤µY has locally P -integrable variation and D̄�D̄p is a local P -martingale.
Since D̄ � D̄p = D' by (2.37) and (2.36), this shows that ZY is a P -�-martingale.

3) It remains to prove that (2.33)–(2.35) are all equivalent. To that end, we first note
that h(x) = xI{|x|1} together with positivity of f and f + g yields that

V (1) = V (11) +
R

{|x|1}
|x|
��ft(x) + MP

µY (g | eP)(t, x)� 1
��FY,P

t (dx)(2.38)

 V (11) +
R

{|x|1}
|x|MP

µY

�
|f + g � 1|

�� eP�(t, x)FY,P
t (dx)

=: V (11) + V (22)

= V (2).

This already shows the implications “(2.35) =) (2.33) =) (2.34)” since all V -expressions
above are nonnegative. But in view of (2.19) and our assumption on �Y

�X , we also have

C :=
��x(f + g � 1)I{|x|1}

�� ⇤ µY

=
P
|�Y ||�N |I{|�Y |1}


�P

(�Y )2I{|�Y |1}
�1/2�P(�N)2

�1/2


�
I{|�Y |1} .[Y ]

�1/2�P(�N)2
�1/2

.

On the right-hand side above, the first factor is locally bounded since it is a finite-valued
increasing adapted process with bounded jumps, and the second factor is locally P -integrable
because N is a local P -martingale; see JS, Corollary I.4.55. So C is locally P -integrable, and
hence so is its compensator Cp, which then equals V (22).A. Therefore we have V (22) < 1
for P ⌦ A-almost all (!, t), and hence we also have the implication “(2.34) =) (2.35)” due
to (2.38). This completes the proof. q.e.d.

If Y has a simpler structure, we also obtain a simpler description for the �-martingale
property of Y E(N). We spell this out here since it will be used later.

Corollary 2.12. Let X be an IRd-valued semimartingale and Y of the form

(2.39) Y = Y0 + x ⇤ µ̄ + b̄.Ā,

where µ̄ ⌧ µX and �Y
�X 2 {0, 1} and Ā ⌧ A is continuous. Suppose that the P -compensator

⌫̄P of µ̄ has the form ⌫̄P (dt, dx) = F̄P
t (dx) dĀt. Let N be a local P -martingale null at 0 with

Jacod parameters (�, f, 0, 0) with respect to X and suppose that Z = E(N) > 0. Then ZY

is a P -�-martingale if and only if we have for P ⌦ Ā-almost all (!, t)

(2.40)
R

IRd

|x|ft(x)F̄P
t (dx) < 1
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and the zero-drift condition

(2.41) b̄t +
R

IRd

xft(x)F̄P
t (dx) = 0.

Proof. As in the proof of Lemma 2.10, but using Y c ⌘ 0, g ⌘ 0 and (2.39) instead of (2.30),
we get first [Y,N ] =

P
�Y�N =

P
�Y (f(�X) � 1)I{�X 6=0} = (x(f � 1)) ⇤ µ̄ and then

Y + [Y,N ] = Y0 + b̄.Ā + (xf) ⇤ µ̄. Now we argue analogously as in the proof of Lemma 2.11
to get the result. q.e.d.

By choosing Y ⌘ X in Lemma 2.11, we obtain in particular a criterion, in terms of the
Jacod parameters of N , for Z = E(N) to be a P -�-martingale density for X.

Corollary 2.13. Let X be an IRd-valued semimartingale with characteristics (b, c, FP ) with

respect to A and N a local P -martingale null at 0 with Jacod parameters (�, f, g,N 0) with

respect to X. Suppose also that Z = E(N) > 0. Then ZX is a P -�-martingale if and only if

we have for P ⌦A-almost all (!, t)

(2.42)
R

IRd

|xft(x)� h(x)|FP
t (dx) < 1

and the zero-drift condition

(2.43) bt + ct�t +
R

IRd

�
xft(x)� h(x)

�
FP

t (dx) = 0.

Proof. Because MP
µ (g | eP) = 0 by Proposition 2.2, this follows immediately from Lemma 2.11

for Y ⌘ X, using (2.33). q.e.d.

A closer look at Corollary 2.13 shows that the �-martingale property of ZX is not
influenced by g or N 0. The simplest way to construct a P -�-martingale density is therefore
to set these two parameters to 0. More formally, we have

Corollary 2.14. For an IRd-valued adapted RCLL process X, the following are equivalent:

1) De,�(X,P ) 6= ;, i.e. there exists a P -�-martingale density Z = E(N) for X.

2) There exists a P -�-martingale density ZP = E(NP ) for X such that NP has Jacod

parameters (�P , fP , 0, 0) with respect to X.

3) X is a semimartingale (with characteristics (b, c, FP ) with respect to A) and there

exist a predictable Xc-integrable process � and a eP-measurable function f > 0 MP
µ -a.e. sat-

isfying W := f � 1 + bf�a
1�a I{a<1} 2 G1

loc(µ) and 1 �cW > 0 on {�X = 0} and such that we

have for P ⌦A-almost all (!, t)

(2.42)
R

IRd

|xft(x)� h(x)|FP
t (dx) < 1

18



and the zero-drift condition

(2.43) bt + ct�t +
R

IRd

�
xft(x)� h(x)

�
FP

t (dx) = 0.

Proof. Clearly 2) gives 1). Conversely, if 1) holds, take N with Jacod parameters (�, f, g,N 0)
and set �P := �, fP := f , gP ⌘ 0 (which is in H1

loc(µ)), N 0P ⌘ 0 and as in (2.15)

(2.44) NP := �P .Xc + WP ⇤ (µ� ⌫P ) + gP ⇤ µ + N 0P = � .Xc + W ⇤ (µ� ⌫P ),

where µ := µX is the jump measure of X and WP := W = f � 1 + bf�a
1�a I{a<1} as in (2.11).

Since Z > 0, we have �N > �1 and hence f > 0 MP
µ -a.e. and 1�cW > 0 on {�X = 0} by

Lemma 2.6. Moreover, ZX is a P -�-martingale because Z is in De,�(X,P ). By Lemma 2.6
again, we have �NP > �1 and hence ZP := E(NP ) > 0, and so Corollary 2.13 directly
implies that also ZP X is a P -�-martingale, by the construction of NP . So we get 2).

If we have 2), then De,�(X,P ) 6= ; implies that X is a semimartingale. If we then take
� = �P , f = fP , we get the first three claimed properties in 3) from Theorem 2.4 and
Lemma 2.6, and the last two from Corollary 2.13. So 2) implies 3). Conversely, defining NP

as in (2.44), with �P = � and fP = f , gives a local P -martingale NP with Jacod parameters

(�P , fP , 0, 0) and ZP = E(NP ) > 0 because �NP > �1 due to f > 0 MP
µ -a.e. and 1�cW > 0

on {�X = 0}, by Lemma 2.6. By Corollary 2.13, (2.42) and (2.43) then imply that ZP X is
a P -�-martingale, and so 3) implies 2). This ends the proof. q.e.d.

Remark 2.15. If X is quasi-left-continuous, then b· ⌘ 0 and hence a = b1 ⌘ 0. The condition
1�cW > 0 on {�X = 0} is then always satisfied, and W simplifies to W = f � 1. ⇧

3. Integrability issues

One of our main goals is to study suitably integrable �-martingale densities for a given
process. In this section, we recall some concepts and prove some results on local integrability
of exponential local martingales. Like Section 2, these are of independent interest.

We start with an IRd-valued semimartingale X = (Xt)t�0 on a filtered probability space
(⌦,F , IF, P ) with the usual conditions and recall the jump measure µ = µX of X and the
corresponding measure MP

µ = P⌦µ on ⌦⇥ [0,1)⇥IRd. We fix throughout a convex function
� : [0,1) ! IR with �(0) = 0. So � is finite and hence continuous on [0,1).

Definition 3.1. A random variable Y is in L� := L�(P ) if E[|�(↵|Y |)|] < 1 for some ↵ > 0.
An RCLL stochastic process Y = (Yt)t�0 is in L� if the random variable Y ⇤1 := sup

t�0
|Yt| is in

L�. We say that Y = (Yt)t�0 is locally in L�, written as Y 2 L�
loc or Y 2 L�

loc(P ), if there
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are stopping times Tn %1 P -a.s. such that for each n 2 IN , the stopped process Y Tn is in
L�. This means that there are constants ↵n > 0 such that E[|�(↵nY ⇤Tn

)|] < 1 for all n 2 IN .
A product-measurable function W on ⌦⇥ [0,1)⇥ IRd is in L�(MP

µ ) if

E
h 1R

0

R
IRd

����↵|W (!, t, x)|
���µ(!, dt, dx)

i
< 1 for some ↵ > 0.

We say that W is locally in L�(MP
µ ), written as W 2 L�

loc(M
P
µ ), if there are stopping times

Tn % 1 P -a.s. such that for each n 2 IN , the process |W |I[[0,Tn]]⇥IRd is in L�(MP
µ ); this

means that there are constants ↵n > 0 such that

(3.1) E
h TnR

0

R
IRd

����↵|W (!, t, x)|
���µ(!, dt, dx)

i
= E

⇥���(↵n|W |)
�� ⇤ µTn

⇤
< 1.

Remark 3.2. W 2 L�(MP
µ ) is not equivalent to |W | ⇤ µ1 2 L�, nor does W 2 L�

loc(M
P
µ )

mean that the process |W | ⇤ µ is in L�
loc. Note also that the definition of L�

loc(M
P
µ ) uses that

�(0) = 0. ⇧

Now let N = (Nt)t�0 be a local P -martingale null at 0 and such that Z = E(N) > 0. In
most of our applications, Z will be a P -�-martingale density for some process, but we do not
need this here. Our goal is to characterise the property Z 2 L�

loc in terms of �-integrability
properties of the Jacod parameters (�, f, g,N 0) of N with respect to X.

We start with a simple but useful estimate for �. On the one hand, convexity of � gives
for 0  x  y  z that �(y)  ��(x) + (1� �)�(z)  |�(x)|+ |�(z)| for some � 2 [0, 1]. On
the other hand, we can always minorise the convex function � by an a�ne function ` with
`(1) = �(1), say; so for any y � 0, we have �(y) � a(1)y + b(1) � �|a(1)|y � |b(1)| with
constants a(1), b(1); see Ekeland/Témam (1999), Proposition I.3.1. Hence we obtain that

(3.2) |�(y)|  |�(x)|+ |�(z)|+ |a(1)|y + |b(1)| for all 0  x  y  z.

For later use, we first give some extra properties of L� under an extra condition on �.

Lemma 3.3. Suppose that � grows at least linearly for large x, i.e., there is some constant

D > 0 such that |�(x)| � Dx for x � x0. Then L� ✓ L1 := L1(P ) and L�
+ is solid, meaning

that 0  X  Y with Y 2 L� implies that X 2 L� as well.

Proof. Take 0  x  y and use the linear growth assumption to write, for ↵ > 0,

(3.3) ↵x  ↵y  x0I{↵y<x0} + ↵yI{↵y�x0}  x0 + |�(↵y)|/D.

Combine this with (3.2), for 0  ↵x  ↵y, to get

|�(↵x)|  |�(0)|+ |�(↵y)|+ |a(1)|↵x + |b(1)|(3.4)

 |�(0)|+ |�(↵y)|
�
1 + |a(1)|/D

�
+ |b(1)|+ |a(1)|x0.
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So if Y � 0 and �(↵Y ) 2 L1, then (3.4) implies that also �(↵X) 2 L1 if 0  X  Y , giving
solidity of L�

+. Moreover, applying (3.3) to y = |Y | gives ↵|Y |  x0 + |�(↵|Y |)|/D, and this
readily shows that Y 2 L� yields Y 2 L1. q.e.d.

Lemma 3.4. Let N be a local P -martingale null at 0 with Z = E(N) > 0. Then Z is in L�
loc

if and only if there are constants ↵n > 0, n 2 IN , and stopping times Tn % 1 P -a.s. such

that each �(↵nZ) is a semimartingale with (�(↵nZ))⇤Tn
2 L1.

Proof. By definition, Z 2 L�
loc is equivalent to the existence of constants ↵n > 0 and

stopping times T 0n % 1 P -a.s. such that �(↵nZ⇤T 0n) 2 L1 for all n; so we have a control
on �(↵nZ⇤). On the other hand, by Theorem VII.25 of DM, the semimartingale �(↵nZ) is
special if and only if (�(↵nZ))⇤ is locally integrable. To relate the two running suprema,
define %n := inf{t � 0 | Zt > n}, note that Z⇤s  n + Zs for s  %n because Z > 0, and take
stopping times Sn %1 P -a.s. with Z⇤Sn

2 L1 for all n, using that every local P -martingale
is locally in H1. Because Z0 = 1, we have 1  Z⇤s  Z⇤t for s  t and hence from (3.2)

(3.5) |�(Z⇤s )|  |�(1)|+ |�(Z⇤t )|+ |a(1)|Z⇤t + |b(1)| for s  t.

Now if Z 2 L�
loc, we define the stopping times Tn := T 0n ^ Sn % 1 P -a.s. and apply

(3.2), for 0  ↵nZs  ↵nZ⇤Tn
for s  Tn  min(T 0n, Sn), and (3.5) to obtain

sup
0sTn

|�(↵nZs)|  |�(0)|+ |�(↵nZ⇤Tn
)|+ |a(1)|↵nZ⇤Tn

+ |b(1)|

 |�(0)|+ |�(↵n)|+ |�(↵nZ⇤T 0n)|+ 2|a(1)|↵nZ⇤Sn
+ 2|b(1)|.

Because the right-hand side is in L1 by assumption, we have the “only if” part.
Conversely, if (�(2↵nZ))⇤Tn

2 L1 for all n, set T 0n := %n ^ Sn ^ Tn % 1 P -a.s. and use
↵n  ↵nZ⇤T 0n  ↵nn+↵nZT 0n = 1

2 (2↵nn+2↵nZT 0n) together with (3.2) applied twice to obtain

|�(↵nZ⇤T 0n)|  |�(↵n)|+ |�(↵nn + ↵nZT 0n)|+ |a(1)|Z⇤Sn
+ |b(1)|

 |�(↵n)|+ |�(2↵nn)|+ |�(2↵nZT 0n)|+ |a(1)|(↵nn + ↵nZT 0n) + |b(1)|
+ |a(1)|Z⇤Sn

+ |b(1)|

 |�(↵n)|+ |�(2↵nn)|+
�
�(2↵nZ)

�⇤
Tn

+ ↵nn|a(1)|+ (↵n + 1)|a(1)|Z⇤Sn
+ 2|b(1)|.

By assumption, the right-hand side is in L1; so each ZT 0n is in L�, giving Z 2 L�
loc. q.e.d.

Lemma 3.5. Fix ↵ > 0 and a local P -martingale N null at 0 with Z = E(N) > 0. Then

�(↵Z) is a P -special semimartingale if and only if there are constants �n > 0, n 2 IN , and

b > 0 and stopping times Tn %1 P -a.s. such that

sup
0<sTn

�����n(1 +�Ns)
���I{1+�Ns>b} is in L1, for each n 2 IN .
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Proof. By Theorem VII.25 of DM, the semimartingale �(↵Z) is special if and only if the
process J1. := sup

0<s. |��(↵Z)s| is locally integrable. Because Z = E(N) gives �Z = Z��N

and hence Z = Z�(1 +�N), we have

��(↵Z) = �(↵Z)� �(↵Z�) = �
�
↵Z�(1 +�N)

�
� �(↵Z�).

Due to Z > 0, the process ↵Z� is locally bounded away from 0 and 1; so �(↵Z�) is locally
bounded. Since 1 +�N > 0 and �(0) = 0 is finite, the process �(↵Z�(1 +�N))I{1+�Nb}

for any b > 0 is also locally bounded. Thus J1 is locally integrable if and only if

J2. := sup
0<s.

����↵Zs�(1 +�Ns)
�
|I{1+�Ns>b} is locally integrable.

Note that b does not depend on ↵ in any way.
Now recall again that ↵Z� is locally bounded away from 0 and 1 and that N as a local

P -martingale is locally in H1. So for stopping times Tk %1 P -a.s., we have

0 < �k  ↵Z�  ��1
k < 1 on [[0, Tk]]

and N⇤
Tk
2 L1. This implies

�kb  �k(1 +�N)  ↵Z�(1 +�N)  ��1
k (1 +�N) on [[0, Tk]] \ {1 +�N > b},

and applying (3.2) therefore yields

⇣
�
�
�k(1 +�N)

�
I{1+�N>b}

⌘⇤
Tk

 |�(�kb)|+
⇣
�
�
↵Z�(1 +�N)

�
I{1+�N>b}

⌘⇤
Tk

+ |a(1)|�k(1 + 2N⇤
Tk

) + |b(1)|

as well as

⇣
�
�
↵Z�(1 +�N)

�
I{1+�N>b}

⌘⇤
Tk

 |�(�kb)|+
⇣
�
�
��1
k (1 +�N)

�
I{1+�N>b}

⌘⇤
Tk

+ |a(1)|��1
k (1 + 2N⇤

Tk
) + |b(1)|.

So we see that

⇣
�
�
↵Z�(1 +�N)

�
I{1+�N>b}

⌘⇤
Tk

2 L1 if and only if
⇣
�
�
�k(1 +�N)

�
I{1+�N>b}

⌘⇤
Tk

2 L1 for some �k 2 (0,1).

Note that the �k depend on ↵. The assertion of Lemma 3.5 follows. q.e.d.
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Proposition 3.6. Suppose that N is a local P -martingale null at 0 with Z = E(N) > 0
and having Jacod parameters (�, f, g,N 0) with respect to X. Recall from (2.11) the quantity

W = f � 1 + bf�a
1�a I{a<1}. Then Z is in L�

loc if and only if we have both

(f + g)I{f+g>b} 2 L�
loc(M

P
µ ) for some b > 0,(3.6)

there are stopping times Tn %1 P -a.s. and constants �n > 0 such that(3.7)

E
h P

0<sTn

�����n(1�cWs +�N 0
s)
���I{1�bWs+�N 0

s>b, �Xs=0}

i
< 1 for all n 2 IN .

Proof. Combining Lemmas 3.4 and 3.5 with a diagonal procedure shows that Z 2 L�
loc is

equivalent to sup
0<sT 0n

|�(�n(1 +�Ns))|I{1+�Ns>b} being in L1 for each n 2 IN , for constants

�n > 0, n 2 IN , and b > 0. By Theorem VII.25 of DM, the last property holds if and only
if Jn :=

P
|�(�n(1 +�N))|I{1+�N>b} has Jn

Tn
2 L1 for each n 2 IN , with stopping times

Tn %1 P -a.s. Lemma 2.6 gives

1 +�N =
�
f(�X) + g(�X)

�
I{�X 6=0} + (1�cW +�N 0)I{�X=0},

and so

Jn =
�����n(f + g)

���I{f+g>b} ⇤ µ +
P�����n(1�cW +�N 0)

���I{1�bW+�N 0>b, �X=0}

=: Jn,1 + Jn,2.

By using �(0) = 0, we can write Jn,1 = |�(�n(f + g)I{f+g>b})| ⇤ µ, and this has Jn,1
Tn

2 L1

if and only if E[|�(�n(f + g)I{f+g>b})| ⇤ µTn ] < 1 for stopping times Tn %1 P -a.s. Since
the latter is equivalent to (f + g)I{f+g>b} 2 L�

loc(M
P
µ ), the claim follows. q.e.d.

For our subsequent applications, we only need a special case of Proposition 3.6, namely

Lemma 3.7. Suppose that N is a local P -martingale null at 0 with Z = E(N) > 0 and

having Jacod parameters (�, f, 0, 0) with respect to X. Suppose also that X is quasi-left-

continuous. Then Z is in L�
loc if and only if fI{f>b} 2 L�

loc(M
P
µ ) for some b � 1.

Proof. Because X is quasi-left-continuous, b· ⌘ 0. Moreover, N 0 ⌘ 0 by assumption, and
so the sum in (3.7) is always 0 for b � 1. Because also g ⌘ 0 by assumption, (3.6) reduces to
fI{f>b} 2 L�

loc(M
P
µ ), and so the assertion follows from Proposition 3.6. q.e.d.

4. Some preliminary steps for simplification

Before we start working on our problem, we reduce its complexity by some preliminary work.
One idea is to split a general process S into parts each having extra properties, and to deal
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with these parts separately. A second idea is to chop up S into pieces concentrated on suitable
pairwise disjoint stochastic intervals and to work on each piece separately. The present section
makes this more precise.

For the first idea and decomposition, we start with an IRd-valued adapted RCLL process
S = (St)t�0. We exhaust the jumps of S by a sequence of stopping times (as in JS, Propo-
sition I.1.32), split each of these into an accessible and a totally inaccessible part (see JS,
Theorem I.2.22), and cover the graph of each accessible time with pairwise disjoint graphs
of predictable times. Renumbering then yields a sequence (Rn)n2IN of predictable stopping
times with pairwise disjoint graphs such that �ST I{T<1} = 0 P -a.s. for each predictable
stopping time T satisfying P [T = Rn < 1] = 0 for all n 2 IN . If we set

D :=
1[

n=1

[[Rn]] 2 P,

the above condition on T simply means that [[T ]] \D is evanescent. Setting

Sa := ID
.S =

1P
n=1

I[[Rn]]
.S,(4.1)

Si := IDc .S = S � S0 � Sa,(4.2)

we then obtain

(4.3) S � S0 = Sa + Si,

and by construction, {�Si 6= 0} \ [[T ]] = {�S 6= 0} \ Dc \ [[T ]] is evanescent for every
predictable stopping time T so that �ST = 0 P -a.s. on {T < 1} for every predictable T , i.e.

Si is quasi-left-continuous.

(This is the same construction as in Delbaen/Schachermayer (2006) in the proof of their main
Theorem 14.1.1, pages 302/303.)

Since all our results assume that De,�(S, P ) 6= ;, we can assume (as mentioned in Sec-
tion 1) that S is a semimartingale, and then so are Sa and Si. In view of (4.1) and (4.2), the
following simple result therefore allows us to treat Sa and Si separately.

Lemma 4.1. Suppose that X(1) and X(2) are semimartingales of the form X(1) = ID
.X,

X(2) = IDc .X for some semimartingale X and some predictable set D. Then X admits

a �-martingale density Z = E(N) if and only if X(1),X(2) admit �-martingale densities

Z(1) = E(N (1)), Z(2) = E(N (2)), and we can even choose these to satisfy N (1) = ID
.N ,

N (2) = IDc .N so that N = N (1) + N (2) and [N (i), N (k)] ⌘ 0 as well as [N (i),X(k)] ⌘ 0 for

i 6= k. In particular, we can always arrange that Z = Z(1)Z(2).

