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Abstract. What is absence of arbitrage for non-discounted prices? How can
one define this so that it does not change meaning if one decides to discount
after all?

The answer to both questions is a new discounting-invariant no-arbitrage
concept. As in earlier work, we define absence of arbitrage as the zero strategy
or some basic strategies being maximal. The key novelty is that maximality
of a strategy is defined in terms of share holdings instead of value. This al-
lows us to generalise both NFLVR, by dynamic share efficiency, and NUPBR,
by dynamic share viability. These new concepts are the same for discounted
or undiscounted prices, and they can be used in general models under mini-
mal assumptions on asset prices. We establish corresponding versions of the
FTAP, i.e., dual characterisations in terms of martingale properties. As one
expects, “properly anticipated prices fluctuate randomly”, but with an endoge-
nous discounting process which cannot be chosen a priori. An example with
N geometric Brownian motions illustrates our results.

1. Introduction. We introduce and study an absence-of-arbitrage concept with
three properties: (i) it is defined for original, non-discounted prices; (ii) it is dis-
counting-invariant in full generality, i.e. under discounting with any positive semi-
martingale; (iii) it imposes minimal assumptions on the underlying model.

Consider a financial market on the right-open interval [0,∞) with N ≥ 2 as-
sets whose prices are modelled by an RN -valued semimartingale S = (St)t≥0. We
view this as a pure exchange economy; the unit of account in which prices are de-
nominated is not tradable and can best be thought of as a perishable consumption
good. We do not assume that there is an extra tradable riskless asset like cash or
a money market account. In this setting, absence of arbitrage (AOA) should as
usual capture the idea that one cannot get something out of nothing for free, and
the denomination of prices should not matter — if a positive process D = (Dt)t≥0
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describes how price units change over time, then S should satisfy AOA if and only
if S/D does, for all D from a suitable class D. Finding and characterising such an
AOA concept is in our view a fundamental question in arbitrage theory.

Under the mild assumption that one asset price remains strictly positive, (i) and
(ii) have been solved completely for models in finite discrete time; see the text-
book Delbaen/Schachermayer [14, Chapter 2, in particular Section 2.5]. But this
framework clearly does not qualify for (iii). For more general models, surprisingly,
the existing literature does not provide a satisfactory solution. Despite the general
view that all questions about arbitrage theory have been asked and answered in
the works of Delbaen/Schachermayer (collected in [14]), nontrivial open questions
remain. We illustrate this by a simple example.

Example 1.1. Let N = 2 so that there are only two assets available for trade
and S = (S1, S2). For concreteness, S1 and S2 could be two, possibly correlated,
geometric Brownian motions. If we want to value a perpetual exchange option on
these two assets, we should probably ensure that S is arbitrage-free. But what does
this mean here?

As we discuss in detail in Section 5, neither the general theory from Delbaen/
Schachermayer nor the recent work by Herdegen on numéraire-invariant AOA con-
cepts give any good answer in Example 1.1. Delbaen/Schachermayer always start
with discounted prices so that S has the form S = (1, X) for some Rd-valued semi-
martingale X (discounted prices of d risky assets). The very definition of AOA then
changes in general (sometimes dramatically) if one discounts in a different way. In
contrast, Herdegen does develop discounting-invariant concepts, but works on a
right-closed interval [0, T ], which is crucial for his definitions and results alike. The
generality of our setting needs something new.

Our approach borrows ideas and techniques from both Delbaen/Schachermayer
and Herdegen, and complements them with a key new idea. As in Herdegen [17]
and Herdegen/Schweizer [18], we define absence of arbitrage as the property that
the zero strategy or a number of basic strategies are maximal in the sense that
they cannot be “improved” by other strategies. In [17] as well as in earlier work of
Delbaen/Schachermayer [10, 11, 12], improvements are measured in terms of value
or wealth. Whenever a discounter D can go to 0 or +∞, this approach breaks
down for S/D, and handling prices on a right-open interval thus needs restrictive
assumptions on D. We circumvent this difficulty by measuring “improvements”
not in terms of value, but in terms of shares compared to a so-called reference
strategy η, which intuitively represents a desirable investment. We prove as in Del-
baen/Schachermayer [10] a key result which says that if one has an AOA property
related to η, prices in units of the corresponding wealth process V(η) must converge
and hence can be defined on the right-closed interval [0,∞]. This in turn allows
us to exploit the results from Herdegen [17], after showing how his and our AOA
conditions are related.