Proof. We first start with a �-martingale density Z = E(N) for X and recall from Lemma 2.9
that ZX is a �-martingale if and only if X +[X,N ] is. Setting N (1) := ID

.N , N (2) := IDc .N
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then gives [N (1), N (2)] ⌘ 0 and so Z(1)Z(2) = E(N (1))E(N (2)) = E(N (1) + N (2)) = E(N) = Z

by Yor’s formula. Moreover, X(1) + [X(1), N (1)] = ID
.(X + [X,N ]) is a �-martingale like

X +[X,N ]; so Z(1) is a �-martingale density for X(1) and of the claimed form. The argument
for X(2) and Z(2) is analogous, and it is clear by construction that [N (i),X(k)] ⌘ 0 for i 6= k.

Conversely, let Z̄(i) = E(N̄ (i)) be a �-martingale density for X(i) so that X(i)+[X(i), N̄ (i)]
is a �-martingale by Lemma 2.9 . Then so is ID

.(X(1)+[X(1), N̄ (1)]) = X(1)+[X(1), ID
.N̄ (1)]

because ID
.X(1) = X(1), and thus Z(1) = E(N (1)) with N (1) := ID

.N̄ (1) is by Lemma 2.9
a �-martingale density for X(1). In the same way, Z(2) = E(N (2)) with N (2) := IDc .N̄ (2)

is a �-martingale density for X(2), and [N (i),X(k)] ⌘ 0 for i 6= k by construction. Setting
N := N (1) + N (2), we thus get Z = E(N) = Z(1)Z(2) by Yor’s formula, since [N (1), N (2)] ⌘ 0,
and X + [X,N ] = X(1) + X(2) + [X(1), N (1)] + [X(2), N (2)] is like X(i) + [X(i), N (i)] a �-mar-
tingale, so that Z is a �-martingale density for X. This completes the proof. q.e.d.

For later use, we also provide the following simple result. Its proof is almost identical to
the second half of the preceding argument for the converse part and therefore omitted.

Lemma 4.2. Suppose that Z(i) = E(N (i)) is a �-martingale density for the (IRd-valued

adapted RCLL) process X(i) for i = 1, 2. Suppose also that we have [N (i), N (k)] ⌘ 0 and

[N (i),X(k)] ⌘ 0 for i 6= k. Then Z := Z(1)Z(2) = E(N) with N := N (1) + N (2) is a �-martin-

gale density for X := X(1) + X(2).

From Lemma 4.1, it is clear that finding a �-martingale density for S is equivalent to
finding separately �-martingale densities for Sa and Si and then simply taking their product.
Moreover, we can exploit as extra properties that Sa is intuitively a process that consists
only of jumps at predictable stopping times, and that Si is quasi-left-continuous. One crucial
consequence of the latter fact is that the process dominating the characteristics of Si (under P

or any Q
loc⇡ P , or both at the same time) can be chosen continuous; see JS, Proposition II.2.9.

We thus get in (2.1) for Si that cW ⌘ 0 for any W � 0 and hence in (2.3) also that a ⌘ 0; see
JS, Corollary II.1.19. This allows to simplify many of the general expressions from Section 2.

The second idea and decomposition is very simple. Since we can view S�S0 as a process
on (0,1), we take a sequence (⌧n)n2IN of stopping times with ⌧n %1 P -a.s. and write

⌦⇥ (0,1) =
1[

n=1

]]⌧n�1, ⌧n]] (with ⌧0 := 0)

and

S � S0 = S � S0 =
1P

n=1
(S⌧n � S⌧n�1) =

1P
n=1

I]]⌧n�1,⌧n]]
.S.

We study S on each interval ]]⌧n�1, ⌧n]] by looking at S⌧n � S⌧n�1 , and piece things together
with the subsequent minor extension of Lemma 4.2. Typical examples are Dn := ]]⌧n�1, ⌧n]]
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for ⌧0 := 0 and a sequence (⌧n)n2IN of stopping times with ⌧n % 1 P -a.s., or Dn := [[Rn]]
for a sequence (Rn)n2IN of predictable stopping times with pairwise disjoint graphs. In the
former case, the absence of accumulation points required in Lemma 4.3 is clearly satisfied; in
the latter, it imposes an extra condition on the sequence (Rn).

Lemma 4.3. Let (Dn)n2IN be a sequence of pairwise disjoint predictable sets. For each

n 2 IN , let Xn be an IRd-valued adapted RCLL process with Xn = IDn
.Xn, and suppose

that Zn = E(Nn) is a �-martingale density for Xn with Nn = IDn
.Nn. Suppose also that

the sequence (Dn) has P -a.s. no accumulation point. Then

(4.4) Z :=
1Q

n=1
Zn =

1Q
n=1

E(Nn) = E
⇣ 1P

n=1
Nn

⌘
=: E(N)

is a �-martingale density for X :=
1P

n=1
Xn.

Proof. First of all, N :=
1P

n=1
Nn =

1P
n=1

IDn
.Nn is well defined because the Dn are pairwise

disjoint and have no accumulation point. The same applies to X. Moreover, the assumptions
and Lemma 2.9 imply that Xn + [Xn, Nn] is a �-martingale for each n, and [Nm, Nn] ⌘ 0
and [Xm, Nn] ⌘ 0 for m 6= n because the Dn are pairwise disjoint. So the third equality in

(4.4) follows from Yor’s formula, and X + [X,N ] =
1P

n=1
(Xn + [Xn, Nn]) is a �-martingale,

which proves the assertion again via Lemma 2.9 . q.e.d.

In the sequel, we want to work with �-martingale densities for S, and it will be useful
and important to do this in a simple way that also matches up well with the stopping times
(⌧n)n2IN from above. In more detail, this goes as follows.

Assume that De,�(S, P ) 6= ; (and of course this could be done under some Q
loc⇡ P as

well). By Corollary 2.14, we can then choose a P -�-martingale density ZP = E(NP ) for S

such that NP has Jacod parameters (�P , fP , 0, 0) with respect to S. Since the ⌧n above will
be constructed recursively, we can do this in a way that ensures that

⌧n  inf
�
t > ⌧n�1

�� |NP
t | > n

2

 
.

Then we clearly get |NP |  n
2 on ]]⌧n�1, ⌧n[[ and therefore

|�NP |  n on ]]⌧n�1, ⌧n[[.

So we can always find a �-martingale density ZP for S and a sequence (⌧n)n2IN of stopping
times ⌧n % 1 P -a.s. such that the stochastic logarithm NP of ZP has bounded jumps on
each open stochastic interval ]]⌧n�1, ⌧n[[, and this will be exploited later. Note, however, that
we cannot control the jumps of NP at the stopping times ⌧n.
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Remark 4.4. If we start above not with S, but with Sa = ID
.S, then Sa has clearly no

continuous local martingale part. As a consequence, the zero-drift conditions (2.42), (2.43)
in Corollary 2.14 simplify to (2.40), (2.41) in Corollary 2.12 because c ⌘ 0; so we do not need
the Jacod parameter �P and can even choose a P -�-martingale density ZP = E(NP ) with
an NP which has Jacod parameters (0, fP , 0, 0) with respect to Sa. ⇧

5. Reducing a stopped process to a single-jump process

In view of Lemma 4.3, it is natural to analyse S on a stochastic interval ]]�, ⌧ ]] with �  ⌧ , and
we do this in this section by looking separately at ]]�, ⌧ [[ and [[⌧ ]]. Starting with an IRd-valued
adapted RCLL process S and stopping times �  ⌧ , we write

(5.1) I]]�,⌧ ]]
.S = S⌧ � S� = S⌧� � S� +�S⌧I[[⌧,1[[ =: S⌧� � S� + J(⌧) = I]]�,⌧ [[

.S + I[[⌧ ]]
.S.

In (5.1), S⌧� denotes the process S pre-stopped at ⌧ , and J(⌧) is clearly a single-jump process.
Our main result in this section shows that under a suitable condition on ⌧ , the pre-stopped
process S⌧� � S� can be controlled fairly well. More precisely, we have

Theorem 5.1. Suppose S is an IRd-valued adapted RCLL process and De,�(S, P ) 6= ;.
Let ZP = E(NP ) be a P -�-martingale density for S with NP having Jacod parameters

(�P , fP , 0, 0) with respect to S. Let �  ⌧ be stopping times such that �NP is bounded by

a constant on ]]�, ⌧ [[. Using Lemma 2.9, choose and fix a bounded predictable process ' > 0
such that ZP ('.S) is a local P -martingale, and define X := I]]�,1[[

.('.S). Then there exist

an IRd-valued predictable RCLL process eB of finite variation and null on [[0,�]], an IRd-valued

semimartingale fM null on [[0,�]] and a strictly positive local P -martingale Z(1) = E(N (1))

with Z(1)
0 = 1 such that Z(1) is locally bounded and the pre-stopped process X⌧� satisfies

1) X⌧� = X⌧� �X� = fM + eB = fM⌧ + eB⌧ = I]]�,⌧ ]]
.fM + I]]�,⌧ ]]

. eB.

2) Both (ZP )⌧X⌧ = (ZP )⌧ (X⌧ � X�) and Z(1)fM = (Z(1))⌧ (fM⌧ � fM�) are local

P -martingales.

Moreover, we can also assume or impose that

N (1) = I]]�,⌧ ]]
.N (1).

If S is quasi-left-continuous, then we have in addition that

3) eB is continuous.

4) (ZP )⌧ fM = (ZP )⌧ (fM⌧ � fM�) is also a local P -martingale.

Before we start proving Theorem 5.1, let us explain its use. Recall that a local P -mar-
tingale Z > 0 with Z0 = 1 is a P -�-martingale density for Y if ZY is a P -�-martingale. We
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call Z a P -local martingale density for Y if ZY is a local P -martingale. In view of 1) and
since �X⌧ = �('.S)⌧ = '⌧�S⌧ , we can write

I]]�,⌧ ]]
.X = X⌧ �X� = X⌧� �X� +�X⌧I[[⌧,1[[(5.2)

= fM + ( eB +�X⌧I[[⌧,1[[) = fM + ( eB + '⌧�S⌧I[[⌧,1[[),

and (ZP )⌧ is by 2) a P -local martingale density for the left-hand side of (5.2). If S is quasi-
left-continuous, then (ZP )⌧ is by 4) also a P -local martingale density for the first term on
the right-hand side and therefore also for the second summand on the right-hand side, which
is a single-jump process whose “drift part” eB is continuous by 3).

Remark 5.2. 1) In our later applications of Theorem 5.1, the process S will be quasi-left-
continuous. However, some of the techniques used to prove Theorem 5.1 for general S will
also appear in other arguments below. For this reason, we state and prove Theorem 5.1 for
general, not necessarily quasi-left-continuous S.

2) The basic object of our analysis is the process S, and we want to formulate our main
results and especially our conditions in terms of S. So we also have to keep track of how the
results in Theorem 5.1 depend on the choice of '. ⇧

For ease of notation, we prove Theorem 5.1 for the case � ⌘ 0; the argument for general
�  ⌧ is completely analogous. So in (5.1), we look at I]]0,⌧ ]]

.S = S⌧ � S0, and we first study
the process S⌧� � S0. This is a semimartingale, and we denote the associated quantities by
µ1, ⌫P

1 , B1, C1, A1, using for S⌧� the same truncation function as for S. In particular, we
have dµ1 = I]]0,⌧ [[ dµ. We also denote by µ0 the jump measure of the single-jump process

J(⌧) = �S⌧I[[⌧,1[[, so that we get S⌧� � S0 = S⌧ � S0 � J(⌧) = I]]0,⌧ ]]
.S � x ⇤ µ0 and

dµ0 + dµ1 = I[[0,⌧ ]] dµ. Note that our subsequent results from Lemma 5.3 to Corollary 5.6 all
assume that the conditions of Theorem 5.1 are satisfied with � ⌘ 0.

Lemma 5.3. The process A1 dominating the characteristics of S⌧� � S0 under P (and also

under some Q
loc⇡ P , if that is needed) can be chosen such that A1 ⌧ A. In particular, if A is

continuous, then so is A1.

Proof. As seen above, S⌧� = S⌧ � x ⇤ µ0. The characteristics of S⌧ under P (as well as Q,
if needed) can be dominated by A, and since µ0 ⌧ µ implies ⌫P

0 ⌧ ⌫P , the same is true for
the characteristics of x ⇤ µ0, so that A1 ⌧ A. The same arguments apply under Q. q.e.d.

By the assumption in Theorem 5.1, ZP S is a P -�-martingale. So Lemma 2.9 implies
that whenever we choose a bounded predictable process ' > 0 and set X := '.S, the
product ZP X is a local P -martingale, and so is then (ZP )⌧X⌧ . For later use, we note that
combining S⌧ = S⌧� + J(⌧) and �X⌧ = �('.S)⌧ = '⌧�S⌧ = �('.J(⌧))⌧ implies that
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'.(S⌧�) = ('.S)⌧� = X⌧�; thus

(5.3) {�X⌧� 6= 0} = {�S⌧� 6= 0} = ]]0, ⌧ [[\ {�S 6= 0}.

Recalling that the characteristics of S⌧� are denoted by a sub- or superscript 1, we now
define the process

(5.4) N (1) :=
�
�P .Sc + W (1) ⇤ (µ1 � ⌫P

1 )
�⌧ = (N (1))⌧ = I]]0,⌧ ]]

.N (1)

(which is a local P -martingale as argued in Proposition 5.4 below), with

(5.5) W (1)
t :=

fP
t � 1

D(1)
t

:=
fP

t � 1

1� a1
t + cfP

t

1 =
fP

t � 1
1�

R
IRd

1 ⌫P
1 ({t}, dx) +

R
IRd

fP
t (x) ⌫P

1 ({t}, dx)
;

compare (2.1) and note the superscripts 1 on b· 1 and a1 here since we work with µ1 and ⌫P
1 .

Note that W (1) is well defined since a1  1 and fP > 0, hence cfP
1

> 0 on {a1 > 0}. We also
point out that the main di↵erence between N (1) from (5.4) and NP from (2.44) is that N (1)

“does not involve the jump of S at ⌧” since we work with µ1 instead of µ.

Proposition 5.4. The process Z(1) := E(N (1)) is a strictly positive local P -martingale with

Z(1)
0 = 1. It is locally bounded, the product Z(1)X⌧� is a special P -semimartingale, and

(5.6) X⌧� = fM + eB,

where Z(1)fM is a local P -martingale and eB is predictable and of finite variation. Moreover,

we have Y = Y ⌧ = I]]0,⌧ ]]
.Y for Y 2 {N (1), fM, eB} and (Z(1))⌧ = Z(1).

If Z(1) were a uniformly integrable true P -martingale, we could use it as a density process
to define a probability Q(1) equivalent to P . Then Proposition 5.4 would say that X⌧� is
a special Q(1)-semimartingale with Q(1)-canonical decomposition (5.6). In general, we have
these properties only “locally”. This is the content of Proposition 5.4.

Proof of Proposition 5.4. 1) First of all, part 2) of Lemma 2.8 for the process S⌧� yields
that 1/D(1) is locally bounded. More precisely, we prove (2.23) for Ū := �fP + 1 via (2.14)
by estimating from above with S, using (5.3). Moreover, NP = �P .Sc + WP ⇤ (µ� ⌫P ) has
Jacod parameters (�P , fP , 0, 0) with respect to S; so (2.19) in Lemma 2.6 and (2.20) yield

(5.7) �NP =
�
fP (�S)� 1

�
I{�S 6=0} � dWP I{�S=0} = WP (�S)I{�S 6=0} � dWP .

Because WP is in G1
loc(µ) for P , the process (

P
0<s.

(WP
s (�Ss)I{�Ss 6=0} � dWP

s )2)1/2 is locally

P -integrable. This is by (5.7) equivalent to saying that both (
P

0<s.
(dWP

s )2I{�Ss=0})1/2 and
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(
P

0<s.
(fP

s (�Ss) � 1)2I{�Ss 6=0})1/2 = ((fP � 1)2 ⇤ µ)1/2 are locally P -integrable, and hence

in particular finite-valued.
2) To show that N (1) is well defined and a local P -martingale, we need to argue that

W (1) is in G1
loc(µ1) for P . So we first compute with the help of (5.5) that

(5.8) W (1)(�S⌧�)I{�S⌧� 6=0} � dW (1)
1

=
fP (�S⌧�)� 1

D(1)
I{�S⌧� 6=0} �

cfP
1

� a1

D(1)
.

Using (a� b)2  2a2 + 2b2 and (5.3), we thus obtain

K :=
P

0<s.

⇣
W (1)

s (�S⌧�
s )I{�S⌧�

s 6=0} �
d

W (1)
s

1⌘2
 2

(D(1))2
.J1 +

2
(D(1))2

.J2

with

J1 :=
P

0<s.
�
fP

s (�Ss)� 1
�2

I{�Ss 6=0}I]]0,⌧ [[ = (fP � 1)2 ⇤ µ1  (fP � 1)2 ⇤ µ,

J2 :=
P

0<s.
(cfP

s

1

� a1
s)2.

We claim that J1 and J2 are both locally bounded. Because also 1/D(1) is locally bounded,
this will imply that K is locally bounded, which of course implies that K1/2 is locally P -in-
tegrable. The latter precisely means that W (1) is in G1

loc(µ1) for P .
Clearly, J1 and J2 are adapted and RCLL where they are finite. Moreover, J1 is finite-

valued due to Step 1), because WP is in G1
loc(µ) for P , and (5.7) yields

�J1 =
�
fP (�S)� 1

�2
I{�S 6=0}I]]0,⌧ [[ = (�NP )2I{�S 6=0}I]]0,⌧ [[.

But this is bounded because �NP is bounded on ]]0, ⌧ [[ by assumption; so J1 has bounded
jumps and is therefore also locally bounded.

For J2, we first estimate by Jensen’s inequality that

(cfP
t

1

� a1
t )

2 =
⇣ R

IRd

�
fP

t (x)� 1
�
⌫P
1 ({t}, dx)

⌘2

= (a1
t )2

⇣ R
IRd

�
fP

t (x)� 1
� ⌫P

1 ({t},dx)
⌫P
1 ({t},IRd)

⌘2

 (a1
t )2

R
IRd

�
fP

t (x)� 1
�2 ⌫P

1 ({t},dx)
a1

t

= a1
t

R
IRd

�
fP

t (x)� 1
�2
⌫P
1 ({t}, dx).

(If a1
t = ⌫P

1 ({t}, IRd) = 0, then the left-hand side is also zero.) Since 0  a1  1, we thus get

(cfP
t

1

� a1
t )

2 
R

IRd

�
fP

t (x)� 1)
�2
⌫P
1 ({t}, dx) = p(�J1)t = �

�
(J1)p

�
t
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by (2.2), the definition of J1 and Theorem VI.76 of DM, and so J2 
P
�((J1)p)  (J1)p.

Because J1 is locally bounded, so is its compensator (J1)p and hence also J2. This completes
the argument for Step 2).

3) In analogy to (5.7), we can now compute the jumps of N (1) as

�N (1) = W (1)(�S⌧�)I{�S⌧� 6=0} � dW (1)
1

(5.9)

=
fP (�S)� 1

D(1)
I{�S 6=0}I]]0,⌧ [[ �

cfP
1

� a1

D(1)

=
⇣fP (�S)

D(1)
� 1

⌘
I{�S 6=0}I]]0,⌧ [[ +

⇣ 1
D(1)

� 1
⌘
I{�S⌧�=0},

using (5.3) and (5.8). As fP and D(1) are both strictly positive, we see that �N (1) > �1,

and so Z(1) = E(N (1)) is a strictly positive local P -martingale with Z(1)
0 = 1. Moreover, (5.9)

together with (5.7) and (5.3) yields

(5.10) �N (1) =
�NP

D(1)
I{�S 6=0}I]]0,⌧ [[ +

⇣ 1
D(1)

� 1
⌘

and together with NP = (NP )⌧ on ]]0, ⌧ [[ also

(5.11) (1 +�N (1))I{�X⌧� 6=0} =
fP (�S)
D(1)

I{�S 6=0}I]]0,⌧ [[ =
1

D(1)

�
1 +�(NP )⌧

�
I{�X⌧� 6=0}.

But �NP is bounded on ]]0, ⌧ [[ by assumption and 1/D(1) is locally bounded; so (5.11) shows
that N (1) has locally bounded jumps, and so Z(1) is locally bounded.

4) For the final assertion, recall first that (ZP X)⌧ is a local P -martingale. By the product
rule, so is then (X +[NP ,X])⌧ . So sup

0<t. |�(Xt^⌧ +[NP ,X]t^⌧ )| = sup
0<t. |�X⌧

t (1+�(NP )⌧
t )|

is locally P -integrable, and hence so is sup
0<t. |�X⌧�

t (1+�(NP )⌧
t )|. Using (5.11) and the fact

that 1/D(1) is locally bounded thus shows that sup
0<t. |�X⌧�

t (1 + �N (1)
t )| is locally P -inte-

grable as well. By Theorem VII.25 of DM, the semimartingale X 0 := X⌧� + [N (1),X⌧�] is
therefore P -special, and then so is Z(1)X⌧� by the product rule again.

To obtain (5.6), we start with the P -canonical decomposition

(5.12) X⌧� + [N (1),X⌧�] = X 0 = M 0 + B0

and set eB := B0, fM := X⌧� � B0. So we have to show that Z(1)(X⌧� � B0) is a local
P -martingale or equivalently that X⌧� �B0 + [N (1),X⌧� �B0] is a local P -martingale. But
by (5.12), this process equals M 0 � [N (1), B0], and this is a local P -martingale by Yoeurp’s
lemma since B0 is predictable and of finite variation; see Theorem VII.36 of DM. The last
assertion is clear from the definitions and the fact that (X⌧�)⌧ = X⌧� = I]]0,⌧ ]]

.X⌧�. q.e.d.

31



To obtain the properties claimed in Theorem 5.1, we next take a closer look at eB from
Proposition 5.4. Recall that A1 is the process dominating the characteristics of S⌧�.

Lemma 5.5. The process eB from Proposition 5.4 has the form eB = ('eb).A for an IRd-valued

predictable process eb which does not depend on '. In particular, if A is continuous, so is eB.

Proof. The second assertion is clear from the first one. To prove the first, we recall from the
proof of Proposition 5.4 that eB = B0 is the predictable FV part of X 0 = X⌧� + [N (1),X⌧�];
see (5.12). As in Lemma 2.10, we compute from (5.4) and X⌧� = '.(S⌧�) that

X 0 = X⌧� + [N (1),X⌧�]

= '.(S⌧�)c + ('h) ⇤ (µ1 � ⌫P
1 ) +

�
'(b1 + c1�P )

�.A1 +
�
'(xf (1) � h)

�
⇤ µ1,

where f (1) is associated to W (1) as in (2.11). (We could write out the formula for f (1),
but it is not needed here.) Now the first three summands on the right-hand side are all
locally P -integrable, and so is X 0 since it is P -special. Thus the µ1-integral process on the
right-hand side is also locally P -integrable and therefore admits a P -compensator, which is
('(xf (1) � h)) ⇤ ⌫P

1 . Therefore eB = ('(b1 + c1�P )).A1 + ('(xf (1) � h)) ⇤ ⌫P
1 , and since

⌫P
1 (dt, dx) = FP

1,t(dx) dA1
t and A1 ⌧ A by Lemma 5.3, the process

eb :=
⇣
(b1 + c1�P ) +

R
IRd

�
xf (1)(x)� h(x)

�
FP

1 (dx)
⌘
↵1

with dA1 = ↵1 dA gives one representation of eB as desired.
It remains to show that although eB depends on the choice of ', the process eb does

not. So start with '̄ instead of ' to get X̄ = '̄.S and go through the above arguments
again. Instead of (5.12), we then obtain X̄ 0 = X̄⌧� + [N (1), X̄⌧�] = M̄ 0 + B̄0, and we have
X̄⌧� = '̄.S⌧� and X⌧� = '.S⌧�. Because ' and '̄ are both S⌧�-integrable, we obtain
from Theorem 4.7 in Cherny/Shiryaev (2002) that the ratio '̄/' is first X⌧�-integrable and
then also X 0-integrable, and since X 0 is P -special with P -canonical decomposition (5.12),
Lemma 4.2 of Cherny/Shiryaev (2002) implies that X̄ 0 = ('̄/').X 0 = ('̄/').M 0 + ('̄/').B0

is the P -canonical decomposition of X̄ 0. So we obtain from B0 = eB = ('eb).A that

B̄0 = ('̄/').B0 = ('̄/'). eB = ('̄eb).A,

with the same process eb that we have explicitly constructed above. q.e.d.

With the above preparations, we are now ready for the

Proof of Theorem 5.1. Recall that (ZP )⌧X⌧ is a local P -martingale from the choice of '

and that X⌧ = ('.S)⌧ = '.S⌧ . If we write X⌧� = fM + eB as in (5.6), then fM⌧ = fM and
eB⌧ = eB, and Z(1)fM is a local P -martingale, all by Proposition 5.4; so we have 1) and 2).
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If in addition S is quasi-left-continuous, then A can be chosen continuous (see JS, Propo-
sition II.2.9) so that eB is continuous by Lemma 5.5. From (5.6), we thus obtain

(5.13) {�fM 6= 0} = {�X⌧� 6= 0}.

Moreover, A1 is also continuous by Lemma 5.3, and so b· 1 ⌘ 0 by JS, Proposition II.2.9.
Thus we get D(1) ⌘ 1 via (5.5), and combining this with (5.13) and (5.11) therefore yields

�N (1)I{� eM 6=0} = �(NP )⌧I{� eM 6=0}.

So �fM�N (1) = �fM�(NP )⌧ , and clearly (N (1))c = ((NP )⌧ )c by (2.44) and (5.4). There-

fore fM + [fM, (NP )⌧ ] = fM + [fM,N (1)] is a local P -martingale, because Z(1)fM is one by

Proposition 5.4, and this implies by the product rule that (ZP )⌧ fM is a local P -martingale.
This ends the proof. q.e.d.

For later use, we record a result already proved above.

Corollary 5.6. 1) With W (1) from (5.5) and

(5.14) N (1) := I]]�,⌧ ]]
.��P .Sc + W (1) ⇤ (µ1 � ⌫P

1 )
�

= I]]�,⌧ ]]
.N (1),

the process Z(1) := E(N (1)) is a locally bounded P -local martingale density for the process

fM = fM⌧ = I]]�,⌧ ]]
.fM .

2) If S is quasi-left-continuous, then the process (ZP )⌧ = E(I]]0,⌧ ]]
.NP ) is a P -local

martingale density for eB +�S⌧I[[⌧,1[[.

Moreover, Z(1) does not depend on the choice of ' in Theorem 5.1.

Proof. Part 1) is contained in Proposition 5.4; we just need to adjust (5.4) from � ⌘ 0 to a
general �  ⌧ . For part 2), we use (5.2) to write

(ZP )⌧ ( eB +�X⌧I[[⌧,1[[) = (ZP )⌧ (X⌧ �X�)� (ZP )⌧ fM
and note that both terms on the right-hand side are local P -martingales by Theorem 5.1.
Finally, N (1) in (5.14) clearly does not depend on ', and so neither does Z(1) = E(N (1)).

q.e.d.

6. The key construction for the quasi-left-continuous part of S

In Section 5 in (5.2), we have, for a fixed bounded predictable process ' > 0, decomposed
the process X⌧ �X� = ('.S)⌧ � ('.S)� = '.(S⌧ � S�) into two summands, and we have
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constructed in Corollary 5.6 a local martingale density for fM , the first of these. The second
summand is the process

(6.1) X(0) := eB +�X⌧I[[⌧,1[[ = I]]�,⌧ ]]
.X(0),

and if S is quasi-left-continuous, X(0) is continuous on ]]�, ⌧ ]] except for at most one single
jump at ⌧ , by Theorem 5.1. This section’s goal is to construct for X(0) a local martin-
gale density Z(0) with good local integrability properties. This is more than we get from
Theorem 5.1 — all we know about (ZP )⌧ from there is that it is locally in H1 like every local
martingale.

In view of (4.3) and because we shall deal with Sa separately later, we assume throughout
this section that S is quasi-left-continuous.

To formulate our results, we need a bit of notation. We denote again by µ0 the jump
measure of the single-jump process J(⌧) := �S⌧I[[⌧,1[[, by ⌫P

0 its P -compensator, and write

cWt
0,P

:=
R

IRd

Wt(x) ⌫P
0 ({t}, dx)

as in (2.1). For a probability Q
loc⇡ P , we also use ⌫Q

0 and cWt
0,Q

. (We explain in Remark 6.4
at the end of this section why we work here with Q and not only P .) Recall that A dominates
the characteristics of S under both P and Q. Note that dµ0 + dµ1 = I]]�,⌧ ]] dµ implies for
R 2 {P,Q} that ⌫R

0 + ⌫R
1 = ⌫R on the predictable set ]]�, ⌧ ]] and therefore

(6.2) cWt
0,R

=
R

IRd

Wt(x) ⌫R
0 ({t}, dx) =

R
IRd

Wt(x) ⌫R({t}, dx) = cWt
R

⌘ 0 on ]]�, ⌧ ]]

because S is quasi-left-continuous. Finally, the definition (6.1) of X(0), �X⌧ = '⌧�S⌧ and
Lemma 5.5 give

(6.3) X(0) = ('eb).A + '.(x ⇤ µ0),

and we know from parts 2) and 4) of Theorem 5.1 that (ZP )⌧ 2 De,�(X(0), P ) 6= ;. In fact,
(ZP )⌧ is even a P -local martingale density for X(0).

Now take Q
loc⇡ P so that also De,�(X(0), Q) 6= ;. We denote the Q-compensator of µ0 by

⌫Q
0 and write as usual ⌫Q

0 (dt, dx) = FQ
0,t(dx) dAt. Define a bijection  from IRd to the open

unit ball U1(0, IRd) in IRd by  (x) := x
1+|x| and introduce the auxiliary predictable process

(6.4) eR(Q) := I{eb6=0} ess sup
z2IRd

(�z>eb)�R
IRd

(z> (x))� FQ
0 (dx)

,

where the essential supremum for eRt(Q)(!) is taken with respect to the (random) measure
FQ

0,t(!, · ) on IRd. (We argue in Section 9, at the end of Step 1, that the ratio in (6.4) is
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well defined, with the convention 0/0 := 0.) We introduce on (⌦ ⇥ [0,1) ⇥ IRd, eP) and
(⌦⇥ [0,1),P) the probability measures

mQ(d!, dt, dx) := CQFQ
0,t(!, dx) dAt(!)Q(d!),

m(d!, dt) := CQFQ
0,t(!, IRd) dAt(!)Q(d!),(6.5)

where CQ is a normalising constant. (It will be part of the proof in Section 9 below that
mQ,m are null or well defined and that CQ 2 (0,1) if mQ 6⌘ 0.) We point out that all the
above quantities depend only on S, but not on the choice of ', due to Lemma 5.5.

Finally let � : [0,1) ! IR be a function satisfying the following properties:

� is strictly convex and in C1, and �(0) = 0.(6.6)

� grows at least linearly for large x, i.e., there is some constant D > 0 such that(6.7)

|�(x)| � Dx for x � x0.

� is bounded from below by a constant, i.e., �(x) � const. for all x � 0.(6.8)

For the definition of the spaces L� and L�
loc, we refer to Section 3. In particular, Lemma 3.3

shows that L�
+ is a cone due to the linear growth condition (6.7) on �.

The main result of this section is then

Theorem 6.1. Suppose that S is quasi-left-continuous and the process X(0) in (6.1) satisfies

De,�(X(0), P ) 6= ;. If Q
loc⇡ P and if

(6.9) eR(Q) 2 L�
loc(m,P),

then we can find for X(0) a Q-�-martingale density Z(0) with Z(0) 2 L�
loc(Q).

Remark 6.2. If we assume instead of (6.9) that eR(Q) is locally bounded, then we can find
for X(0) a Q-�-martingale density Z(0) which is also locally bounded. For more details, we
refer to Remark 9.3 below. ⇧

We postpone the proof of Theorem 6.1 to Sections 9 and 10 and proceed directly with
our main line of argument. A look at (9.53) in Step 12 of the proof in Section 9, with 0 there
replaced by �, shows that Z(0) is given by Z(0) = E(N (0)) with

(6.10) N (0) := fWQ ⇤ (bµ0 � b⌫Q
0 ) = I]]�,⌧ ]]

.N (0),

where fWQ = efQ � 1 for a process efQ constructed in the proof of Theorem 6.1, bµ0 is the
jump measure of bX(0) := 1

1+H
.X(0) for a finite-valued predictable process H � 0 (which

is also constructed in the course of the proof), and db⌫Q
0 = 1

1+H d⌫Q
0 is the Q-compensator
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of bµ0. We next apply Corollary 5.6 under Q instead of P to obtain the Q-local martin-
gale density Z(1) = E(N (1)) for fM = X⌧ � X� � X(0), due to (5.2). Recall from (5.14) in
Corollary 5.6 (applied with Q) that N (1) is explicitly constructed and given by

(6.11) N (1) := I]]�,⌧ ]]
.��Q .Sc + WQ ⇤ (µ1 � ⌫Q

1 )
�

= I]]�,⌧ ]]
.N (1).

Proposition 6.3. Suppose that S is quasi-left-continuous. For Z(1) = E(N (1)) with N (1) as

in (6.11), the process

(6.12) Z := Z(0)Z(1) = E(N (0) + N (1)) =: E(N)

is a Q-�-martingale density for S⌧ � S� = I]]�,⌧ ]]
.S, and N = I]]�,⌧ ]]

.N . Moreover, if ⌧ is

chosen such that Z(1) is locally bounded, then the process Z is in L�
loc(Q).

Proof. Because X⌧ � X� = '.(S⌧ � S�), it is by Lemma 2.9 enough to show that Z(1)

is a Q-�-martingale density for X⌧ � X�. For symmetry, set X(1) := fM so that we have
X⌧ �X� = X(1) + X(0).

1) We shall argue below that

[N (i), N (k)] = 0 for i 6= k,(6.13)

[N (i),X(k)] = 0 for i 6= k,(6.14)

and we already know that

Z(i) = E(N (i)) is a Q-�-martingale density for X(i),(6.15)

and N (i) = I]]�,⌧ ]]
.N (i), for i = 0, 1.

The equality in (6.12) then follows from Yor’s formula and (6.13), and we claim that also the
middle assertion then holds. (This repeats a small part of the proof of Lemma 4.1.) In fact,
to argue that Z(0)Z(1) is a Q-�-martingale density for X := X(0) + X(1), it is by Lemma 2.9
equivalent to show that X + [X,N (0) + N (1)] is a Q-�-martingale. But (6.14) yields

X + [X,N (0) + N (1)] = X(0) + [X(0), N (0)] + X(1) + [X(1), N (1)],

and this is a Q-�-martingale due to (6.15). That N = I]]�,⌧ ]]
.N is also clear from (6.15).

2) To obtain (6.13), note first that (N (0))c ⌘ 0 by (6.10) so that h(N (0))c, (N (1))ci = 0
and therefore [N (0), N (1)] =

P
�N (0)�N (1). But by (6.11), N (1) can jump at most on

suppµ1 = (suppµ)\ ]]�, ⌧ [[ by the definition of µ1 in Section 5 (for general �  ⌧ , not for
� ⌘ 0), and (6.10) implies that N (0) can only jump on supp bµ0 ✓ [[⌧ ]], by the definition of bµ0.
Thus N (0) and N (1) have no common jumps and so [N (0), N (1)] = 0. This yields (6.13).

3) Next we prove (6.14). By its definition, X(0) is of finite variation with at most one
jump at ⌧ by Theorem 5.1, and N (1) at most jumps on ]]�, ⌧ [[ as just seen in Step 2) so
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that [X(0), N (1)] =
P
�X(0)�N (1) = 0. On the other hand, X(1) = fM = X⌧� � eB can only

jump on ]]�, ⌧ [[ since eB is continuous by Theorem 5.1. So exactly like in Step 2), we obtain
[X(1), N (0)] = h(X(1))c, (N (0))ci+

P
�X(1)�N (0) = 0 because both summands vanish. This

gives (6.14).

4) Finally, suppose that Z(1) is locally bounded (which can indeed be achieved for a
suitable choice of ⌧ by Theorem 5.1). We know that Z(0) is in L�

loc(Q) by Theorem 6.1, and
this means that for a localising sequence (�n)n2IN of stopping times, each random variable

(Z(0))⇤�n
= sup

0t�n

Z(0)
t is in L�

+(Q). As the latter is a cone, the product Z(1)Z(0) is therefore

also in L�
loc(Q). This ends the proof. q.e.d.

Remark 6.4. 1) In Section 9 below, we actually prove a more detailed version of Theo-
rem 6.1. We have kept the formulation here deliberately short for ease of reading.

2) Let us return to questions 1) and 2) from Section 1, rephrased in localised form. If we
take Q = P , Theorem 6.1 provides su�cient conditions on the jumpy part of S for question
1) to have a positive answer. As mentioned in Section 1 after Theorem 1.3, we believe these
conditions are essentially sharp, i.e. more or less also necessary. For question 2), we can thus
expect to have as given some property like (6.9) for P . If we now apply Theorem 6.1 with
Q, it remains to check how we can also verify the condition (6.9) for Q. We can either try
to study this directly under Q, after working out the structure of S under Q; or we can start
from (6.9) under P and try to derive (6.9) under Q, by using the structure of the density
process DQ;P of Q with respect to P . However, we do not embark on that here. ⇧

7. Handling the accessible part of S

In Section 4, we have seen how S � S0 can be decomposed as Sa + Si, and the results in
Section 6 will allow us to deal with the quasi-left-continuous part Si. In this section, we show
that if S admits a P -�-martingale density, then its “accessible part” Sa even admits a locally
bounded P -�-martingale density. This can be viewed as a generalisation of Theorem 5 in
Stricker (1990). We actually prove a more general result, namely

Theorem 7.1. Suppose S is an IRd-valued adapted RCLL process, (Rn)n2IN is a sequence

of predictable stopping times with pairwise disjoint graphs and D :=
1S

n=1
[[Rn]]. Then the

following are equivalent:

1) De,�(ID
.S, P ) 6= ;, i.e. ID

.S admits a P -�-martingale density.

2) De,�(ID
.S, P ) \ {locally bounded processes} 6= ;, i.e. ID

.S admits a P -�-martingale

density which is locally bounded.
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3) For any Q
loc⇡ P , ID

.S admits a Q-�-martingale density which is locally bounded.

The �-martingale density Z = E(N) for ID
.S can then be chosen such that N = ID

.N .

Proof. Clearly, 2) implies 1) and 3) implies 2). Moreover, as already pointed out in Section 1,

1) is equivalent to De,�(ID
.S,Q) 6= ; for any Q

loc⇡ P , and so 1) will imply 3) as soon as we
show that it implies 2). Proving the latter is quite di�cult, even if the basic idea looks
simple. We start with a P -�-martingale density ZP = E(NP ) for S̄ = ID

.S and write the
P -�-martingale property of ZP S̄ as in (2.41) in Corollary 2.12 as the statement that the
Jacod parameter fP of NP satisfies a zero-drift equation (ZDE for short). So the ZDE has
a positive solution fP , and we should like to show that it then even has a positive and
(locally) bounded solution f̃P . Using this as Jacod parameter for a new local P -martingale
ÑP , we get that ÑP is locally bounded, and hence so is then Z̃P = E(ÑP ). But Z̃P is also
a P -�-martingale density for S̄ because f̃P satisfies the ZDE, and so we get 2).

The problem with the above argument is that things do not exactly work like this for
technical reasons. The ZDE can be seen as stating that a linear operator attains a value (here
zero) in a positive function, and we essentially want to deduce that the operator then attains
that value also in a positive and bounded function. Such a result can be found in Theorem 2.9
of Borwein/Lewis (1991) for the case where the range of the operator is finite-dimensional
(in fact, IRn). We need here an extension to a range in an infinite-dimensional space, and so
we need some extra properties of the operator. For our setting, these can be achieved partly
by localisation and partly by imposing some integrability properties on S or S̄. The latter
can be achieved by means of a measure change, and so we must first work under a di↵erent
measure Q(m), for each m, and then go back to P . Let us now make this more precise.

a) Because S̄ := ID
.S is a semimartingale since De,�(S̄, P ) 6= ;, the increasing processes

S̄⇤ := sup
0<s. |S̄s| and V :=

dP
i=1

[S̄i] are finite-valued adapted RCLL processes. For each m 2 IN ,

we can therefore define a probability measure Q(m) ⇡ P by

dQ(m)

dP
:= const.(m) exp(�S̄⇤m � Vm).

The density process DQ(m);P of Q(m) with respect to P is bounded, and both S̄ and its
optional quadratic variation [S̄] have on [[0,m]] all Q(m)-moments (for each coordinate of S̄ or
each entry of the matrix [S̄]). The assumption De,�(S̄, P ) 6= ; also yields De,�(S̄, Q(m)) 6= ;
since Q(m) ⇡ P , and so Corollary 2.14 allows us to choose for S̄ a Q(m)-�-martingale density
ZQ(m)

= E(NQ(m)
) where NQ(m)

has Jacod parameters (�Q(m)
, fQ(m)

, 0, 0) with respect to S̄.

b) Denote by µS̄ and ⌫Q(m)
the jump measure of S̄ and its Q(m)-compensator. As in

Section 2, we can write ⌫Q(m)
(dt, dx) = FQ(m)

t (dx) dAQ(m)

t , but we exploit here the structure

of S̄ = ID
.S to choose a better version for this decomposition. In fact, because D =

1S
n=1

[[Rn]]
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is predictable like the Rn, we have d⌫Q(m)
= ID d⌫Q(m)

from dµS̄ = ID dµS̄ , and so

⌫Q(m)
(dt, dx) =

1P
n=1

I{Rn<1}�Rn(dt) ⌫Q(m)
({t}, dx) = F̄Q(m)

t (dx) dA(m)
t

with

F̄Q(m)

t (dx) := ⌫Q(m)
({t}, dx),(7.1)

dA(m)
t :=

1P
n=1

I{Rn<1}�Rn(dt).

Because S̄ = ID
.S = x ⇤ µS̄ , we then obtain by Corollary 2.12 for the Q(m)-�-martingale

density ZQ(m)
from Step a) that

R
IRd

|x|fQ(m)

t (x)F̄Q(m)

t (dx) < 1 Q(m) ⌦A(m)-a.e.,(7.2)

R
IRd

xfQ(m)

t (x)F̄Q(m)

t (dx) = 0 Q(m) ⌦A(m)-a.e.(7.3)

c) At this point, it looks tempting to prove directly with a DMW argument that we
can find a bounded positive solution efQ to (7.2), (7.3); it could seem that a proof like for
example in Step 2 or Step 10 in the proof of Theorem 9.2 below might work. However, this is
not possible because the measure Q(m) ⌦A(m) ⌦ F̄Q(m)

is not finite in general and therefore
cannot be normalised to a probability measure. So we have to split S̄ into a pre-stopped part
and a single-jump part and deal with these two separately.

For technical reasons, we need some additional properties of NQ(m)
and fQ(m)

that we

can achieve by suitable stopping. First of all, note that V =
dP

i=1
[S̄i] is Q(m)-integrable on

[[0,m]] by the definition of Q(m) so that it has a Q(m)-compensator eV on [[0,m]]. Because eV
is predictable and RCLL, it is locally bounded on [[0,m]], and we have

�eV = �(V p) = p(�V ) = p
⇣ dP

i=1
(�S̄i)2

⌘
= p(|�S̄|2) on [[0,m]]

by DM, Theorem VI.76, where pC denotes here the Q(m)-predictable projection and Cp the
Q(m)-compensator of C. By Jensen’s inequality, (p(|�S̄|))2  p(|�S̄|2), and so we obtain
that p(|�S̄|) is locally bounded on [[0,m]]. But as in Section 2,

p(|�S̄|)t =
R

IRd

|x|⌫Q(m)
({t}, dx) =

R
IRd

|x|F̄Q(m)

t (dx)

by (2.2), (2.1) and (7.1), and so

(7.4) the process
R

IRd

|x|F̄Q(m)

t (dx), t � 0, is locally bounded on [[0,m]].
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We next look at S̄ + [S̄, NQ(m)
]. This is a Q(m)-�-martingale by Lemma 2.9 because ZQ(m)

is a Q(m)-�-martingale density for S̄, and as in the proof of Corollary 2.12, we have

S̄ + [S̄, NQ(m)
] = (xfQ(m)

) ⇤ µS̄ .

As in the proof of Lemma 2.11, the predictable process '(m) > 0 defined by

1/'(m)
t := 1 +

R
IRd

|x|fQ(m)

t (x)F̄Q(m)

t (dx), t � 0,

is well defined due to (7.2) and bounded, and by construction,

(7.5) the process '(m)
t

R
IRd

|x|fQ(m)

t (x)F̄Q(m)

t (dx), t � 0, is bounded.

Moreover, again as in the proof of Lemma 2.11, the zero-drift condition (7.3) implies that

('(m)xfQ(m)
) ⇤ µS̄ = '(m) .(S̄ + [S̄, NQ(m)

]) is a local Q(m)-martingale.

Now fix m, take a localising sequence (%̃(m)
k )k2IN for the processes in (7.4), (7.5) and set

%(m)
k := %̃(m)

k ^ inf
�
t � 0

�� |NQ(m)

t | > k
2

 
.

We then choose km large enough so that P [%(m)
km

< m]  2�m. This is possible since for each

m, %(m)
k % 1 Q(m)-a.s. as k ! 1, hence also P -a.s. and in L0(P ). In addition, we choose

km recursively in m in such a way that the sequence (%(m)
km

)m2IN is increasing, and we set

�m := %(m)
km

^m.