Our approach leads to genuinely discounting-invariant concepts in almost fully
general frictionless semimartingale models of financial markets. We only assume
S ≥ 0 and the existence of a reference strategy, and the latter already holds for
instance as soon as

∑N
i=1 S

i > 0 and
∑N
i=1 S

i
− > 0. Our main results are two new

versions of the fundamental theorem of asset pricing (FTAP) — one for dynamic
share viability (DSV), our discounting-invariant counterpart of no unbounded profit
with bounded risk (NUPBR), and one for dynamic share efficiency (DSE), which
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extends no free lunch with vanishing risk (NFLVR). In contrast to the classic
FTAP formulations of Delbaen/Schachermayer [10, 13] or Karatzas/Kardaras [27],
the discounting process in our results cannot be chosen a priori, but is an endogenous
part of the dual characterisation of absence of arbitrage.

Our discounting-invariant AOA framework lays the foundations for many pos-
sible future developments. One current project pursues a general treatment of
the growth-optimal portfolio (GOP) and the benchmark approach; see Filipović/
Platen [15]. We have already shown in Bálint/Schweizer [5] how ideas from the
present paper can be used in the context of large financial markets. Stochastic
portfolio theory (SPT) might benefit from our general perspective, given that its
approach has some similarities. Finally, one can try to study utility maximisation,
maybe in a discounting-invariant form similarly as in Kardaras [30], or under DSV
instead of NUPBR; see e.g. [27] or Chau et al. [8].

The paper is structured as follows. Section 2 introduces basic concepts and
presents our main results. Section 3 is the mathematical core; it shows how models
on right-open intervals can be closed on the right under a weak AOA assumption,
combines this with Herdegen [17] to prove dual characterisations of value maximality
for a general setting, and connects our new concept of share maximality to the value
maximality studied in [17]. This is used to prove the main results from Section 2. In
Section 4, we relate our results to existing concepts, discuss the dependence on the
choice of the reference strategy η appearing in share maximality, and connect to the
classic setup. Section 5 provides a comparison to the literature and explains why
our approach and the numéraire-independence in Delbaen/Schachermayer [11, 12]
are conceptually quite different. Section 6 contains examples and counterexamples,
including a detailed study of a market with N geometric Brownian motions, and
the Appendix collects some technical proofs and auxiliary results.

2. Concepts and main results.

2.1. Setup and new concepts. We always work on a filtered probability space
(Ω,F ,F, P ) with the filtration F = (Ft)t≥0 satisfying the usual conditions, assume
that F0 is trivial and set F∞ :=

∨
t≥0 Ft. There are N basic traded assets whose

prices are modelled by an RN -valued semimartingale S. If there is a bank account
(we do not assume this in general), it must be one component of S. To have trading
possible, we thus must have N ≥ 2. All prices and values are expressed in some
abstract, non-tradable accounting unit, which can be thought of as a perishable
consumption good. Its only role is to make trading of asset shares possible.

We use general stochastic integration (in the sense of Jacod/Shiryaev [20, Chap-
ter III.6] or Shiryaev/Cherny [37]). We call L(S) the space of all RN -valued pre-
dictable S-integrable processes H and denote the (real-valued) stochastic integral
of H ∈ L(S) with respect to S by H S :=

∫
H dS. For any RCLL process Y , we

set Y0− := Y0. The scalar product of x, y ∈ RN is x · y := xtry, and the i-th unit
vector in RN is denoted by ei.