Then
1P

m=1
P [�m < m] =

1P
m=1

P [%(m)
km

< m] < 1 and therefore �m % 1 P -a.s. by Borel–

Cantelli. Moreover, we also have by construction that

(7.6) |�NQ(m) | is bounded by a constant on ]]0,�m[[.

d) For each m 2 IN , we now look at the stopped process S̄�m and write this as

S̄�m = S̄�m� + J(m)

like in (5.1). We denote by µ(m), µ(m)
1 and µ(m)

0 the jump measures of S̄�m , S̄�m� and J(m),

respectively, so that obviously dµ(m)
1 +dµ(m)

0 = dµ(m) = I[[0,�m]] dµS̄ . The Q(m)-compensators

are denoted by ⌫(m), ⌫(m)
1 and ⌫(m)

0 , can be written like in Step b) as

⌫(m)
i (dt, dx) = F (m)

i,t (dx) dA(m)
t
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with

(7.7) F (m)
i,t (dx) = ⌫(m)

i ({t}, dx),

and satisfy d⌫(m)
1 + d⌫(m)

0 = d⌫(m) = I[[0,�m]] d⌫
Q(m)

and

(7.8) F (m)
1,t + F (m)

0,t = I[[0,�m]]F̄
Q(m)

t =: F (m)
t .

For each m 2 IN , we then define a measure (m)(!, t, dx) on IRd by

(7.9) (m)(!, t, dx) := ID\[[0,�m]](!, t)'(m)
t (!) ⌫(m)

0 (!, {t}, dx).

This is P-measurable like D, '(m) and ⌫(m)
0 . Moreover, the measure

(7.10) ⇡(m)(d!, dt, dx) := (m)(!, t, dx) dA(m)
t (!)Q(m)(d!)

on ⌦⇥ [0,1)⇥ IRd is finite, because '(m) is bounded and

EQ(m)

h 1R
0
⌫(m)
0 ({t}, IRd) dA(m)

t

i
= EQ(m) [(1 ⇤ ⌫(m)

0 )1]

= EQ(m) [(1 ⇤ µ(m)
0 )1]

= Q(m)
h 1S

n=1
{Rn < 1,�SRn 6= 0, Rn = �m}

i
< 1.

The marginal ⇡̄(m) of ⇡(m) on ⌦̄ := ⌦ ⇥ [0,1) is also finite and obviously equivalent to
Q(m) ⌦A(m), by the definition (7.10) of ⇡(m). Thus (7.9), (7.7) and (7.8), (7.4) give

��� R
IRd

|x|(m)(dx)
���

L1(⇡̄(m))
= (Q(m) ⌦A(m))- ess sup

R
IRd

|x|(m)(dx)(7.11)

 k'(m)kL1(⇡̄(m))

���I[[0,�m]]

R
IRd

|x|F (m)
0 (dx)

���
L1(⇡̄(m))

< 1,

and in the same way, (7.5) yields that
��� R

IRd

|x|fQ(m)
(x)(m)(dx)

���
L1(⇡̄(m))

(7.12)

= (Q(m) ⌦A(m))- ess sup
⇣
ID\[[0,�m]]'

(m)
R

IRd

|x|fQ(m)
(x)F (m)

0 (dx)
⌘

< 1.

Moreover, the eP-measurable function fQ(m)
on ⌦⇥ [0,1)⇥ IRd is > 0 ⇡(m)-a.e. and satisfies

(7.13)
R

IRd

xfQ(m)
(x)(m)(dx) = b(m) := �ID\[[0,�m]]'

(m)
R

IRd

xfQ(m)
(x)F (m)

1 (dx)
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by (7.9), (7.7), (7.8) and the zero-drift property (7.3). Moreover, by (7.8) and (7.5), the
process b(m) is bounded by some constant. Note that (7.11)–(7.13) correspond precisely to
the conditions (2.2), (2.3) and (2.5) in Choulli/Schweizer (2015). By Theorem 2.1 in Choulli/

Schweizer (2015), there hence exists a eP-measurable function f̃ (m)
0 on ⌦⇥ [0,1)⇥ IRd which

is strictly positive ⇡(m)-a.e., bounded by a constant cm (say) ⇡(m)-a.e. and which satisfies

(7.14)
R

IRd

xf̃ (m)
0 (x)(m)(dx) = b(m) Q(m) ⌦A(m)-a.e.

Because '(m) > 0 and

�b(m) + ID\[[0,�m]]'
(m)

R
IRd

xfQ(m)
(x)F (m)

0 (dx) = 0

due to (7.8) and the zero-drift condition (7.3), we can rewrite (7.14) as

(7.15)
R

IRd

xf̃ (m)
0 (x)F (m)

0 (dx) =
R

IRd

xfQ(m)
(x)F (m)

0 (dx) ⇡̄(m)-a.e. (on D \ [[0,�m]]).

Moreover, because |f̃ (m)
0 |  cm ⇡(m)-a.e., we also get from (7.4) that

(7.16)
R

IRd

|x|f̃ (m)
0 (x)F (m)

0 (dx)  cm

R
IRd

|x|F̄Q(m)
(dx) < 1 ⇡̄(m)-a.e. (on D \ [[0,�m]]).

So essentially, we have started with a positive solution fQ(m)
to the zero-drift condition in

(7.2), (7.3) and have been able to find in (7.15), (7.16) for the single-jump part J(m) of S̄�m

even a positive and bounded solution f̃ (m)
0 .

e) Now define the eP-measurable functions W (m),1 and W (m),0 by

W (m),1 :=
fQ(m) � 1
D(1)

:=
fQ(m) � 1

1� a1 + dfQ(m)
1 ,

W (m),0 :=
f̃ (m)
0 � 1
D(0)

:=
f̃ (m)
0 � 1

1� a0 + d̃
f (m)
0

0 ,

where ai := b1 i
and b· i are taken here with respect to Q(m) and for the measures ⌫(m)

i ,
i = 0, 1. We also define

D := 1� a + dfQ(m)
1

+ d̃
f (m)
0

0

= D(1) +D(0) � 1.

As in the proof of Proposition 5.4 (with S replaced by S̄, ⌧ by �m and P by Q(m)), we

then first argue that 1/D(1) is locally bounded and W (m),1 is in G1
loc(µ

(m)
1 ) for Q(m). As a

consequence, the process

N (m),1 := W (m),1 ⇤ (µ(m)
1 � ⌫(m)

1 )
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is well defined and a local Q(m)-martingale null at 0. In analogy to (5.9), its jumps are

(7.17) �N (m),1 =
⇣fQ(m)

(�S̄)
D(1)

� 1
⌘
I�1 +

⇣ 1
D(1)

� 1
⌘
I�c

1
,

where �1 := {�S̄�m� 6= 0} is the support of the measure µ(m)
1 . Moreover, recalling that

NQ(m)
has Jacod parameters (�Q(m)

, fQ(m)
, 0, 0), we get

(7.18) �NQ(m)
=
�
fQ(m)

(�S̄)� 1
�
I{�S̄�m 6=0} �

dfQ(m) � a

1� a
I{�S̄�m=0}.

Now let us consider W (m),0. By part 3) of Lemma 2.8, 1/D(0) is locally bounded.

Moreover, with �0 := {�J(m) 6= 0} = suppµ(m)
0 ✓ ]]0,�m]], we have

P�
W (m),0(�S̄)I{�J(m) 6=0} � dW (m),0

0�2 =
P⇣ f̃ (m)

0 (�S̄)� 1
D(0)

I�0 �
1

D(0)

� d̃
f (m)
0

0

� a0
�⌘2

 2
(D(0))2

�
f̃ (m)
0 (�S̄)� 1

�2
I�0

+
P 2

(D(0))2
� d̃
f (m)
0

0

� a0
�2

,

using that J(m) is a single-jump process. But the first term on the right-hand side is locally

bounded like 1/D(0) because f̃ (m)
0 is bounded, and the second can be estimated from above

by the compensator of the first term, exactly as in the proof of Proposition 5.4, Step 2). Thus

we obtain that W (m),0 is in G1
loc(µ

(m)
0 ) for Q(m) so that the process

N (m),0 := W (m),0 ⇤ (µ(m)
0 � ⌫(m)

0 )

is well defined and a local Q(m)-martingale null at 0. Its jumps, in analogy to (7.17), are

(7.19) �N (m),0 =
⇣ f̃ (m)

0 (�S̄)
D(0)

� 1
⌘
I�0 +

⇣ 1
D(0)

� 1
⌘
I�c

0
.

Finally, we need to argue that 1/D is also locally bounded. This is done as in the
proof of Lemma 2.8 with minor modifications, as follows. We first replace everywhereP
0<s.

(Ūs(�Xs))2I{�Xs 6=0} = Ū2 ⇤µ by (fQ(m)�1)2 ⇤µ(m)
1 +(f̃ (m)

0 �1)2 ⇤µ(m)
0 =: V (1) +V (0).

The latter sum is locally Q(m)-integrable; this is argued separately for the two summands,

exactly as in the proof of Proposition 5.4. Then we replace all the terms b̄U by the sum

b̄U (1)

+ b̄U (0)

:= ( dfQ(m)
1

�a1)+( d̃f (m)
0

0

�a0) = D�1, and we apply the estimates from the proof

of Lemma 2.3 separately for b̄U (1)

, b̄U (0)

and for V n,(1), V n,(0) constructed like in the proof of
Lemma 2.8. Then everything goes through and the local boundedness of 1/D follows.
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f) In view of the results in Step e), the process

(7.20) eN (m) :=
D(1)

D
.N (m),1 +

D(0)

D
.N (m),0

is well defined and a local Q(m)-martingale null at 0. Indeed, D(0) is bounded since f̃ (m)
0 is

bounded, and due to (7.18),

0  D(1) = 1 + ( dfQ(m)
1

� b11
) = 1 + p

⇣�
fQ(m)

(�S̄)� 1
�
I{�S̄�m� 6=0}

⌘
= 1 + p(�NQ(m)

I�1)

is also bounded because of �1 ✓ ]]0,�m[[ and (7.6). Now note that �0, �1 and �c
0 \ �c

1 are
pairwise disjoint with union ⌦⇥ (0,1), and that �0 ✓ �c

1 and �1 ✓ �c
0. Combining this with

(7.20), (7.17) and (7.19) yields the jumps of eN (m) as

� eN (m) =
⇣fQ(m)

(�S̄)
D � D(1)

D
⌘
I�1 +

⇣ 1
D � D(1)

D
⌘
I�c

1
(7.21)

+
⇣ f̃ (m)

0 (�S̄)
D � D(0)

D
⌘
I�0 +

⇣ 1
D � D(0)

D
⌘
I�c

0

=
1
D
�
fQ(m)

(�S̄)�D(1) + 1�D(0)
�
I�1

+
1
D
�
f̃ (m)
0 (�S̄)�D(0) + 1�D(1)

�
I�0

+
1
D (1�D(1) + 1�D(0))I�c

0\�c
1

=
⇣fQ(m)

(�S̄)
D � 1

⌘
I�1 +

⇣ f̃ (m)
0 (�S̄)

D � 1
⌘
I�0 +

⇣ 1
D � 1

⌘
I�c

0\�c
1
,

where we have used that 1 � D(0) � D(1) = �D. Because fQ(m)
, f̃ (m)

0 and D are all > 0,

(7.21) shows that � eN (m) > �1 so that eZ(m) := E( eN (m)) is a local Q(m)-martingale and

> 0, with eZ(m)
0 = 1. Next, � eN (m) is locally bounded like 1/D, because f̃ (m)

0 is bounded and

I�1(1+� eN (m))D = I�1(1+�NQ(m)
) by (7.18) is bounded due to �1 ✓ ]]0,�m[[ and (7.6). So

eZ(m) = E( eN (m)) is also locally bounded. Moreover, �0 [ �1 ✓ D \ [[0,�m]] implies that

eN (m) = I]]0,�m]]
. eN (m) = ID

. eN (m).

Finally, using S̄�m = x ⇤ µ(m) and (7.21) gives

S̄�m + [S̄�m , eN (m)] = x ⇤ µ(m) +
P
�S̄�m� eN (m) =

1
D

.�(xfQ(m)
) ⇤ µ(m)

1 + (xf̃ (m)
0 ) ⇤ µ(m)

0

�
.

Due to (7.8), (7.5), (7.4) and boundedness of f̃ (m)
0 , the process

1
D'

(m)
⇣ R

IRd

|x|fQ(m)
(x)F (m)

1 (dx) +
R

IRd

|x|f̃ (m)
0 (x)F (m)

0 (dx)
⌘
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is locally bounded, hence locally Q(m)-integrable, on [[0,�m]]. In view of (7.7), the process

'(m) .(S̄�m + [S̄�m , eN (m)]) =: L(m) = ID\[[0,�m]]
.L(m)

therefore has a compensator which equals

1
D'

(m)
⇣ R

IRd

xfQ(m)
(x)F (m)

1 (dx) +
R

IRd

xf̃ (m)
0 (x)F (m)

0 (dx)
⌘

= 0 on D \ [[0,�m]]

thanks to (7.15), (7.8) and (7.3). So L(m) is a local Q(m)-martingale, which means that
S̄�m + [S̄�m , eN (m)] is a Q(m)-�-martingale, and Lemma 2.9 thus shows that eZ(m) = E( eN (m))
is a Q(m)-�-martingale density for S̄�m and locally bounded.

g) Now we can finally go back to P . For each m, we have a Q(m)-�-martingale density
eZ(m) for S̄�m , and we recall that the density process of Q(m) with respect to P is DQ(m);P and
bounded. By the Bayes rule, Z(m) := eZ(m)DQ(m);P is therefore a P -�-martingale density for
S̄�m and locally bounded like eZ(m) and DQ(m);P . Write Z(m) = E(N (m)). Because Z(m)S̄�m

and (Z(m)S̄�m)�m�1 are both P -�-martingales, so is

Z(m)(S̄�m � S̄�m�1) = Z(m)S̄�m � (Z(m)S̄�m)�m�1 � S̄�m�1
�
Z(m) � (Z(m))�m�1

�
.

So Z(m) = E(N (m)) is a P -�-martingale density for S̄�m�S̄�m�1 = I]]�m�1,�m]]
.(S̄�m�S̄�m�1),

and thus also Z̄(m) := E(N̄ (m)) with N̄ (m) := I]]�m�1,�m]]
.N (m) is a P -�-martingale density for

S̄�m � S̄�m�1 . But now Lemma 4.3 with Dm replaced by ]]�m�1,�m]] implies that

Z̄ :=
1Q

m=1
Z̄(m) = E

⇣ 1P
m=1

N̄ (m)
⌘

=: E(N̄)

is a P -�-martingale density for
1P

m=1
(S̄�m � S̄�m�1) = S̄, and because all the Z̄(m) are locally

bounded like Z(m), so is Z̄; this uses N̄ (m) = I]]�m�1,�m]]
.N̄ (m). Hence we have 2). q.e.d.

For our purposes, the following corollary of Theorem 7.1 is su�cient.

Corollary 7.2. Suppose that S is an IRd-valued adapted RCLL process and decompose

S = S0 + Sa + Si as in (4.1), (4.2). If De,�(S, P ) 6= ;, then there exists a P -�-martingale

density Za = E(Na) for Sa such that Za is locally bounded. Moreover, Na can be chosen

such that Na = ID
.Na.

Proof. Because Lemma 4.1 implies that also De,�(Sa, P ) 6= ;, the assertion follows immedi-
ately from (4.1) and Theorem 7.1. q.e.d.

As explained in Lemma 4.1, we can construct �-martingale densities Za and Zi separately
for Sa and Si, and their product will be a �-martingale density for S. Since Za can be
constructed to be locally bounded, it will be enough to obtain local integrabilities for Zi.
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8. Putting everything together

We now have everything in place for formulating and proving our main results. We do this
in two steps having both their own intrinsic interest. The first step decomposes an integral
'.S of a general process S admitting some �-martingale density into a sum of two parts; the
first summand there is so “nice” that it even admits a �-martingale density which is locally
bounded. The second summand is an at most countable sum of single-jump processes each
having a continuous drift term; one could say that this part of '.S collects and in some way
compensates the “bad” jumps of S. In a second step, we then show that if the drifts of the
single-jump terms are not too extreme in comparison to the jump behaviour, also this second
part of '.S admits a “nice” �-martingale density. More precisely, there exists a �-martingale
density with integrability properties directly related to the quantitative control available on
the drift-to-jump ratio.

We begin with the first step of the above scheme. In view of possible extensions later,
we prove a bit more than we actually need here, and we comment on that after the result.

Theorem 8.1. Let S = (St)t�0 be an IRd-valued adapted RCLL process and (%n)n2IN an

increasing sequence of stopping times with %n % 1 P -a.s. Recall from (4.2) the quasi-left-

continuous part Si = S � S0 � Sa of S, and assume that De,�(S, P ) 6= ;. Then there exist

ZP 2 De,�(Si, P ) 6= ;, a predictable set D and two locally bounded local P -martingales

Za = E(Na) and Z̄(1) = E(N̄ (1)) with the following property: For any one-dimensional

bounded predictable process ' > 0 such that ZP ('.Si) is a local P -martingale, we can write

(8.1) '.S = X = X(1) + X(0)

with

X(1) = '.Sa + X̄(1) = ID
.('.Sa) + IDc .X̄(1)

and with X(0) of the form

(8.2) X(0) = IDc .X(0) =
1P

n=1
( eBn + '⌧n�Si

⌧n
I[[⌧n,1[[) =:

1P
n=1

Y (n,0),

where (⌧n)n2IN is an increasing sequence of stopping times satisfying ⌧n % 1 P -a.s. and

⌧n  min(n, %n) for all n, and each eBn = I]]⌧n�1,⌧n]]
. eBn is continuous and of finite variation.

In particular, X(0) is quasi-left-continuous like Si. The process X(1) admits a P -�-martingale

density eZ(1) = E( eN (1)) which is locally bounded and has eN (1) of the form

eN (1) = ID
.Na + IDc .N̄ (1),

and Za and Z̄(1) are locally bounded P -�-martingale densities for Sa and X̄(1), respectively.

The P -�-martingale density ZP = E(NP ) for Si has NP with Jacod parameters (�P , fP , 0, 0)
with respect to Si and NP = IDc .NP , and ZP is also a P -�-martingale density for X(0).
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Moreover, if Q
loc⇡ P has the density process DQ;P = DQ;P

0 E(N), then the sequence

(⌧n)n2IN can be chosen such that for some � > 0 not depending on n,

�N � �1 + � on ]]⌧n�1, ⌧n[[, for all n,(8.3)

|�N |  n on ]]⌧n�1, ⌧n[[, for all n.(8.4)

Remark 8.2. Neither the sequence (%n)n2IN nor (8.3), (8.4) is needed below in our appli-
cation of Theorem 8.1; so let us explain why we include them. If we want to prove results
via localisation or want to work under local assumptions, it may be useful or necessary to
localise a number of quantities before using Theorem 8.1. This can be done via the sequence
(%n). Next, it may also be of interest to study what happens if we change from the original

measure P to another reference measure Q
loc⇡ P . Because De,�(S, P ) 6= ; is equivalent to

De,�(S,Q) 6= ;, we can use Theorem 8.1 under Q as well and then also obtain for the corre-
sponding (Q-dependent) X(1) a Q-�-martingale density which is locally bounded. However,
the �-martingale density for the part X(0) is harder to control, and its properties may depend
on whether we work under P or Q. To relate them under P and under Q, it is important to
have a good control on the density process DQ;P of Q with respect to P , or more precisely on
the jumps of its stochastic logarithm N . This is what we achieve, at least locally, with (8.3)
and (8.4). To be fair, however, we should point out that we do not get a control over �N on
the graphs [[⌧n]] — and it is exactly there that things usually become most complicated. ⇧

Proof of Theorem 8.1. 1) Decompose first S = S0 + Sa + Si as in (4.1), (4.2) and use
Lemma 4.1 and Corollary 7.2 to obtain P -�-martingale densities Za = E(Na) for Sa = ID

.S
and Zi = E(N i) for Si = IDc .S such that Na = ID

.Na and N i = IDc .N i. Moreover, Za can
be chosen to be locally bounded, and we use Corollary 2.14 to choose for Si a P -�-martingale
density ZP = E(NP ) with NP having Jacod parameters (�P , fP , 0, 0) with respect to Si.
Moreover, we can and do also choose NP to have NP = IDc .NP , by Lemma 4.1. Note that
' does not appear up to here.

2) Now choose and fix '. We next want to decompose Xi := '.Si along a sequence
(⌧n)n2IN and apply Theorem 5.1 to each resulting piece. At the same time, we want to keep
control over �N . So starting from the given sequence (%n)n2IN , we fix � > 0 and define
⌧0 := 0 and recursively

(8.5) ⌧n := inf
�
t > ⌧n�1

���Nt < �1 + � or |Nt| > n
2 or |NP

t | > n
2

 
^%n ^n for n 2 IN .

Clearly ⌧n  min(n, %n). Because N is P -a.s. RCLL, we know for P -almost all ! that for
each fixed t � 0, there can be at most finitely many s  t with �Ns(!) < �1 + �, and so
(⌧n)n2IN increases to +1 P -a.s. like (%n)n2IN . Moreover, (8.5) yields for each n 2 IN that

�N � �1 + � on ]]⌧n�1, ⌧n[[,(8.6)

|�N |  n on ]]⌧n�1, ⌧n[[,(8.7)

|�NP |  n on ]]⌧n�1, ⌧n[[,(8.8)
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which gives (8.3) and (8.4). Note that (8.8) is analogous to the condition |�NP |  const. on
]]�, ⌧ [[ that we imposed in Theorem 5.1.

3) Now write Y := Xi := '.Si for brevity and observe that ZP Y is a local P -martingale
by Lemma 2.9 since ZP 2 De,�(Si, P ). Note also that Y is quasi-left-continuous like Si. For
each n, we consider the process

(8.9) Y ⌧n � Y ⌧n�1 =

8><
>:

0 on [[0, ⌧n�1]],
Y ⌧n � Y⌧n�1 on ]]⌧n�1, ⌧n]],
Y⌧n � Y⌧n�1 on ]]⌧n,1[[.

Like ZP Y , both (ZP Y )⌧n and (ZP Y )⌧n�1 are local P -martingales, and thus so is

(ZP )⌧n(Y ⌧n � Y ⌧n�1) = (ZP Y )⌧n � (ZP Y )⌧n�1 � Y ⌧n�1
�
(ZP )⌧n � (ZP )⌧n�1

�
.

So (ZP )⌧n is a P -local martingale density for Y ⌧n � Y ⌧n�1 and we can apply Theorem 5.1
to Y ⌧n � Y ⌧n�1 (which is quasi-left-continuous like Y ) instead of X⌧ �X�, with ]]⌧n�1, ⌧n]]
instead of ]]�, ⌧ ]], to write

(8.10) Y ⌧n � Y ⌧n�1 = fMn + ( eBn +�Y⌧nI[[⌧n,1[[) =: Y (n,1) + Y (n,0),

where eBn is continuous. By Corollary 5.6, we then get for each n a P -local martingale
density Z(n,1) = E(N (n,1)) for Y (n,1), where Z(n,1) does not depend on ', and we also have

(8.11) N (n,1) = I]]⌧n�1,⌧n]]
.N (n,1).

As Y = '.Si = '.(IDc .S) = IDc .Y , we can choose to have N (n,1) = IDc .N (n,1) by
Lemma 4.1. Moreover, since |�NP |  n on ]]⌧n�1, ⌧n[[ by (8.8), Corollary 5.6 (for ]]⌧n�1, ⌧n]]
instead of ]]�, ⌧ ]]) also shows that Z(n,1) is locally bounded. Finally, by Theorem 5.1 and
Corollary 5.6, eZ(n) = E( eN (n)) with eN (n) := I]]⌧n�1,⌧n]]

.NP is a P -local martingale density for

Y (n,0), for all n. Of course, each P -local martingale density is also a P -�-martingale density.
4) The next step is a standard argument of “piecing things together”. First, Lemma 4.3

with Xn := Y (n,1), Dn := ]]⌧n�1, ⌧n]], Nn := N (n,1) = IDc .N (n,1) implies that Z̄(1) := E(N̄ (1))

with N̄ (1) :=
1P

n=1
N (n,1) = IDc .N̄ (1) is a P -�-martingale density for X̄(1) :=

1P
n=1

Y (n,1). In

the same way, but with Xn := Y (n,0), Nn := eNn = I]]⌧n�1,⌧n]]
.NP , we get that ZP = E(NP )

is a P -�-martingale density for X̄(0) :=
1P

n=1
Y (n,0), and since Y0 = ('.Si)0 = 0, we have

(8.12) '.Si = Y =
1X

n=1

(Y ⌧n � Y ⌧n�1) =
1X

n=1

Y (n,1) +
1X

n=1

Y (n,0) = X̄(1) + X̄(0).

Moreover, each Z(n,1) = E(N (n,1)) is locally bounded; so each N (n,1) has locally bounded
jumps, and in view of (8.11), so has then their sum N̄ (1). This implies that Z̄(1) is locally
bounded. Finally, like each Z(n,1), also Z̄(1) does not depend on '.
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5) Now recall (8.12) and S = S0 + Sa + Si and define

X(1) := '.Sa + X̄(1), X(0) := X̄(0)

to get (8.1) as well as (8.2), due to (8.12) and (8.10). We have already seen in Step 4) that
ZP = E(NP ) is a P -�-martingale density for X(0) = X̄(0). Moreover, the construction in
(8.10) of Y (n,0) from Y = '.Si = IDc .Y shows via (8.12) that also X(0) = X̄(0) = IDc .X(0).

It only remains to look at

(8.13) X(1) = '.Sa + X̄(1) = ID
.('.Sa) + IDc .X̄(1),

where the second equality is due to (8.12) and the construction of Y (n,1) in (8.10) again. But
by Corollary 7.2 and Step 4), Sa and X̄(1) each admit P -�-martingale densities Za = E(Na)
and Z̄(1) = E(N̄ (1)) respectively which are locally bounded. Moreover, Lemma 4.1 and (8.13)
allow us to have Na = ID

.Na and N̄ (1) = IDc .N̄ (1). Again using Lemma 4.1 shows thateZ(1) = ZaZ̄(1) = E(Na + N̄ (1)) =: E( eN (1)) is a P -�-martingale density for X(1); it is locally
bounded and does not depend on ', like Za and Z̄(1), and this completes the proof. q.e.d.

For the first step in Theorem 8.1 of our programme, we did not need any extra assump-
tions apart from De,�(S, P ) 6= ;. This is di↵erent for the second step. We formulate this for

Q
loc⇡ P like Theorem 6.1, and refer to Remark 6.4 for an explanation why this is useful.

Theorem 8.3. Under the assumptions of Theorem 8.1, fix Q
loc⇡ P . Apply Theorem 8.1 under

Q and write the resulting quasi-left-continuous process X(0) from (8.2) as

(8.14) X(0) = eB +
1P

n=1
'⌧n�Si

⌧n
I[[⌧n,1[[ = ('eb).A + '.(x ⇤ µ(0)),

where µ(0) denotes the jump measure of X(0) and ⌫(0),Q(dt, dx) = F (0),Q
t (dx) dAt its Q-com-

pensator, and where the IRd-valued predictable process eb does not depend on the choice of

'. Define, with  (x) = x
1+|x| as in Section 6, the predictable process

(8.15) eR(0)(Q) := I{eb6=0} ess sup
z2IRd

(�z>eb)�R
IRd

(z> (x))� F (0),Q(dx)
,

where the ess sup is with respect to F (0),Q
t (!, · ). (We explain below why this ratio is well

defined.) Let � : [0,1) ! IR satisfy the properties (6.6)–(6.8). Finally, suppose there exists

a measurable function ↵ : [0,1) ! IR which is uniformly strictly positive on each compact

interval and such that

(8.16)
TR
0

F (0),Q
t (IRd)

����↵(t) eR(0)
t (Q)

��� dAt < 1 Q-a.s. for each T 2 (0,1).
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Then there exists a Q-�-martingale density Z = E(N) for S with Z 2 L�
loc(Q).

Proof. The (fairly obvious) idea is to start from (8.12), apply the results of Sections 5 and
6 to each summand Y ⌧n � Y ⌧n�1 from (8.9), and piece things together. The main work will
be to verify the assumption (6.9) of Theorem 6.1.

1) We first go back to the proof of Theorem 8.1 and write S � S0 = Sa + Si as in

(4.3). Since Q
loc⇡ P gives De,�(S,Q) 6= ;, we can and do work in the sequel under Q in-

stead of P . As in Step 1) of the above proof, we get a locally bounded Q-�-martingale
density Za = E(Na) for Sa with Na = ID

.Na, and a Q-�-martingale density ZQ = E(NQ)
for Si where NQ = IDc .NQ has Jacod parameters (�Q, fQ, 0, 0). We construct the stopping
times (⌧n)n2IN as in (8.5) and obtain as in Step 3) of the above proof for each n 2 IN a
Q-�-martingale density Z(n,1) = E(N (n,1)) for Y (n,1) with N (n,1) = (IDcI]]⌧n�1,⌧n]]).N (n,1)

and such that Z(n,1) is locally bounded. Moreover, for each process

(8.17) Y (n,0) = I]]⌧n�1,⌧n]]
.Y (n,0) = eBn + '⌧n�Si

⌧n
I[[⌧n,1[[,

we have De,�(Y (n,0), Q) 6= ;, again from Step 3) of that proof.
2) For each n 2 IN , Theorem 5.1 and Lemma 5.5 show that we can write (8.17) as

(8.18) Y (n,0) = ('ebn).A + '.(x ⇤ µ(n)
0 ),

where µ(n)
0 is the jump measure of the single-jump process J(⌧n) := �Si

⌧n
I[[⌧n,1[[ and ebn is

IRd-valued, predictable and does not depend on '. As usual, the Q-compensator of µ(n)
0 is

written as ⌫(Q,n)
0 (dt, dx) = F (Q,n)

0,t (dx) dAt. Because X(0) = X̄(0) =
1P

n=1
Y (n,0), comparing

(8.18) and (8.14) and writing [. for a pairwise disjoint union yields

eb =
1P

n=1

ebn =
1P

n=1

ebnI]]⌧n�1,⌧n]] and {eb 6= 0} =
1[
.

n=1

{ebn 6= 0},(8.19)

dF (0),Q =
1P

n=1
dF (Q,n)

0 =
1P

n=1
I]]⌧n�1,⌧n]] dF (Q,n)

0 .(8.20)

In analogy to (6.4) and (8.15), define

(8.22) eRn(Q) := I{ebn 6=0} ess sup
z2IRd

(�z>ebn)�R
IRd

(z> (x))� F (Q,n)
0 (dx)

,

with the ess sup taken with respect to F (Q,n)
0 . Note that (8.22) is well defined, as pointed

out in Section 6 and argued in Section 9. But {ebn 6= 0} ✓ ]]⌧n�1, ⌧n]] and ebn = eb on ]]⌧n�1, ⌧n]]
by (8.19), and comparing (8.22), (8.15) therefore shows that

(8.23) eR(0)(Q) =
1P

n=1

eRn(Q)I]]⌧n�1,⌧n]].
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In particular, also (8.15) is well defined.
3) Now fix n 2 IN and look at Y (n,0). We want to apply Theorem 6.1 to Y (n,0) on

]]⌧n�1, ⌧n]], instead of X(0) on ]]�, ⌧ ]] there, and so we need to check instead of (6.9) that

(8.24) eRn(Q) 2 L�
loc(m

(n),P),

where m(n) is defined in analogy to m from (6.5). By looking at the definition (3.1) in
Section 3, we see that (8.24) is equivalent to showing that

(8.25) EQ

h �kR
0

F (Q,n)
0,t (IRd)

����↵n,k
eRn

t (Q)
��� dAt

i
< 1

for constants ↵n,k > 0 and a sequence of stopping times �k % 1 Q-a.s. as k ! 1. But
as ⌧n  n, we have ↵(t) � ↵n := inf

0tn
↵(t) > 0 for t  ⌧n and hence, due to (8.23),

0  ↵n
eRn

t (Q)  ↵(t) eR(0)
t (Q) on ]]⌧n�1, ⌧n]]. Therefore (8.20) and (8.23) allow us to obtain

F (Q,n)
0,t (IRd)

����↵n
eRn

t (Q)
��� = I]]⌧n�1,⌧n]]F

(Q,n)
0,t (IRd)

����↵n
eR(0)

t (Q)
���

 F (Q,n)
0,t (IRd)

⇣����↵(t) eR(0)
t (Q)

���C1 + C2

⌘

with finite constants C1, C2; the last inequality comes from (3.4) and uses the properties (6.6)
and (6.7) of �. So again using (8.20) for the term with C1, we get

R
F (Q,n)

0 (IRd)
����↵n

eRn(Q)
��� dA  C1

R
F (0),Q(IRd)

����↵( · ) eR(0)(Q)
��� dA

+ C2

R
F (Q,n)

0 (IRd) dA.

But the second summand on the right-hand side is Q-integrable because F (Q,n)
0 comes from a

single-jump process; see (9.15) in the proof of Theorem 9.2. Moreover, the first summand on
the right-hand side is predictable and finite-valued by the assumption (8.16); so it is prelocally
bounded and hence even locally bounded by VIII.11 in DM. So the left-hand side is locally
Q-integrable, and this is exactly what we need for (8.25).

4) Thanks to (8.24), we can now apply Theorem 6.1 to Y (n,0) on ]]⌧n�1, ⌧n]], instead of
X(0) on ]]�, ⌧ ]] there, and obtain a Q-�-martingale density Z(n,0) = E(N (n,0)) for Y (n,0) with
Z(n,0) 2 L�

loc(Q) and

N (n,0) = I]]⌧n�1,⌧n]]
.N (n,0) =

�
IDcI]]⌧n�1,⌧n]]

�.N (n,0);

the last equality uses again that Y (n,0) = IDc .Y (n,0) which holds because Y (n,0) comes from
Y = '.Si. Combining this with Step 1) and Proposition 6.3 shows that the product

Z̄(n,0) := Z(n,1)Z(n,0) = E(N (n,1) + N (n,0)) =: E(N̄ (n,0))
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is a Q-�-martingale density for the sum Y (n,1) + Y (n,0) = Y ⌧n � Y ⌧n�1 , that we also have
N̄ (n,0) = (IDcI]]⌧n�1,⌧n]]).N̄ (n,0), and that Z̄(n,0) 2 L�

loc(Q). As in Step 4) of the proof of

Theorem 8.1, we obtain from Lemma 4.3 that Z̄i := E(N̄ i) with N̄ i =
1P

n=1
N̄ (n,0) = IDc .N̄ i

is a Q-�-martingale density for the sum
1P

n=1
(Y ⌧n � Y ⌧n�1) = Y = '.Si, and Z̄i 2 L�

loc(Q).

By Lemma 2.9, Z̄i is then also a Q-�-martingale density for Si. Lemma 4.1 thus yields that
Z := ZaZ̄i = E(Na + N̄ i) =: E(N) is a Q-�-martingale density for Sa + Si = S � S0, hence
also for S, and Z is like Z̄i in L�

loc(Q) as Za is locally bounded. This ends the proof. q.e.d.

Remark 8.4. Theorem 8.3 answers the localised versions of both questions 1) and 2) from
Section 1. It provides a su�cient condition on the drift-to-jump ratio of the “tricky” part
X(0) of '.S for S itself to admit a locally �-integrable �-martingale density. For Q = P , we

get an answer for question 1), for Q
loc⇡ P to question 2). As remarked earlier, we believe that

this condition is essentially also necessary; Example 1.1 at least illustrates that things can
and do go wrong in general. ⇧

Remark 8.5. If we assume instead of (8.16) that eR(0)(Q) is locally bounded, then there
exists a Q-�-martingale density Z = E(N) for S such that Z is even locally bounded. To see
this, note first from (8.23) that instead of (8.24), we get in the proof of Theorem 8.3 that
eRn(Q) is locally bounded for each n. Using then Remark 6.2 instead of Theorem 6.1 in Step
4) of that proof, we get Z(n,0) which is locally bounded, and then also Z̄(n,0), Z̄i and finally
Z are locally bounded. ⇧

At this point, we have established the main results on the existence of nicely integrable
�-martingale densities. It remains to prove two auxiliary results, and both these results and
the techniques used for their proofs are of independent interest.

9. The key result for the single-jump case

This section contains the most di�cult result of our paper, despite the fact that it only deals
with a process with one single jump. Let us first explain the setup we consider here.

On a filtered probability space (⌦,F , IF, P ) with IF = (Ft)t�0, let S = (St)t�0 be an
IRd-valued adapted RCLL process. We assume that De,�(S, P ) 6= ; so that S is a semimartin-
gale, and we decompose S = S0 + Sa + Si as in (4.3), where Si is quasi-left-continuous. Fix
a stopping time ⌧ and consider as in (5.2), (6.1) and (6.3) a process of the form

(9.1) X(0) = eB + '.J(⌧) = eB + '⌧�Si
⌧I[[⌧,1[[ = ('eb).A + '.(x ⇤ µ0)
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obtained from Si as in Theorem 5.1, where eB = eB⌧ = I]]�,⌧ ]]
. eB is continuous and null on

[[0,�]], A dominates the characteristics of S, and µ0 denotes the jump measure for the single-
jump process J(⌧) = �Si

⌧I[[⌧,1[[. Because we ensure in our applications that we are in the

framework of Theorem 5.1, we can and do also assume De,�(X(0), P ) 6= ;. In (9.1), we
also have a bounded predictable process ' > 0 as in Theorem 5.1, and as pointed out in
Theorem 5.1 as well as in Lemma 5.5, what we do does not depend on the choice of '.

Remark 9.1. For ease of notation, we take � ⌘ 0 and hence work below on the stochastic
interval ]]0, ⌧ ]]; so our starting point is the process X⌧ �X� = X⌧ �X0, with X := '.S. The
arguments for X⌧ � X� and ]]�, ⌧ ]] are completely analogous. In the applications, we start
instead with X⌧n �X⌧n�1 and then use the corresponding results on ]]⌧n�1, ⌧n]]. ⇧

Now take Q
loc⇡ P so that also De,�(X(0), Q) 6= ;. We denote the Q-compensator of µ0 by

⌫Q
0 and write as usual ⌫Q

0 (dt, dx) = FQ
0,t(dx) dAt. Define a bijection  from IRd to the open

unit ball U1(0, IRd) in IRd by  (x) := x
1+|x| and introduce the set

(9.2) � := {FQ
0 (IRd) > 0} 2 P.

Then we define the auxiliary predictable process

(9.3) eR(Q) := I{eb6=0} ess sup
z2IRd

(�z>eb)�R
IRd

(z> (x))� FQ
0 (dx)

, with {eb 6= 0} ✓ � ✓ ⌦⇥ [0,1);

the essential supremum for eRt(Q)(!) is taken with respect to the (random) measure FQ
0,t(!, · )

on IRd. To be precise, we set 0/0 := 0, and we argue at the end of Step 1 below that
eR(Q) is well defined and the first inclusion above is justified. We introduce on the spaces
(⌦⇥ [0,1)⇥ IRd, eP) and (⌦⇥ [0,1),P) the probability measures

mQ(d!, dt, dx) := CQFQ
0,t(!, dx) dAt(!)Q(d!),(9.4)

m(d!, dt) := CQFQ
0,t(!, IRd) dAt(!)Q(d!),(9.5)

where CQ is a normalising constant. (It will also be part of the proof below that mQ,m are
null or well defined and that CQ 2 (0,1) if mQ 6⌘ 0.)

Finally let � : [0,1) ! IR be a function satisfying the following properties:

� is strictly convex and in C1, and �(0) = 0.(9.6)

� grows at least linearly for large x, i.e., there is some constant D > 0 such that(9.7)

|�(x)| � Dx for x � x0.

� is bounded from below by a constant, i.e., �(x) � const. for all x � 0.(9.8)
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Of course, (9.6)–(9.8) are the same conditions as (6.6)–(6.8) in Section 6.
The main result of this section is then

Theorem 9.2. Suppose that X(0) in (9.1) satisfies De,�(X(0), P ) 6= ;. If Q
loc⇡ P and

(9.9) eR(Q) 2 L�
loc(m,P),

then there exist a probability measure bmQ ⇡ mQ and a eP-measurable function efQ on

⌦⇥ [0,1)⇥ IRd with efQ > 0 Q⌦A⌦ FQ
0 -a.e.,

(9.10) efQ 2 L�
loc(bmQ, eP)

and

R
IRd

|x| efQ(x)FQ
0 (dx) < 1 Q⌦A-a.e.,(9.11)

eb +
R

IRd

x efQ(x)FQ
0 (dx) = 0 Q⌦A-a.e.(9.12)

As a consequence, we can find for X(0) a Q-�-martingale density Z(0) with Z(0) 2 L�
loc(Q).

The proof of Theorem 9.2 is long and goes over several steps. Before embarking on it,
we give a short overview as well as some comments on related work and ideas.

Remark 9.3. If we assume instead of (9.9) that eR(Q) is locally bounded, then also efQ can
be constructed to be locally bounded (in the sense that there exist stopping times Tk % 1
Q-a.s. as k !1, and not depending on x 2 IRd, such that

| efQ(!, t, x)|  const.(n) Q⌦A⌦ FQ
0 -a.e. on [[0, Tk]]⇥ IRd

for all k 2 IN). The resulting Q-�-martingale density Z(0) for X(0) is then also locally
bounded. We explain how to get this alternative result in Section 9.7. ⇧

9.1. Proof overview

Our ultimate goal is to find for X(0) a Q-�-martingale density Z(0) in L�
loc(Q). From Corol-

lary 2.12, we see that finding a Q-�-martingale density for X(0) boils down to finding a
strictly positive solution to the Q-zero drift equation (9.12), (9.11). Lemma 3.7 then shows
that we need (for that solution efQ, say) essentially also (9.10) if the resulting Q-�-martingale

density should be in L�
loc(Q). By assumption and since Q

loc⇡ P , we have De,�(X(0), Q) 6= ;
and hence at least one strictly positive solution to (9.12), (9.11). So the challenge, and the
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contents of the subsequent proof, is to argue that there is another solution with the extra
property (9.10).

At a conceptual level, Theorem 9.2 is similar to the classic DMW theorem from Dalang/
Morton/Willinger (1990). The latter states that for a one-period model, absence of arbitrage
is equivalent to the existence of an equivalent martingale measure, and that this even implies
that there exists an equivalent martingale measure with a bounded density. The setting
in Theorem 9.2 looks similar to a one-period model because it deals with a process having
one single jump, at a random (stopping) time. However, in contrast to the DMW setup,
there is in addition a drift term eb in the process X(0). (If we embed the DMW setup into
continuous time, we have a process which is piecewise constant and hence has drift 0 between
jumps.) This apparently small di↵erence makes matters much more complicated. In fact, it
is the presence of the (in general unavoidable) drift eb that causes most of the mathematical
di�culties and in particular makes it necessary to add the condition (9.9) that eR(Q) is in
L�

loc(m,P). Example 1.1 has already illustrated this issue and the resulting problems.

Let us now outline the main steps and ideas of the proof. We first distinguish the caseseb = 0 and eb 6= 0. On the set {eb = 0}, we are essentially in a DMW setup, and we can use
the classic DMW theorem to obtain a solution efQ to (9.12), (9.11) which is even bounded
(uniformly in (!, t, x)). At the level of Q-�-martingale densities, this means that we can find
“on {eb = 0}” a Q-�-martingale density which is locally bounded, and this can be viewed as
a continuous-time version of the DMW result.

On {eb 6= 0}, things are more di�cult. We could again start with the DMW theorem.
But there we must first normalise eb to some b̄, and the subsequent (!, t)-dependent un-nor-
malisation back to eb leaves us with a solution Ȳ0 to (9.12), (9.11) which is bounded in x, but
not uniformly so in (!, t); see (9.23) below. To obtain a solution controlled in (!, t, x), we
therefore use a technique inspired from the proof of the key Lemma 4.1 in Kabanov/Stricker
(2001). Their idea is to write an equation like (9.12) as the statement that a suitable linear
functional  has a zero, and then prove via a Hahn–Banach separation argument that the
existence of some zero for  , which we get from either De,�(X(0), Q) 6= ; or the above DMW
argument, implies the existence of even a zero with better properties (like (9.10), in our case).

However, there are still two major extra steps to take, and this is where our main
innovations come in. First, we cannot use the Kabanov–Stricker result (or a straightforward
extension of it) since they argue for fixed (!, t), whereas we need to produce a quantity which
is controlled simultaneously in !, t and x. For the same reason, we have not been able to
combine the Kabanov–Stricker idea directly with a measurable selection argument since we
could not manage to get the required control over (!, t) in a su�ciently good form. (We can
get an upper bound, as explained below in Remark 9.4, but only at the cost of relaxing the
lower bound from strict positivity to nonnegativity.) We therefore extend the approach from
Kabanov/Stricker (2001) to the case where the linear functional  takes values in an infinite-
dimensional Banach space (instead of IRm), and this in turn leads us to use corresponding
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separation results and notions of interior for convex sets. This idea is of independent interest
and may turn out to be fruitful in other aspects of arbitrage theory as well.

A second major innovation is related to our use of a separation argument connected to
the mapping  . This is also where the assumption (9.9) that eR(Q) 2 L�

loc(m,P) comes into

play. For using the separation argument, we need to make sure that  (L�
+(bmQ, eP)) contains

0, or, put di↵erently, that (9.12), (9.11) do have a nonnegative solution also satisfying (9.10).
This (seemingly only small) point was inadvertently overlooked in an earlier version of this
paper, and fixing the issue has prompted us to add the above extra assumption and has
also required us to prove some new results. Again, we believe that these are of independent
interest; let us explain in more detail what they are.