Remark 2.1. We assume S ≥ 0 is a semimartingale so that we can use general
integrands for S. As in Delbaen/Schachermayer [10] or Kardaras/Platen [33], one
could start with an adapted RCLL process S and impose an AOA property only
with respect to elementary (piecewise constant) strategies. For the AOA concept we
introduce below, this implies that S/V(ϑ) is a semimartingale for any self-financing
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elementary strategy ϑ whose wealth V(ϑ) and V−(ϑ) are strictly positive. In partic-
ular, if S = (1, X), then X ≥ 0 must be a semimartingale. For precise formulations
and results, we refer to Bálint/Schweizer [6].

Many of our results involve discounting, i.e. dividing prices by positive processes;
this amounts to changing the unit of account, without any issues of tradability.
Define Sm := {all Rm-valued semimartingales} for any m ∈ N and set S := S1,
S+ := {D ∈ S : D ≥ 0} and

S++ := {D ∈ S : D > 0, D− > 0}.
Elements D ∈ S++ are called discounters, and we note that 1/D ∈ S++ if D ∈ S++.
Sometimes, we also need discounters from

Sunif
++ :=

{
D ∈ S++ : 0 < inf

t≥0
Dt ≤ sup

t≥0
Dt <∞ P -a.s.

}
.

For D ∈ S++, we call S/D the D-discounted prices. The difference between dis-
counters and deflators is discussed in Remark 2.11 below.

The following simple result will help later to provide more insight and intuition.
We thank Kostas Kardaras for its statement and idea of proof.

Lemma 2.2. Any discounter D ∈ S++ can be written as D = N/L, where L ∈ S++
is a local martingale > 0 with L0 = 1 and N ∈ S++ is of finite variation with
N0 = D0.

Proof. We start with D′ := 1/D which is in S++ like D and set

Ct :=
∏

0 < s ≤ t,
D′s/D

′
s− > 2

D′s
D′s−

, t ≥ 0.

Then C is well defined with C0 = 1, RCLL and increasing, hence of finite varia-
tion, because D′ as an RCLL process has only finitely many large jumps on each
compact interval. The ratio Y := D′/C is then a semimartingale in S++ and
Ys
Ys−

= D′s/D
′
s−

Cs/Cs−
≤ 2 as the denominator equals the numerator for all s where the

latter is > 2, and is always ≥ 1 as C is increasing. So we get Y ≤ 2Y−, hence
∆Y ≤ Y−, and also ∆Y = Y − Y− ≥ −Y− because Y ≥ 0. In consequence,
|∆Y | ≤ Y− is locally bounded, which implies that Y is a special semimartingale.
But as Y is also in S++, it is well known that Y has a unique predictable multi-
plicative decomposition as Y = LA with a local martingale L > 0 and a predictable
process A > 0 of finite variation with A0 = Y0; see Jacod [19, Théorème (6.19)]. As
L− > 0 by the maximum principle for supermartingales, we also have A− > 0 so
that both L and A are in S++. Setting N := 1

AC completes the proof.

Note that while the predictable multiplicative decomposition from [19] is unique,
the optional multiplicative decomposition in Lemma 2.2 is not.

Self-financing strategies are integrands ϑ ∈ L(S) satisfying the self-financing
condition

V(ϑ) := ϑ · S = ϑ0 · S0 + ϑ S.