The assumption De,�(X(0), Q) 6= ; guarantees the existence of a (strictly positive) solu-
tion to (9.12), (9.11), but tells us not much more about the properties of that solution. A
classic idea from optimisation theory is then to look for a solution which in addition optimises
some functional. If that is feasible, the optimiser comes from a problem that includes (9.12)
as a constraint. Hence it can be described more explicitly via the first order conditions for
optimality, and this can be used to find bounds on that solution to (9.12). We have taken
this idea and the basic approach for implementing it from a paper by Cole/Goodrich (1993),
of course adjusting and extending it to our situation at hand. More precisely, we use this line
of argument (with a functional given from our convex function �) with respect to x for fixed
(!, t), and then use a measurable selection argument to obtain a solution to (9.12), (9.11)
controlled from above by eR(Q). To the best of our knowledge, such ideas for constructing
“good martingale measures” have not been used before.

Remark 9.4. The Cole–Goodrich argument outlined above gives us a solution to (9.12),
(9.11) which is bounded above by eR(Q) and nonnegative. If eR(Q) 2 L�

(loc)(m,P), we readily

obtain for that solution that it is in L�
(loc)(bmQ, eP); see the proof of part 1) of Lemma 9.9

below. However, we are not able to guarantee from the Cole–Goodrich approach also a
strictly positive lower bound on the (pointwise in (!, t)) solution. This is the reason why we
subsequently have to use the separation argument for the mapping  . ⇧

The above outline explains the main ideas and steps of the proof. To actually implement
this, we follow a slightly di↵erent logical order.

9.2. Preparations

Proof of Theorem 9.2. As announced, this goes over several steps. We first assume that

(9.13) eR(Q) 2 L�(m,P)

and relax this to (9.9) via localisation at the end in Step 11.
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Step 1: Similarly as in part b) of the proof of Theorem 7.1, we first deduce from the
assumption De,�(X(0), Q) 6= ; in Theorem 9.2 a certain equation, namely (9.12) and (9.11).
For that, we need to deal with some technical issues. First of all, we use Corollaries 2.12
and 2.14 to choose for X(0) a Q-�-martingale density ZQ = E(NQ) such that NQ has Jacod
parameters (0, fQ, 0, 0) with respect to Si. This uses that X(0) has no continuous local
martingale part, so that the parameter � is not needed. By Lemma 2.3, sup

0<s. f
Q
s (�Si

s) is

locally Q-integrable, and so we get for a localising sequence (⌧k)k2IN that

EQ

h ⌧kR
0

R
IRd

fQ
t (x)FQ

0,t(dx) dAt

i
= EQ[(fQ ⇤ ⌫Q

0 )⌧k ]

= EQ[(fQ ⇤ µ0)⌧k ]

 EQ

h
sup

0<s⌧k

fQ
s (�Si

s)I�Si
s 6=0}

i
< 1.

Because [[0, ⌧k]] increases to ⌦⇥ [0,1) as k !1, we conclude that

(9.14) GQ
0,t(IRd) :=

R
IRd

fQ
t (x)FQ

0,t(dx) < 1 Q⌦A-a.e. on ⌦⇥ [0,1).

Analogously, the measure FQ
0,t is Q⌦A-a.e. finite since X(0) is a single-jump process; in fact,

(9.15) EQ

h 1R
0

FQ
0,t(IRd) dAt

i
= EQ[(1 ⇤ ⌫Q

0 )1] = EQ[(1 ⇤ µ0)1] = Q[⌧ < 1,�Si
⌧ 6= 0] < 1.

The same computation as in (9.15) also shows that we can assume without loss of generality
that Q[⌧ < 1,�Si

⌧ 6= 0] > 0 and therefore that the set � = {FQ
0 (IRd) > 0} 2 P from (9.2)

has Q⌦A-measure > 0. Indeed, since �Si
⌧ = 0 on �c, we must by (9.1) also have eb = 0 on �c

because ZQ(I�c .X(0)) is a Q-�-martingale, and of course FQ
0 = 0 on �c. So if (Q⌦A)(�) = 0,

we can take any positive constant for efQ and then have (9.11), (9.12) Q⌦A-a.e.; in fact, these
hold trivially on �c because FQ

0 and eb vanish there, and � is by assumption a Q⌦A-nullset.
(Note that mQ and m in (9.4), (9.5) then degenerate to the zero measure.) So that case is
easily solved, and we therefore focus on the case where (Q⌦A)(�) > 0. This implies that

(9.16) C�1
Q := EQ

h 1R
0

FQ
0,t(IRd) dAt

i
> 0,

so that the constant CQ defined by (9.16) is in (0,1) by (9.15), and both mQ and m from
(9.4), (9.5) are probability measures. Moreover, we have

(9.17) mQ = m⌦ F̄Q
0 with F̄Q

0 :=
FQ

0

FQ
0 (IRd)

, on �,
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and mQ and m are equivalent to Q⌦A⌦ FQ
0 and Q⌦A, respectively. Finally, by replacing

At with tanh(At + t), we can also assume that A is bounded and strictly increasing.
Now ZQX(0) is a Q-�-martingale, where ZQ = E(NQ) and NQ has Jacod parameters

(0, fQ, 0, 0) with respect to Si. Therefore (9.1), Corollary 2.12 and the strict positivity of the
predictable process ' imply that we haveR

IRd

|x|fQ(x)FQ
0 (dx) < 1 Q⌦A-a.e.,(9.18)

eb +
R

IRd

xfQ(x)FQ
0 (dx) = 0 Q⌦A-a.e.(9.19)

This means that fQ satisfies (9.12), (9.11); but we want a solution with additional properties.
Before we continue, we argue that (9.3) is well defined. First we note that (9.19) implies

eb = 0 on the set �c = {FQ
0 (IRd) = 0} so that {eb 6= 0} ✓ �. This justifies the first inclusion in

(9.3). Next, using  (x) = x
1+|x| , (9.19) can be rewritten as

�eb =
R

IRd

 (x)f̄Q(x)FQ
0 (dx) Q⌦A-a.e.

with f̄Q(x) := (1 + |x|)fQ(x) > 0 satisfying
R

IRd

f̄Q(x)FQ
0 (dx) < 1 due to (9.14) and (9.18).

Now on {eb 6= 0} ✓ �, if the denominator in (9.3) becomes 0, we must have (z> (x))� = 0
FQ

0 (dx)-a.e., hence also R
IRd

�
z> (x)f̄Q(x)

��
FQ

0 (dx) = 0

and therefore

0 =
⇣ R

IRd

z> (x)f̄Q(x)FQ
0 (dx)

⌘�
= (�z>eb)�.

This means that the numerator in (9.3) also vanishes, and so eR(Q) is well defined.

Step 2: To get from (9.19), (9.18) a better solution on {eb = 0} to (9.12), (9.11), we use a
DMW argument. On the probability space (⌦⇥ [0,1)⇥IRd, eP,mQ), consider the one-period

model with filtration G1 := eP, G0 := P ⌦ {;, IRd} and X1 :=  , X0 := �b̄ with

b̄ :=
eb

GQ
0 (IRd) +

R
IRd

|x|fQ(x)FQ
0 (dx)

I� =
ebR

IRd

(1 + |x|)fQ(x)FQ
0 (dx)

I�.

Note that b̄ is predictable, hence G0-measurable, and well defined in view of (9.18) and
(9.14). We claim that the above model is arbitrage-free in the sense that it satisfies NA. To
see this, take some H 2 L1(m,P; IRd) (which can be identified with a bounded IRd-valued
G0-measurable random variable) and suppose that H>(X1�X0) � 0 mQ-a.e. or, written out,

H>� (x) + b̄
�
� 0 mQ-a.e.
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We multiply this inequality by (1 + |x|)fQ(x) > 0 and integrate with respect to FQ
0 , using

 (x)(1 + |x|) = x, to obtain

H>
⇣ R

IRd

xfQ(x)FQ
0 (dx) + b̄

R
IRd

(1 + |x|)fQ(x)FQ
0 (dx)

⌘
� 0 Q⌦A-a.e.

But the second summand inside the brackets is ebI� = eb by the definition of b̄, and so the sum
in brackets is 0 by (9.19). As a consequence, the nonnegative original integrand of FQ

0 must
vanish, which means that we must have

H>� (x) + b̄
�

= 0 mQ-a.e.

or H>(X1 �X0) = 0 mQ-a.e. This proves NA.
Because we have an arbitrage-free one-period model, the classic DMW theorem (see

Theorem 2.4 in Dalang/Morton/Willinger (1990)) now implies the existence of a eP-measur-
able function bY > 0 which is bounded in (!, t, x) and such that

X0 = EmQ [X1
bY | G0] mQ-a.e.

In view of (9.17), this can be rewritten as �b̄ =
R

IRd

 (x)bY (x)F̄Q
0 (dx) Q⌦A-a.e. or

(9.20)
R

IRd

x bY (x)
1+|x|F

Q
0 (dx) + b̄FQ

0 (IRd) = 0 Q⌦A-a.e.

Note that since bY is bounded and FQ
0 (IRd) < 1, we also have

(9.21)
R

IRd

|x| bY (x)
1+|x|F

Q
0 (dx) < 1 Q⌦A-a.e.

We could multiply (9.20) with the denominator of b̄ and divide by FQ
0 (IRd) to write (9.20) as

(9.22)
R

IRd

 (x)Ȳ0(x)FQ
0 (dx) +eb = 0 Q⌦A-a.e.

with

(9.23) Ȳ0(x) := bY (x)

F Q
0 (IRd)

R
IRd

(1 + |x|)fQ(x)FQ
0 (dx)I� + I�c ,

but this is not really needed.

Step 3: We later want to view (9.22) as the statement that a certain mapping  on functions
Y has a zero in a certain function Y0. To obtain good properties and a clear definition for
that mapping, we need to deal with some further technical issues.
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First of all, for proving Theorem 9.2, we can assume without loss of generality that
{eb 6= 0} is not evanescent. Indeed, on the set {eb = 0}, we have b̄ = 0 so that (9.20) yields

(9.24) 0 = I{b̃=0}

⇣eb +
R

IRd

x bY (x)
1+|x|F

Q
0 (dx)

⌘
Q⌦A-a.e.

So we can take

(9.25) efQ(x) :=
bY (x)

1 + |x| on {eb = 0};

this is like bY strictly positive and bounded uniformly in (!, t, x), and it satisfies (9.12) and
(9.11) on {eb = 0} due to (9.20) and (9.21). So we assume that {eb 6= 0} is not a Q⌦A-nullset,
and since FQ

0 (IRd) > 0 on � ◆ {eb 6= 0} by Step 1, we then also have

(9.26) EQ

h 1R
0

I{b̃t 6=0}F
Q
0,t(IRd) dAt

i
> 0.

With

(9.27) Y0(x) := (1 + |x|)fQ(x) > 0,

we moreover obtain from (9.18) and (9.19) as well as  (x) = x
1+|x| that

H := I{b̃6=0}
R

IRd

| (x)|Y0(x)FQ
0 (dx) < 1 Q⌦A-a.e.,(9.28)

I{b̃6=0}

⇣eb +
R

IRd

 (x)Y0(x)FQ
0 (dx)

⌘
= 0 Q⌦A-a.e.(9.29)

(We could also obtain this for Ȳ0 from (9.23) instead of Y0.)

9.3. An auxiliary mapping  

Step 4: We now introduce the announced mapping  ; then (9.29) becomes the statement
that  has a zero in Y0 given in (9.27). First of all, recalling the definition of H in (9.28), we
introduce on the measurable spaces (⌦⇥ [0,1)⇥ IRd, eP) and (⌦⇥ [0,1),P) the probability
measures bmQ and bm via

bmQ(d!, dt, dx) := cCQI{b̃t(!)6=0}
1

1 + H(!, t)
FQ

0,t(!, dx) dAt(!)Q(d!)(9.30)

= cCQI{b̃t(!)6=0}
bFQ
0,t(!, dx) dAt(!)Q(d!),

bm(d!, dt) := cCQI{b̃t(!)6=0}
1

1 + H(!, t)
FQ

0,t(!, IRd) dAt(!)Q(d!)(9.31)

= cCQI{b̃t(!)6=0}
bFQ
0,t(!, IRd) dAt(!)Q(d!),
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where

(9.32) bFQ
0,t(!, dx) :=

1
1 + H(!, t)

FQ
0,t(!, dx)

and the normalising constant given by

(cCQ)�1 = EQ

h 1R
0

I{b̃t 6=0}
1

1+Ht
FQ

0,t(IRd) dAt

i
= EQ

h 1R
0

I{b̃t 6=0}
bFQ
0,t(IRd) dAt

i

is in (0,1). To see the latter, note that cCQ < 1 due to (9.26) and (9.28), and cCQ > 0 by

(9.15). From the definitions, recalling that F̄Q
0 = FQ

0 /FQ
0 (IRd) on � ◆ {eb 6= 0}, it is clear

that bmQ = bm ⌦ F̄Q
0 and that bm is the marginal on ⌦ ⇥ [0,1) of bmQ. Moreover, both mQ

from (9.4) and bmQ are equivalent to Q⌦A⌦ FQ
0 on {eb 6= 0}, and we obviously have

(9.33) cCQ mQ = CQ(1 + H)bmQ, cCQ m = CQ(1 + H)bm on {eb 6= 0}.

In particular, (9.33) implies that dbm = const. 1
1+H I{eb6=0} dm so that bm ⌧ m with a bounded

density. In consequence, we have

(9.34) L�(m,P) ✓ L�(bm,P).

Recalling X(0) from (9.1) and H � 0 (which is predictable) from (9.28), we now define

(9.35) bX(0) :=
1

1 + H
.X(0) =

1
1 + H

. eB +
'⌧�Si

⌧

1 + H⌧
I[[⌧,1[[ = ('bb).A + '.(x ⇤ bµ0),

where bb := eb
1+H and bµ0 is the jump measure of the single-jump process �Si

⌧
1+H⌧

I[[⌧,1[[. The

Q-compensator of bµ0 is called b⌫Q
0 , and with bFQ

0 from (9.32), it is clearly given by

(9.36) b⌫Q
0 (!, dt, dx) =

1
1 + H(!, t)

⌫Q
0 (!, dt, dx) = bFQ

0,t(!, dx)dAt(!).

Remark 9.5. Recall that the measure MQ
µ̂0

= Q⌦ bµ0 on ⌦⇥ [0,1)⇥ IRd is given by

R
W dMQ

µ̂0
= EQ

h 1R
0

R
IRd

W (!, t, x)bµ0(!, dt, dx)
i

for product-measurable functions W � 0. If W � 0 is even eP-measurable, we can use the
Q-compensator b⌫Q

0 of bµ0 and (9.36), (9.30) to obtain from the above equality that

R
WI{b̃6=0} dMQ

µ̂0
= EQ

h 1R
0

R
IRd

W (!, t, x)I{b̃t(!)6=0}
bFQ
0,t(!, dx)dAt(!)

i
= (cCQ)�1

R
W dbmQ.
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We use this in Step 12 to relate integrabilities for bmQ and MQ
µ̂0

to each other. ⇧

We now introduce the spaces

U0 := L�
+(bmQ, eP), U�0 := L�

++(bmQ, eP)

and recall from Lemma 3.3 that L� ✓ L1 since � satisfies (9.7). Because | | is bounded
(by 1), the IRd-valued function  Y on ⌦ ⇥ [0,1) ⇥ IRd is therefore in L1(bmQ, eP; IRd) for
every Y 2 U0. The next result shows that we also have this property for the function Y0

constructed in Step 3.

Lemma 9.6. For Y0 from (9.27), the function  Y0 on ⌦⇥ [0,1)⇥ IRd is in L1(bmQ, eP; IRd).

Proof. We know that Y0 � 0 is eP-measurable, and since z 7! z
1+z  1 on [0,1) and A has

been chosen bounded, using (9.30) and (9.28) yields

EbmQ

⇥
| |Y0

⇤
= cCQEQ

h 1R
0

I{b̃6=0}
1

1+H

R
IRd

| (x)|Y0(x)FQ
0 (dx) dA

i

= cCQEQ

h 1R
0

I{b̃6=0}
H

1+H dA
i

< 1.

This proves the result. q.e.d.

Continuing with Step 4, we now define the mapping  on eP-measurable functions Y

with  Y 2 L1(bmQ, eP; IRd) by

(9.37)  (Y ) := I{b̃6=0}
R

IRd

 (x)
�
Y (x)� Y0(x)

�
F̄Q

0 (dx).

Because bmQ factorises as bmQ = bm⌦ F̄Q
0 , the quantity  (Y ) can be viewed as (a nice version

of) the conditional expectation EbmQ
[ ( · )(Y � Y0) | P ⌦ {;, IRd}]. For ease of notation, we

write simply EbmQ
[ · | P⌦{;, IRd}] =: EbmQ

[ · | P] in the sequel. Thanks to Lemma 9.6,  is well

defined by Fubini’s theorem and maps U0 into L1(bm,P; IRd), again because bmQ = bm⌦ F̄Q
0 .

Moreover, dominated convergence for F̄Q
0 and bmQ easily yields again by Lemma 9.6 that

(9.38)  (Y0 ^ n) �!  (Y0) = 0 both bm-a.e. and in L1(bm).

9.4. Getting the first part of Theorem 9.2 from a positive zero of  

Step 5: We claim that the first assertion of Theorem 9.2 follows as soon as we show that

(9.39)  (U�0 ) =  
�
L�

++(bmQ, eP)
�

contains 0.
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To see this, suppose  (eY0) = 0 for a strictly positive eP-measurable eY0 2 L�(bmQ, eP). Then

efQ(x) := I�c + I�
1

1 + |x|
�eY0(x)I{b̃6=0} + bY (x)I{b̃=0}

�

is eP-measurable, still in L�(bmQ, eP), and strictly positive Q ⌦ A ⌦ FQ
0 -a.e. Moreover, the

definition of efQ and (9.29) show that

0 =  (eY0) = I{b̃6=0}
R

IRd

 (x)
�eY0(x)� Y0(x)

�
F̄Q

0 (dx) =
I{b̃6=0}

FQ
0 (IRd)

⇣ R
IRd

x efQ(x)FQ
0 (dx) +eb⌘

so that the above equality and the definition of efQ together with (9.24), (9.25) yield

I�

⇣eb +
R

IRd

x efQ(x)FQ
0 (dx)

⌘
= I�\{b̃6=0}0 + I�\{b̃=0}

R
IRd

 (x)bY (x)FQ
0 (dx) = 0.

Moreover, we have Q⌦A-a.e. that x 7!  (x)eY0(x) is in L1(FQ
0 ; IRd) by Fubini’s theorem and

since eY0 2 L�(bmQ, eP) ✓ L1(bmQ, eP). Combining this with (9.21) shows that

I�

R
IRd

|x| efQ(x)FQ
0 (dx) < 1 Q⌦A-a.e.

On the set �c, we have FQ
0 = 0 as well as eb = 0, as already discussed in Step 1. So we also

have (9.12) and (9.11) on �c and hence in summary obtain the first part of the assertion of
Theorem 9.2. Note that while we do have Y0 > 0 and  (Y0) = 0, this is not yet enough to
get (9.39) since we do not know whether Y0 is in L�(bmQ, eP).

Step 6: Our goal is now to show the result (9.39) that  (L�
++(bmQ, eP)) =  (U�0 ) contains

0. Conceptually, our proof follows the argument of Kabanov/Stricker (2001) for their (key)
Lemma 4.1; so we assume that 0 62  (U�0 ) and work towards a contradiction. To that end, we
want to separate 0 from a set in the space L1(bm,P; IRd) where  takes its values. This is a
very significant di↵erence to Kabanov/Stricker (2001) who worked in IRm — since our space
is infinite-dimensional, we must be careful to use appropriate notions of the “interior” of a
set and a corresponding separation theorem. Our basic reference is Borwein/Lewis (1992).

Let X, later taken as L1(bm,P; IRd), be a Banach space with (topological) dual X⇤. For
a convex subset C ✓ X, the quasi-relative interior is defined as

qriC :=
�
x 2 C

�� cone (C � x) is a linear subspace of X
 
✓ C,

where cone (C � x) is the closure in X of the cone generated by C � x. It is shown in
Proposition 2.8 of Borwein/Lewis (1992) that x 2 C is in qriC if and only if the normal cone

NC(x) := {⇠ 2 X⇤ | h⇠, y � xi  0 for all y 2 C}
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is a linear subspace of X⇤. Moreover, we have the following separation result.

Theorem 9.7. [Daniele/Giu↵rè/Idone/Maugeri (2007), Theorem 1] Let C ✓ X be

convex and x0 2 C \ qriC. Then there exists a nontrivial ⇠ 2 X⇤ such that h⇠, xi  h⇠, x0i
for all x 2 C.

To apply this result, we take X := L1(bm,P; IRd) so that X⇤ = L1(bm,P; IRd) and set

C := conv
�
 (U�0 ) [ {0}

�
.

Then C is convex, a subset of L1(bm,P; IRd) and contains 0. Moreover, we claim that we have

Lemma 9.8. With  , U0, U�0 , C defined as above, we have

1) qri ( (U0)) =  (U�0 ).
2) cone (C) = cone ( (U0)).

Proof. 1) This is proved at the end of this section in Steps 9 and 10 so as not to interrupt
the overall flow of the argument; the inclusion “◆” is easy, but “✓” requires some work.

2) For the inclusion “✓”, note that Yn := Y0 ^n is in U0 and we have seen in (9.38) that
 (Yn) ! 0 in L1(bm,P; IRd). So we have 0 2  (U0) and hence  (U�0 ) [ {0} ✓  (U0), giving

C ✓ conv
�
 (U0)

�
✓ conv

⇣
cone

�
 (U0)

�⌘
= cone

�
 (U0)

�
.

This implies “✓”. For the converse, start with Y 2 U0 and note that Yn := Y + 1
n is a sequence

in U�0 converging to Y . So  (Yn) 2  (U�0 ) ✓ C ✓ cone (C), and since  (which is up to a
translation by a fixed vector just a conditional expectation) is continuous on U0 ✓ L1(bmQ, eP),
we have  (Yn) !  (Y ) in L1(bm,P; IRd). But this implies that  (Y ) 2 cone (C), hence
 (U0) ✓ cone (C), and so “◆” follows. q.e.d.

Lemma 9.9. With  , U0, U�0 , C defined as above, we have

1)  (U0) contains 0. (This uses the assumption (9.13) that eR(Q) 2 L�(m,P).)
2) If 0 62  (U�0 ), then 0 2 C \ qriC.

Proof. 1) Due to (9.13) and (9.34), we have eR(Q) 2 L�(bm,P). Theorem 10.2 below thus
yields a eP-measurable function Y ⇤ � 0 on ⌦⇥[0,1)⇥IRd satisfying the Q-zero drift equations
(10.2), (10.3), which are simply (9.28), (9.29) for Y ⇤ instead of Y0. So  (Y ⇤) = 0 by (9.37)
and (9.29), used for both Y ⇤ and Y0. Moreover, from Theorem 10.1 below, the construction
of Y ⇤ is such that kY ⇤kL1(F̄ Q

0 ) = ess sup
x2IRd

Y ⇤( · , · , x) is in L�(bm,P), due to (9.13), and we

have bmQ = bm⌦ F̄Q
0 . So Y ⇤ is in L�

+(bmQ, eP) = U0, and hence  (U0) contains 0.
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Proving Theorems 10.1 and 10.2 still needs substantial work; as outlined at the beginning
of this section, we need to construct a solution to the Q-zero drift equations which is controlled
by eR(Q). The detailed argument is given in Section 10 below.

2) By the definition of C, we have 0 2 C. In addition, part 1) tells us that 0 2  (U0).
If 0 62  (U�0 ), then part 1) of Lemma 9.8 yields that 0 62 qri ( (U0)), which means by the
definition and because 0 2  (U0) that cone ( (U0)) is not a linear subspace of L1(bm,P; IRd).
By part 2) of Lemma 9.8, also cone (C) is then not a linear subspace, which means in turn,
because 0 2 C, that 0 62 qriC. q.e.d.

As announced, suppose now that 0 62  (U�0 ). Then 0 2 C \ qriC by Lemma 9.9, and
hence there exists by Theorem 9.7 a nontrivial ⇠ 2 X⇤ = L1(bm,P; IRd) such that

(9.40) Ebm[⇠> (Y )] = h⇠, (Y )i  0 for all Y 2 U�0 ,

since C ◆  (U�0 ). But (9.40) easily extends from U�0 to U0 because as in the proof of
Lemma 9.8, we have  (Y + 1

n ) !  (Y ) in L1(bm,P; IRd), for any Y 2 U0. So we also get

(9.41) Ebm[⇠> (Y )] = h⇠, (Y )i  0 for all Y 2 U0.

Step 7: Starting from (9.41), we now want to derive a contradiction to the assumption that
0 62  (U�0 ). Define Yn := Y0 ^ n and, for appropriately chosen D 2 eP and P-measurable �,
eYn := Yn(1 + ID sign �). Then both Yn and eYn are in L1+ (bmQ, eP) ✓ U0, and the definition of
 in (9.37) gives

 (eYn) =  (Yn) + I{b̃6=0}sign �
R

IRd

 (x)Yn(x)ID(x)F̄Q
0 (dx) =  (Yn) + sign �EbmQ

[ YnID | P].

We know from (9.38) that  (Yn) ! 0 in L1(bm,P; IRd), and we also have Ebm[⇠> (eYn)]  0
for all n by (9.41). Moreover, 0  Yn % Y0 and hence EbmQ

[ YnID | P] % EbmQ
[ Y0ID | P]

by monotone integration. Multiplying by ⇠> and taking the expectation under bm thus yields

0 � Ebm⇥(sign �)⇠>EbmQ
[ Y0ID | P]

⇤
= Ebm⇥��EbmQ

[⇠> Y0ID | P]
��⇤,

if we choose � := ⇠>EbmQ
[ (x)Y0ID | P] and note that ⇠ is P-measurable and bounded. This

means by the definition of bm and bmQ in (9.30), (9.31) that Q⌦A-a.e., we have

(9.42)
R

IRd

⇠> (x)Y0(x)ID(x)F̄Q
0 (dx) =

R
IRd

⇠>xY0(x)
1+|x|ID(x)F̄Q

0 (dx) = 0 on {eb 6= 0}.

We choose the set D := {(!, t, x) 2 ⌦⇥ [0,1)⇥ IRd |x 2 supp F̄Q
0,t(!, · )} which is in eP; see

Delbaen/Schachermayer (2006), p.289, before Lemma 14.3.4. But then (9.42) implies that

⇠>x = 0 for all x 2 supp F̄Q
0,t(!, · ), Q⌦A-a.e. on {eb 6= 0},
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and because ⇠ is nontrivial, this is a contradiction — at least if F̄Q
0,t(!, · ) has full support on

IRd for Q⌦A-almost all (!, t).

Step 8: To deal with the fact that F̄Q
0 need not have full support, we proceed as follows.

We consider for each (!, t) 2 ⌦⇥ [0,1) the linear subspace L!,t := lin (supp F̄Q
0,t(!, · )) ✓ IRd

generated by the support of the probability measure F̄Q
0,t(!, · ) on IRd and define

eX :=
�ex 2 L1(bm,P; IRd)

�� ex(!, t) 2 L!,t for Q⌦A-almost all (!, t)
 
.

Then eX is a linear subspace of L1(bm,P; IRd) = X and closed in X, since each L!,t is closed in

IRd. Moreover, the definition of  in (9.37) implies that we actually have  (U0) ✓ eX ✓ X. So
we can apply the separation argument in Step 6 with X replaced by eX and get a nontrivial
continuous linear functional e⇠ 2 ( eX)⇤ with he⇠, (Y )i  0 for all Y 2 U�0 , like in (9.40).
But by the Hahn–Banach theorem, e⇠ admits an extension to a continuous linear functional
⇠ 2 X⇤ = L1(bm,P; IRd) such that the restriction of ⇠ to eX coincides with e⇠. Hence we get

Ebm[⇠> (Y )] = h⇠, (Y )i = he⇠, (Y )i  0 for all Y 2 U�0 ,

and the argument in Step 7 then yields again

⇠>x = 0 for all x 2 supp F̄Q
0,t(!, · ), Q⌦A-a.e. on {eb 6= 0}.

But this means that ⇠(!, t) 2 L?!,t for Q ⌦ A-almost all (!, t) 2 {eb 6= 0} and therefore, in

view of the definition of eX, that

⌦e⇠, ex↵ =
⌦
⇠, ex↵ = Ebm⇥⇠>ex⇤ = 0 for all ex 2 eX.

Because e⇠ is nontrivial on eX, this is the desired contradiction. So we have indeed the result
(9.39) that 0 2  (U�0 ), and Step 5 produces the desired efQ.

9.5. Proof of part 1) in Lemma 9.8

Step 9: We now return to the assertion 1) in Lemma 9.8 that qri ( (U0)) =  (U�0 ). We first
prove an auxiliary result, recalling that U0 = L�

+(bmQ, eP) and U�0 = L�
++(bmQ, eP). A very

similar result is given as an example in Daniele/Giu↵rè/Idone/Maugeri (2007). Recall also
that L� ✓ L1 by Lemma 3.3 since � satisfies (9.7); this allows us below to work in L1.

Lemma 9.10. For a probability measure ⇡ on some measurable space, define for brevity

E0 := L�
+(⇡) and E�0 := L�

++(⇡). If we view E0 and E�0 as subsets of L1(⇡), we have

(9.43) qriE0 = E�0 ,
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where the quasi-relative interior is with respect to L1(⇡).

Proof. We first claim that for any y 2 E0, we have

NE0(y) := {' 2 L1(⇡) |
R
'(y0 � y) d⇡  0 for all y0 2 E0}(9.44)

=
�
' 2 L1� (⇡)

��' = 0 ⇡-a.e. on {y > 0}
 
.

Indeed, the inclusion “◆” holds since
R
'(y0�y) d⇡ =

R
'y0 d⇡�

R
'yI{y>0} d⇡ =

R
'y0 d⇡  0

because y � 0, '  0 by assumption and y0 � 0. For “✓”, taking y0 := y + I{'�0} 2 E0

gives 0 �
R
'I{'�0} d⇡ because ' 2 NE0(y), so that we get '  0 ⇡-a.e., and choosing

y0 := y(1 + I{y>0}sign') 2 E0 gives 0 �
R
|'|yI{y>0} d⇡ so that also ' = 0 on {y > 0} ⇡-a.e.

Having (9.44), the proof is now easy. If y > 0 ⇡-a.e., then NE0(y) = {0}, by (9.44), is
trivially a linear subspace of L1(⇡); and if ⇡({y = 0}) > 0, then �I{y=0} is in NE0(y), but
+I{y=0} is not, again by (9.44), so that NE0(y) is not a linear subspace. Therefore y 2 qriE0

if and only if both y 2 E0 and y > 0 ⇡-a.e., i.e. y 2 E�0 . This proves (9.43). q.e.d.

To prove part 1) of Lemma 9.8, we first note that writing for Y 2 L1(bmQ, eP)

(9.45)  (Y ) = EbmQ
[ ( · )(Y � Y0) | P] = EbmQ

[ Y | P]�EbmQ
[ Y0 | P] =: T (Y )� y0

gives by Lemma 9.6 a continuous linear map T : L1(bmQ, eP) ! L1(bm,P; IRd) and an element
y0 2 L1(bm,P; IRd). Next, Lemma 9.10 and Theorem 3.4 of Borwein/Goebel (2003) yield

(9.46) T (U�0 ) = T (qriU0) ✓ qri
�
T (U0)

�
,

so that C0 := T (U0) has qriC0 6= ;. Proposition 3 of Daniele/Giu↵rè/Idone/Maugeri
(2007) applied to C0 therefore implies that qri

�
 (U0)

�
= qri

�
T (U0)�y0

�
= qri

�
T (U0)

�
�y0.

So if we show that

(9.47) qri
�
T (U0)

�
= T (U�0 ),

we get qri ( (U0)) = T (U�0 )� y0 =  (U�0 ) and hence part 1) of Lemma 9.8. We have already
shown in (9.46) the inclusion “◆” for (9.47), and the converse is argued below in Step 10.

Step 10: To finish the proof of Lemma 9.8, we now show that

(9.48) qri
�
T (U0)

�
✓ T (U�0 ),

recalling from (9.45) and bmQ = bm⌦ F̄Q
0 that

(9.49) T (Y ) = EbmQ
[ Y | P] = I{b̃6=0}

R
IRd

 (x)Y (x)F̄Q
0 (dx).
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So take q 2 qri (T (U0)) ✓ T (U0) and some Y 2 U0 with q = T (Y ). Because U0 ✓ L1(bmQ, eP),

Fubini’s theorem implies that x 7! Y (x) is in L1(F̄Q
0 ) for bm-almost all (!, t). Moreover,

x 7!  (x) = x
1+|x| is bounded, and the functions 1 and  i(x), i = 1, . . . , d, are linearly

independent on IRd. This allows us to use Theorem 2.9 of Borwein/Lewis (1991) and obtain
for bm-almost all (!, t) a function x 7! ey(!, t, x) 2 L1(F̄Q

0 ) with ey � �(!, t) > 0 such that
R

IRd

ey(x)F̄Q
0 (dx) =

R
IRd

Y (x)F̄Q
0 (dx) bm-a.e.,(9.50)

R
IRd

 (x)ey(x)F̄Q
0 (dx) =

R
IRd

 (x)Y (x)F̄Q
0 (dx) = q bm-a.e.,(9.51)

by (9.49). Note that x 7! ey(!, t, x) is Borel-measurable for bm-almost all (!, t), but we have
no information on joint measurability in (!, t, x). However, this is fortunately not needed.

Now because q = T (Y ) is predictable, the set � := {eb 6= 0} \ {q 6= 0} is in P. On the
probability space (⌦ ⇥ [0,1) ⇥ IRd, eP, bmQ), consider the one-period model with G1 := eP,
G0 := P ⌦ {;, IRd}, X1 := I� and

X0 := I�q0 :=
I�qR

IRd

ey(x)F̄Q
0 (dx)

.

As in Step 2, we claim that this model is arbitrage-free. Indeed, if H 2 L1(bm,P; IRd) is
such that H>(X1 � X0) � 0 bmQ-a.e., using bmQ = bm ⌦ F̄Q

0 implies that bm-a.e., we have

I�H>( (x)� q0) � 0 F̄Q
0 -a.e. Multiplying with ey > 0, integrating and using (9.51) and the

definition of q0 gives bm-a.e.

0 
R

IRd

I�H>� (x)�q0
�ey(x)F̄Q

0 (dx) = I�H>
⇣ R

IRd

 (x)ey(x)F̄Q
0 (dx)�q0

R
IRd

ey(x)F̄Q
0 (dx)

⌘
= 0.

Thus ey > 0 implies that H>(X1�X0) = I�H>( (x)�q0) = 0 bmQ-a.e., and so we have indeed

the no-arbitrage property NA. By the DMW theorem, we can therefore find a eP-measurable
bounded function Y1 > 0 on ⌦⇥ [0,1)⇥ IRd such that X0 = EbmQ

[X1Y1 | P] bm-a.e. or, using

again the analogue bmQ = bm⌦ F̄Q
0 of (9.17),

I�q = I�

R
IRd

 (x)Y1(x)
⇣ R

IRd

ey(x)F̄Q
0 (dx)

⌘
F̄Q

0 (dx) = I�T (Y2) bm-a.e.,

where, using (9.50),

Y2(x) := Y1(x)
R

IRd

ey(x)F̄Q
0 (dx) = Y1(x)

R
IRd

Y (x)F̄Q
0 (dx) bm-a.e.

Like Y1 and ey, Y2 is strictly positive bmQ-a.e., and the second representation also shows that

Y2 is eP-measurable (even if we have no information on the joint measurability of ey).
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Finally, Y1 is bounded by a constant C, say, so that

(9.52) Y2(x)  C
R

IRd

Y (x)F̄Q
0 (dx) bmQ-a.e.

Since Y 2 U0 = L�
+(bmQ, eP) and bmQ = bm⌦ F̄Q

0 , we have
R

IRd

|�(↵Y (x))|F̄Q
0 (dx) 2 L1(bm,P)

for some ↵ > 0. But due to (9.8), � is bounded below, say by �b with a constant b � 0, so
that |�(x)|  �(x) + 2b, and so convexity of � gives by Jensen’s inequality

����⇣↵ R
IRd

Y (x)F̄Q
0 (dx)

⌘���  2b +
R

IRd

�
�
↵Y (x)

�
F̄Q

0 (dx)

 2b +
R

IRd

����↵Y (x)
��� F̄Q

0 (dx) 2 L1(bm,P).

So the right-hand side of (9.52) is in L�
+(bm,P) and constant in x; hence it is in L�

+(bmQ, eP)
as well, and so is then Y2 because L�

+ is solid by Lemma 3.3. In summary, we have found
Y2 2 U�0 such that

I�T (Y ) = I�q = I�T (Y2) bm-a.e.

Having dealt with q 6= 0, we now consider the predictable set �0 := {eb 6= 0} \ {q = 0}.
We look at X0 := I�0q0 = 0, X1 := I�0 with G0,G1 as before, and claim that this one-period
model is also arbitrage-free. To argue this, we now have to exploit that q 2 qri (T (U0)). We
again take any H 2 L1(bm,P; IRd) with H>(X1�X0) � 0 bmQ-a.e. and note that this implies

I�0H
> (x) � 0 and I�0H

>q = 0 bmQ-a.e.

For any y = T (g) = I{b̃6=0}
R

IRd

 (x)g(x)F̄Q
0 (dx) in T (U0) with g 2 U0, we thus obtain

�I�0H
>(y � q) = �

R
IRd

I�0H> (x)g(x)F̄Q
0 (dx) + I�0H>q  0 bm-a.e.

and therefore h�I�0H, y� qi = Ebm[�I�0H>(y� q)]  0 for all y 2 T (U0), which means that
�I�0H is in NT (U0)(q). But the latter is a linear subspace because q 2 qri (T (U0)); so we
also have +I�0H 2 NT (U0)(q), and this means that

EbmQ
[I�0H

> g] = Ebm
h
I�0

R
IRd

H> (x)g(x)F̄Q
0 (dx)

i
= Ebm[+I�0H>(y � q)]  0

for all y = T (g) 2 T (U0), i.e., for all g 2 U0 ◆ L1+ (bmQ, eP). So we obtain that

I�0H
> (x) = 0 and still I�0H

>q = 0 bmQ-a.e.
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which implies that H>(X1 �X0) = 0 bmQ-a.e. So this model indeed satisfies NA, and hence

the DMW theorem again yields the existence of a eP-measurable bounded function Y3 > 0 on
⌦⇥ [0,1)⇥ IRd with X0 = EbmQ

[X1Y3 | P] bm-a.e. or, from the definitions of X0 and X1,

0 = I�0q = I�0
R

IRd

 (x)Y3(x)F̄Q
0 (dx) = I�0T (Y3).

So Y3 2 L1++(bmQ, eP) ✓ U�0 and thus Y ⇤ := I�Y2 + I�0Y3 is in U�0 (because we already know
that Y2 2 U�0 ) and T (Y ⇤) = I�q + I�00 = q bm-a.e. But this means that q 2 T (U�0 ) and since
q 2 qri (T (U0)) was arbitrary, we have (9.48). This completes the proof of Lemma 9.8. q.e.d.

9.6. Finishing the proof of Theorem 9.2

Step 11: So far, we have worked under the global assumption that eR(Q) is in L�(m,P).
If we only have eR(Q) 2 L�

loc(m,P), there are stopping times Tk % 1 Q-a.s. such that
eR(Q)I[[0,Tk]] 2 L�(m,P) ✓ L�(bm,P) for each k 2 IN , due to (9.34). Our arguments above
then still give us via Theorem 10.2 a solution Y ⇤ � 0 to (9.28), (9.29) on ⌦ ⇥ [0,1) ⇥ IRd,
as in the proof of part 1) of Lemma 9.9. By Theorem 10.1, we also get Y ⇤I[[0,Tk]] 2 L�(bm,P)
for each k, as in the same proof. So we then argue for fixed k throughout on [[0, Tk]] only and
obtain in Step 5 a function efQ,k > 0 defined on [[0, Tk]]⇥IRd, simply by multiplying throughout
by I[[0,Tk]]. Moreover, this yields efQ,k 2 L�(bm,P). The desired efQ is then obtained by piecing

things together via efQ := efQ,k on ]]Tk�1, Tk]]⇥ IRd; this function is clearly in L�
loc(bm,P) by

construction, it is > 0 Q⌦A⌦ FQ
0 -a.e. since that measure has no mass on [[0]]⇥ IRd, and it

satisfies (9.11), (9.12) since we have (9.28), (9.29) for efQ,k on each [[0, Tk]].

Up to this point, with the exception of Theorem 10.1, we have proved the first part of
Theorem 9.2. It only remains to construct the claimed Q-�-martingale density Z(0) for X(0)

with Z(0) 2 L�
loc(Q). This is done in

Step 12: Recall from (9.35) the process bX(0) = 1
1+H

.X(0). Take efQ constructed in the first

part of Theorem 9.2, set fWQ := efQ � 1 and then define

(9.53) N (0) := fWQ ⇤ (bµ0 � b⌫Q
0 ) = I]]0,⌧ ]]

.N (0).

We first claim that N (0) is well defined and a local Q-martingale null at 0. For that, it
is enough to argue that fWQ is in G1

loc(bµ0) for Q; see the lines following (2.7). But bµ0 is

the jump measure of the single-jump process bX(0) and b· 0,Q ⌘ 0 by (6.2), or since bX(0) is

quasi-left-continuous like Si and X(0). So fWQ 2 G1
loc(bµ0) for Q reduces to showing that the

single term |fWQ(� bX(0))|I{�bX(0) 6=0} is locally Q-integrable. Now |fWQ|  efQ + 1 and efQ is
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in L�
loc(bmQ, eP) by the first part of Theorem 9.2. By Remark 9.5, this is equivalent to saying

that efQ is eP-measurable and in L�
loc(M

Q
µ̂0

); so efQ 2 L1
loc(M

Q
µ̂0

) due to (9.7) and Lemma 3.3,

and hence efQ 2 G1
loc(bµ0) for Q, again in view of Remark 9.5. Thus fWQ 2 G1

loc(bµ0) for Q and
the claim follows.

Because the first part of Theorem 9.2 gives efQ > 0, we get �N (0) > �1 by Lemma 2.6.

So Z(0) := E(N (0)) is a local Q-martingale > 0 with Z(0)
0 = 1, and Z(0) is in L�

loc(Q) by

Lemma 3.7 because efQ 2 L�
loc(M

Q
µ̂0

). Finally, ' efQ satisfies (9.11), (9.12), and Corollary 2.12

therefore implies in view of (9.1) that Z(0)X(0) is a Q-�-martingale. Thus Z(0) gives our
desired Q-�-martingale density for X(0), and the proof is complete. q.e.d.

9.7. The case where eR(Q) is locally bounded

Suppose in Theorem 9.2 that instead of (9.9), we assume that eR(Q) is locally bounded. We
claim that we then can find efQ > 0 with (9.11), (9.12) which instead of satisfying (9.10)
is even locally bounded, and that the resulting Q-�-martingale density Z(0) for X(0) is also
locally bounded. To see this, we argue as follows.

First of all, if eR(Q) is locally bounded, it also satisfies (9.9), and if eR(Q) 2 L1(m,P),
then also eR(Q) 2 L�(m,P). So we can again use all the arguments from the L�-case, and
we only need to examine where we can get extra results from the L1-condition.

We start with Lemma 9.9. If we replace the assumption (9.13) that eR(Q) 2 L�(m,P)
by eR(Q) 2 L1(m,P), the arguments from Theorems 10.1 and 10.2 give us a Y ⇤ � 0 which
is not only in L�(bmQ, eP), but even in L1(bmQ, eP). This ultimately rests on Theorem 10.2

where we construct an h⇤ � 0 which is controlled above by eR(Q). So in part 1) of Lemma 9.9,
we even get that

 (U0) contains 0 for U0 := L1(bmQ, eP),

and we can and do continue our reasoning with U0 instead of U0 = L�(bmQ, eP).
In Steps 6–10, we prove the assertion (9.39) that  (U�0 ) contains 0. But the only dif-

ference between L1 and L� is in part 1) of Lemma 9.9 which we have discussed and settled
just before, and so the same proof also works to show that

(9.390)  (U�0 ) contains 0.

In Step 5, we construct efQ from the zero eY0 of  . From Step 2, bY is bounded; so
if we have (9.390) instead of (9.39), then eY0 2 U�0 = L1++(bmQ, eP), and then the explicitly

constructed efQ is also in U�0 . In particular, efQ is bounded.
Steps 1–4 are not a↵ected at all by the issue L� or L1; so if we start with

(9.130) eR(Q) 2 L1(m,P),
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we end up after Step 10 with efQ 2 L1++(bmQ, eP). If eR(Q) is locally bounded, the localisation

in Step 11 thus yields an efQ > 0 which satisfies (9.11), (9.12) and is locally bounded.
Finally, in Step 12, if efQ is locally bounded instead of in L�

loc(bmQ, eP), then N (0) is
still well defined. Moreover, N (0) is then locally bounded since its jumps are all > �1 and
controlled above by efQ. As a consequence, Z(0) = E(N (0)) is also locally bounded, and this
completes the argument for Remark 9.3.

10. Constructing nicely integrable �-martingale densities

In this section, we present a novel approach to the construction of �-martingale densities with
extra (local) integrability properties. We do this for a single-jump process with continuous
FV (drift) part; in view of Corollary 7.2 and Theorem 5.1, this is enough to handle the case of
a general semimartingale as well. We stay within the framework of Section 9 and in particular
keep in force all the assumptions of Theorem 9.2.

Since we want to work with the measures bmQ, bm from (9.30), (9.31), we start directly
with the single-jump process

bX(0) =
1

1 + H
.X(0) = ('bb).A + '.(x ⇤ bµ0)

from (9.35), where the jump measure bµ0 has the Q-compensator b⌫Q
0 (dt, dx) = bFQ

0,t(dx)dAt.

We recall from below (9.35) and (9.32) that eb = (1 + H)bb and FQ
0 = (1 + H) bFQ

0 , and we
introduce the function h0 := Y0 �  �1 (note that x 7!  (x) = x

1+|x| is a bijection) and the

measure b% defined by

(10.1) b% := bFQ
0 �  �1.

The key di↵erence between b% and bFQ
0 is that b% has a compact support as all its mass lies in

U1(0, IRd). After division by 1 + H, we can then rewrite (9.28) and (9.29) as
R

IRd

| (x)|Y0(x) bFQ
0 (dx) =

R
IRd

|y|h0(y)b%(dy) < 1 bm-a.e.,(10.2)

bb +
R

IRd

 (x)Y0(x) bFQ
0 (dx) = bb +

R
IRd

yh0(y)b%(dy) = 0 bm-a.e.(10.3)

Note that bm and Q⌦A are equivalent on {eb 6= 0} and that bm has all its mass on that set; so
the indicator functions from (9.28), (9.29) are not needed here. Recalling eR(Q) from (9.3),
we point out that this can be equivalently written as

(10.4) eR(Q) = ess sup
z2IRd

(�z>bb)�R
IRd

(z> (x))� bFQ
0 (dx)

= ess sup
z2IRd

(�z>bb)�R
IRd

(z>y)� b%(dy)
bm-a.e.
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As seen in Section 9 at the end of Step 3, we have at this point a (even strictly positive)
solution Y0 or h0 to (10.2), (10.3). However, we want a solution which is in addition controlled
by eR(Q). In this regard, we prove the following two results.

Theorem 10.1. With the preceding notations, the following are equivalent:

1) eR(Q) 2 L�
(loc)(bm,P).

2) There exists a eP-measurable function Y ⇤ � 0 on ⌦ ⇥ [0,1) ⇥ IRd which satisfies

(10.2), (10.3) (viewed as a condition for Y and formulated via bFQ
0 ) and which is such that

kY ⇤kL1(F̄ Q
0 ) := ess sup

x2IRd

Y ⇤( · , · , x) 2 L�
(loc)(bm,P); the ess sup is taken with respect to F̄Q

0 .

3) There exists a eP-measurable function h⇤ � 0 on ⌦ ⇥ [0,1) ⇥ IRd which satisfies

(10.2), (10.3) (viewed as a condition for h and formulated via b%) and which is such that

kh⇤kL1(%̂) := ess sup
y2IRd

h⇤( · , · , y) 2 L�
(loc)(bm,P); the ess sup is taken with respect to b%.

(The brackets around loc mean that we either put or omit loc in all three statements; both

cases give a valid theorem.)

Theorem 10.2. With the preceding notations, suppose that eR(Q) < 1 bm-a.e. and take

" > 0. Then there exists an IRd-valued predictable process �̄ = (�̄t)t�0 such that

(10.5) h⇤(!, t, y) := min
✓ eRt(Q)(!) + ",max

⇣
0, (�0)�1

�
� �̄>t (!)y

�⌘◆

is a eP-measurable function � 0 on ⌦⇥ [0,1)⇥ IRd which satisfiesR
IRd

|y|h⇤(y)b%(dy) < 1 bm-a.e.,(10.6)

bb +
R

IRd

yh⇤(y)b%(dy) = 0 bm-a.e.(10.7)

The proof of Theorem 10.2 is more involved; so we first show how Theorem 10.2 quickly
implies Theorem 10.1.

Proof of Theorem 10.1. Both (10.2), (10.3) only impose conditions on supp bm ✓ {eb 6= 0};
so we can set h⇤ or Y ⇤ to zero on {eb = 0}, and then the ess sup is the same for bFQ

0 and for
F̄Q

0 . Next, 2) and 3) are obviously equivalent via (10.1) and Y ⇤ := h⇤ � and h⇤ := Y ⇤ � �1,
exploiting that  is a bijection. Moreover, Theorem 10.2 gives us a solution h⇤ � 0 to (10.2),
(10.3) with h⇤  eR(Q) + ", a bound which does not depend on y. So if eR(Q) 2 L�

(loc)(bm,P),

then also kh⇤kL1(%̂)  eR(Q) + " is in L�
(loc)(bm,P). This shows that 1) implies 3). For the

converse, note that (10.3) for h⇤ implies that

�z>bb =
R

IRd

(z>y)h⇤(y)b%(dy) � �
R

IRd

(z>y)�kh⇤kL1(%̂) b%(dy)
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so that

(�z>bb)� = max
�
0,�(�z>bb)�  kh⇤kL1(%̂)

R
IRd

(z>y)� b%(dy).

In view of (10.4), this gives eR(Q)  kh⇤kL1(%̂), and if the latter is in L�
(loc)(bm,P), so is then

eR(Q). So 3) implies 1) and the proof is complete. q.e.d.

The proof of Theorem 10.2 is more involved; so we first give a short overview. We want
to look at functions h on IRd that satisfy (10.7) and (10.6), omitting “bm-a.e.”. We introduce
an optimisation criterion over functions h and view the “zero drift equation” (10.7) as a
constraint on h. In a first step, we show the existence of a solution h̄ to that constrained
optimisation problem, exploiting that there exists by (10.3) a solution to (10.7). We then
characterise the optimiser h̄ via the first order conditions, using the Kuhn–Tucker theorem.
This almost leads to the explicit representation in (10.5), except for one point. All the above
is done for functions of y only, with fixed (!, t); so in a last step, we show that the result in
(10.5) can also be obtained in a measurable way, exploiting that the expression in (10.5) is
su�ciently nice.

Remark 10.3. 1) One subtlety of the above line of argument is that by working with
fixed (!, t), we get nice properties in y for the functions h as well as for the optimiser h̄,
e.g. boundedness or some integrability with respect to y. However, we have no control at
all on how those properties depend on (!, t), and hence we must take care to avoid making
statements simultaneously with respect to (!, t, y).

2) A positive aspect of part 1) is that our arguments for Theorem 10.2 do not yield,
but also do not need global properties with respect to (!, t, y). For proving Theorem 10.1, it
therefore makes no di↵erence whether we formulate that result with L�

loc or with L�. ⇧

So let us start with (10.7), where bb and b% both depend on (!, t). From now on until
further notice, we fix (!, t) from a suitable set of full bm-measure and write for brevity still bb
for bbt(!) and b% = b%( · ) for b%t(!, · ). This will make most quantities appearing in the sequel
become implicitly dependent on (!, t), even if we usually do not show this explicitly.

Our approach below to proving Theorem 10.2 is inspired from Cole/Goodrich (1993);
so we use similar notations to facilitate references and comparisons. Define X := supp b%;
this is compact because b% by construction has no mass outside of U1(0, IRd). For any Borel-
measurable function B : X ! [0,1), we define

HB := HB(!, t) := {h : X ! IR |h is Borel-measurable and 0  h(y)  B(y)(10.8)

for b%t(!, dy)-almost all y},
RB := RB(!, t) :=

�
z 2 IRd

�� z =
R
X

yh(y)b%t(!, dy) for some h 2 HB = HB(!, t)
 
.

74



Both HB and RB are clearly convex. For some fixed " > 0 not depending on (!, t), we set

B" := B"(!, t) := eRt(Q)(!) + "

and view this as a constant function of y. Note that B" is finite by our assumption thateR(Q) < 1 bm-a.e. We first collect some properties for later use.

Lemma 10.4. For all c 2 IR and w 2 IRd, w 6= 0, we have �w>bb > c whenever one of the

following two equivalent properties holds:
R
E

w>yB" b%(dy) � c for all E 2 B(X ).(10.9)

w>
R
X

yh(y)b%(dy) � c for all h 2 HB" .(10.10)

Proof. For the equivalence of (10.9) and (10.10), note on the one hand that (10.9) is just
(10.10) for the particular choice h := B"IE . Conversely, (10.10) follows from (10.9) by
standard measure-theoretic induction.

Now suppose that (10.9) holds. Choosing first E = ; yields c  0. Next, the definition
of eR(Q) in (10.4) gives for b%-almost every w 2 IRd that

eR(Q) � (�w>bb)�R
IRd

(w>y)� b%(dy)
=

(�w>bb)�R
X

(w>y)� b%(dy)
.

With E� := {y 2 X |w>y < 0}, we therefore get

(�w>bb)�  eR(Q)
R
X

(w>y)� b%(dy)  B"

R
X

(w>y)� b%(dy)  �
R

E�

w>yB" b%(dy),

and because B" = eR(Q) + ", the middle inequality is strict if
R
X

(w>y)� b%(dy) 6= 0, i.e. if

b%(E�) > 0. So if b%(E�) > 0, (10.9) gives �w>bb � �(�w>bb)� > +
R

E�

w>yB" b%(dy) � c, as

desired. On the other hand, if b%(E�) = 0, then y 7! w>y � 0 b%-a.e. But we know from (10.3)
that (for bm-almost all (!, t), to be accurate) bb +

R
IRd

yh0(y)b%(dy) = 0, and so the fact that

w>y � 0 b%-a.e. and the definition of X imply that

�w>bb =
R

IRd

w>yh0(y)b%(dy) =
R
X

w>yh0(y)I{w>y>0} b%(dy).

But y 7! w>y cannot be identically 0 b%-a.e. on X = supp b%. So b%({w>y > 0}) > 0, the last
integral is > 0 since h0 > 0 b%-a.e., and so �w>bb > 0 � c. This completes the proof. q.e.d.

The next result follows from Lemma 2.6 of Cole/Goodrich (1993), but for completeness,
we give a proof.
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Lemma 10.5. �bb is in the interior of RB" , shortly �bb 2 int (RB").

Proof. We argue in a first step that �bb is in RB" , using Lemma 10.4. To that end, we
first show that RB" is closed. Indeed, if (zn) is a sequence in RB" converging to some z,
then zn =

R
X

yhn(y)b%(dy) for a sequence (hn) in HB" . Take h̄n 2 conv(hn, hn+1, . . .) with

(h̄n) converging to some h̄ b%-a.e.; then also h̄ 2 HB" , and dominated convergence due to
compactness of X therefore implies that z̄n =

R
X

yh̄n(y)b%(dy) �!
R
X

yh̄(y)b%(dy) =: z̄ which

is in RB" . But since z̄n 2 conv(zn, zn+1, . . .), the sequence (z̄n) has the same limit as the
convergent sequence (zn), and so z = z̄ is in RB" , proving that RB" is closed. Because RB"

is also convex, assuming that �bb is not in RB" allows us to separate �bb strictly from RB"

by a hyperplane. So there exist then c 2 IR and w 2 IRd, w 6= 0, with �w>bb < c and
w>

R
X

yh(y)b%(dy) � c for all h 2 HB" . But this contradicts Lemma 10.4, and so �bb is in RB" .

Now consider again Lemma 10.4. This states that whenever RB" lies on one side of a
hyperplane determined by w and c (which is what (10.10) expresses), the point �bb lies strictly
on the same side of that hyperplane. Because we already know that �bb 2 RB" , this implies
that we must even have �bb 2 int (RB"). q.e.d.

The following consequence of Lemma 10.5 will be used in our subsequent application of
the Kuhn–Tucker theorem.

Lemma 10.6. There exists a Borel-measurable h : X ! IR satisfying bb +
R

IRd

yh(y)b%(dy) = 0

and 0 < �  h(y)  B"�� b%-a.e. for some � > 0. In other words, we have �bb =
R

IRd

yh(y)b%(dy)

for some h 2 int (HB"), where the interior is with respect to the L1(b%)-norm.

Proof. This is similar to the proof of Theorem 2.1 of Cole/Goodrich (1993), but we give
a direct argument as our setting is slightly di↵erent. Because HB" ✓ L1+ (b%) is convex with
int (HB") 6= ; due to B" � " > 0, Corollary 2.14 in Borwein/Lewis (1992) implies that
int (HB") = qri (HB"). The mapping A : HB" ! IR given by A(h) :=

R
IRd

yh(y) b%(dy) is well

defined since b% has compact support and HB" ✓ L1+ (b%), and is continuous and linear. More-
over, RB" = A(HB") ✓ IR is convex and finite-dimensional. Since qri (HB") = int (HB") 6= ;
and int (RB") 6= ; due to Lemma 10.5, Propositions 2.10, 2.4 and 2.14 in Borwein/Lewis
(1992) imply that A(qri (HB")) = ri (A(HB")) = qri (A(HB")) = int (A(HB")) = int (RB").
By using again Lemma 10.5, the assertion follows. q.e.d.
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To formulate our optimisation problem over functions, we recall HB from (10.8). So

RB" =
�
z =

R
IRd

yh(y)b%(dy)
��h 2 HB"

 
=
�
z =

R
X

yh(y)b%(dy)
��h 2 HB"

 
,

and we now consider the problem to find

(10.11) I := inf
nR
X
�
�
h(y)

�b%(dy)
���h 2 HB" and

R
X

yh(y)b%(dy) = �bbo.

Because �bb 2 RB" , we are taking the infimum over a nonempty set; and as each h 2 HB" is
bounded, we also have I < 1 since � is continuous, hence bounded on [0, B"]. A standard
argument shows that (10.11) has an optimiser h̄, which is unique by strict convexity of �.
Indeed, the set of functions h 2 HB" with

R
IRd

yh(y)b%(dy) = �bb is convex and each such h is

nonnegative. Take a sequence (hn) in that set with In :=
R
X
�(hn(y))b%(dy) decreasing to I,

and then take h̄n 2 conv(hn, hn+1, . . .) converging b%-a.e. to some function h̄. Then h̄ is in
HB" , and |yh̄n|  |y|B" plus compactness of X allows us to get via dominated convergenceR
X

yh̄(y)b%(dy) = lim
n!1

R
X

yh̄n(y)b%(dy) = �bb. Finally, � is continuous and bounded on [0, B"]

and h̄n  B" for all n; so dominated convergence, convexity of � and In & I yield

R
X
�
�
h̄(y)

�b%(dy) = lim
n!1

R
X
�
�
h̄n(y)

�b%(dy)  lim
n!1

sup
k�n

R
X
�
�
hk(y)

�b%(dy) = lim
n!1

In = I.

This shows that h̄ attains I. In particular, h̄ satisfies the constraint (10.7) as well as (10.6),
due to compactness of X , and of course both without “bm-a.e.” since we have fixed (!, t).

Our next result now describes h̄ via the first order conditions for optimality.

Proposition 10.7. The solution h̄ to (10.11) can be written, for some � 2 IRd, as

(10.12) h̄(y) = min
⇣
B",max

�
0, (�0)�1(��>y)

�⌘
.

Proof. We follow the arguments in the proof of Theorem 3.1 of Cole/Goodrich (1993), CG
for short. This needs some changes because CG have the Lp-norm as their functional for
optimisation, while we use a general convex �.

Almost as in CG [note their typo in the sign of G], define G : L1(b%) ! L1(b%)⇥L1(b%)
by h 7! G(h) := (h,B" � h). Then (10.11) is the problem to

minimise
R
X
�
�
h(y)

�b%(dy) over h 2 L1(b%), subject to G(h) � 0 and
R
X

yh(y)b%(dy) = �bb.

By the preceding argument, there exists a solution h̄; and Lemmas 10.5 and 10.6 show that
�bb 2 int (RB") and there exists some h 2 L1(b%) with G(h) 2 int (L1+ (b%) ⇥ L1+ (b%)) and
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satisfying the constraint
R
X

yh(y)b%(dy) = �bb. As in CG, the Kuhn–Tucker theorem thus gives

the existence of some nonzero z⇤0 = (z⇤1 , z⇤2) in ba+(X )⇥ba+(X ), the dual of L1+ (b%)⇥L1+ (b%),
with hG(h̄), z⇤0i = hh̄, z⇤1i+ hB" � h̄, z⇤2i = 0. Because h̄ � 0 and B" � h̄ � 0, this gives

hh̄, z⇤1i = 0 and hB" � h̄, z⇤2i = 0.

Next, h̄ minimises h 7!
R
X
�(h(y))b%(dy) + hG(h), z⇤0i over all h satisfying

R
X

yh(y)b%(dy) = �bb.
Using Lagrange multipliers therefore gives a vector � 2 IRd such that the mapping

h 7! J(h) :=
R
X
�
�
h(y)

�b%(dy) + hG(h), z⇤0i+ �>
⇣bb +

R
X

yh(y)b%(dy)
⌘

is stationary at h̄. So for any h 2 L1(b%) and any ⌘ > 0, we have

0  lim inf
⌘&0

±1
±⌘

�
J(h̄± ⌘h)� J(h̄)

�

= lim inf
⌘&0

±
R
X

1
±⌘

⇣
�
�
h̄(y)± ⌘h(y)

�
� �

�
h̄(y)

�⌘b%(dy)± hh, z⇤1i ⌥ hh, z⇤2i± �>
R
X

yh(y)b%(dy).

By Taylor’s theorem, we have 1
±⌘ (�(h̄(y)±⌘h(y))��(h̄(y))) = �0(h̃(y))h(y) with h̃(y) lying

between h̄(y) and h̄(y) ± ⌘h(y). As ⌘ & 0, we have h̃(y) ! h̄(y) and everything remains
bounded by C := kh̄kL1(%̂) + khkL1(%̂). So �0(h̃(y)) tends to �0(h̄(y)) as ⌘ & 0 and remains
bounded by the maximum of the continuous function �0 on the compact interval [�C,C].
Therefore we can use dominated convergence, the lim inf above is actually a limit, and since
± that limit is � 0, we get for all h 2 L1(b%) that

0 =
R
X

⇣
�0
�
h̄(y)

�
+ �>y

⌘
h(y)b%(dy) + hh, z⇤1i � hh, z⇤2i.

This is the generalisation to the � case of the equation (7) in CG.
From here on, we follow CG rather closely and hence give fewer details. We first obtain

like there before (8) that

�0
�
h̄(y)

�
+ �>y = 0 b%-a.e. on {0 < h̄ < B"}

which gives

(10.13) h̄(y) = (�0)�1(��>y) b%-a.e. on {0 < h̄ < B"}.

Next we argue as in CG before (9) [the signs in CG are correct here] that

(10.14) �0(0) + �>y � 0 b%-a.e. on {h̄ = 0};
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note that the function Q in CG appears after (7) there and corresponds to our �>y, and that
we have an extra term �0(0) which does not appear in the CG case of �(y) = yp. Finally,
again as in CG, before (10) [where the signs are also correct], we get

(10.15) �0
�
h̄(y)

�
+ �>y  0 b%-a.e. on {h̄ = B"}.

But �0 is increasing since � is convex, and so we can rewrite (10.13)–(10.15) as

h̄(y) = (�0)�1(��>y) b%-a.e. on {0 < h̄ < B"},

0 � (�0)�1(��>y) b%-a.e. on {h̄ = 0},

h̄(y)  (�0)�1(��>y) b%-a.e. on {h̄ = B"}.

By looking at the various cases and using that 0  h̄  B" and B" > 0, we finally obtain

h̄(y) = min
⇣
B",max

�
0, (�0)�1(��>y)

�⌘ b%-a.e.

for some � 2 IRd, which is (10.12). q.e.d.

Now we reinstate (!, t). Up to here, we have proved that for bm-a.e. (!, t), there is a
solution h̄ to the Q-zero drift equation bb +

R
IRd

yh(y)b%(dy) = 0 with h̄ of the form (10.12) for

some � 2 IRd, which depends on (!, t), as does h̄. To finish the proof of Theorem 10.2, it
remains to show that � as a function of (!, t) can be chosen in a P-measurable way.

In order to apply a suitable measurable selection result, we introduce the mapping

(10.16) '(!, t,�, y) := min
⇣ eRt(Q)(!) + ",max

�
0, (�0)�1(��>y)

�⌘

on ⌦⇥[0,1)⇥IRd⇥IRd, equipped with the �-field P⌦B(IRd)⌦B(IRd) = eP⌦B(IRd). Since the
right-hand side of (10.16) is clearly continuous in the three variables eRt(Q)(!),�, y and since
eR(Q) is predictable, i.e. P-measurable, we see that ' is product-measurable, with respect to
eP ⌦ B(IRd), and bounded in y by eRt(Q)(!) + ". By Fubini’s theorem and compactness of
X (!, t) = supp b%t(!, · ), the function

�(!, t,�) := bbt(!) +
R

IRd

y'(!, t,�, y)b%t(!, dy)

is therefore well defined for bm-a.a. (!, t) and all �, and eP-measurable, i.e. product-measurable
on ⌦⇥ [0,1)⇥ IRd with respect to P ⌦ B(IRd); this uses that bb is also predictable.

Now define a (singleton-valued) correspondence F from ⌦⇥ [0,1)⇥ IRd to IRd by

F (!, t,�) := {�+ �(!, t,�)}
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and note that � 2 F (!, t,�) means that �(!, t,�) = 0. For bm-a.a. (!, t), the set

(10.17) {� 2 IRd |� 2 F (!, t,�)} =
�
� 2 IRd

��bbt(!) +
R

IRd

y'(!, t,�, y)b%t(!, dy) = 0
 

is therefore nonempty due to Proposition 10.7 and the definition of ' in (10.16). Moreover,
the mapping (!, t,�, z) 7! � + �(!, t,�) � z is clearly product-measurable with respect to
eP ⌦ B(IRd) = P ⌦ B(IRd)⌦ B(IRd) = P ⌦ B(IRd ⇥ IRd). So the graph of F ,

GraphF := {(!, t,�, z) | z 2 F (!, t,�)} = {(!, t,�, z) |�+ �(!, t,�)� z = 0}

is in P⌦B(IRd⇥IRd). By suitably defining � and hence F on an bm-nullset, we can achieve that
the set in (10.17) is nonempty for all (!, t) 2 ⌦⇥ [0,1). This allows us to apply Theorem 7
in Tarafdar/Watson/Yuan (1997) and obtain a P-measurable function f : ⌦⇥ [0,1) ! IRd

such that f(!, t) 2 F (!, t, f(!, t)) for bm-a.a. (!, t). Using the definitions of F,�,' and calling
the function f now �̄, we thus have an IRd-valued predictable process �̄ = (�̄t)t�0 such that

(10.18) h⇤(!, t, y) := '
�
!, t, �̄t(!), y

�

is given by the right-hand side of (10.5) and satisfies, as in (10.17),

0 = �
�
!, t, �̄t(!)

�
= bbt(!) +

R
IRd

y'
�
!, t, �̄t(!), y

�b%t(!, dy) bm-a.e.

This is exactly (10.7) in view of (10.16), (10.18). Finally, (10.6) also holds since h⇤ is bounded
in y by eR(Q)+ " and X = supp b% is compact. The proof of Theorem 10.2 is complete. q.e.d.
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