We write ϑ ∈ Θsf and call V(ϑ) the value process of ϑ; this is in the same units as S
because ϑ is in numbers of shares. ForD-discounted prices S̃ = S/D, we analogously
have V(ϑ, S̃) := ϑ · S̃ = V(ϑ)/D, the value process of ϑ in the units of S̃. Due to
[17, Lemma 2.9], ϑ ∈ Θsf implies that both ϑ ∈ L(S̃) and V(ϑ, S̃) = ϑ0 · S̃0 + ϑ S̃
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hold. Thus Θsf does not depend on units even if value processes do. We also need
the spaces Θsf

+ := {ϑ ∈ Θsf : V(ϑ) ≥ 0} = {ϑ ∈ Θsf : V(ϑ) ∈ S+} and

Θsf
++ := {ϑ ∈ Θsf : V(ϑ) ∈ S++};

they do not depend on units either. For any η ∈ Θsf
++, the η-discounted prices

Sη := S

V(η) = S

η · S
play an important role in the sequel. Note that we have V(η, Sη) = η · Sη ≡ 1 and
(Sη)η′ = Sη

′ . Finally, a process Y is called S-tradable if it is the value process of
some self-financing strategy, i.e., Y = V(ϑ) for some ϑ ∈ Θsf .

The next concept is a crucial element in our approach.

Definition 2.3. A reference strategy is an η ∈ Θsf
++ with η ≥ 0 (η is long-only).

A reference strategy is interpreted as a desirable investment; indeed, given that
values are in terms of some perishable consumption good, V(η) ∈ S++ means that η
keeps us forever from complete starvation. As η is expressed in numbers of shares,
it does not depend in any way on the chosen unit of account — it is discounting-
invariant.

In the sequel, we usually assume that there exists a reference strategy η, and
some results impose the extra condition that η is bounded (uniformly in (ω, t)).

Remark 2.4. 1) The existence of a reference strategy η is a very weak condition
on the process S. Indeed, let us consider the market portfolio, i.e. the strategy
1 := (1, . . . , 1) ∈ RN of holding one share of each asset. If we have nonnegative
prices S ≥ 0, then 1 is in Θsf

+ and bounded, and all components of the 1-discounted
price process S1 = S/

∑N
i=1 S

i have values between 0 and 1. Some authors call S1
the process of relative market capitalisations. (To be accurate, these terminologies
are only appropriate if Si describes not the share price of company i, but rather
its market capitalisation.) If S ≥ 0 and the sum

∑N
i=1 S

i of all prices is strictly
positive and has strictly positive left limits, we even have 1 ∈ Θsf

++ so that the
market portfolio is then a reference strategy. However, it is useful to work with a
general reference strategy η because this gives a clearer view on a number of aspects.

2) A reference strategy is by definition long-only, which looks natural from an
economic perspective. Mathematically, η ≥ 0 is used in part 1) of the key Theo-
rem 3.10 and therefore appears indirectly in many results throughout the paper.

Definition 2.5. Fix a strategy η ∈ Θsf . A strategy ϑ ∈ Θsf is called an η-buy-
and-hold strategy if it is of the form ϑ = cη (componentwise product) for some
c ∈ RN .

A strategy ϑ is η-buy-and-hold if and only if it is a coordinatewise nonrandom
multiple of η. If η ≡ 1 is the market portfolio and c ≥ 0, this reduces to the classic
concept of buying and holding a fixed number of shares of each asset; so the above
concept is a natural generalisation. Note that η itself is always an η-buy-and-hold
strategy.

To have simple notations and include all possible time horizons, we start from
a stopping time ζ (with values in [0,+∞] as usual) and a model on the stochastic
interval

J0, ζK = {(ω, t) ∈ Ω× [0,∞) : 0 ≤ t ≤ ζ(ω)}.
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Note that a stochastic interval is always a subset of Ω × [0,∞), even if one of
its boundary points takes the value +∞. Special cases are ζ ≡ T ∈ (0,∞) or
ζ ≡ ∞, which yield models indexed by [0, T ] or [0,∞), respectively. We next
extend (almost) all stochastic processes to J0,∞K by keeping them constant on
Jζ,∞K. (There is one exception: to concatenate two strategies ϑ1, ϑ2 ∈ Θsf at some
stopping time τ , we sometimes define, for a mapping F , a new strategy of the form
IJ0,τKϑ

1 + IKτ,∞KF (ϑ1, ϑ2). On the set {τ = ζ < ∞}, this is then constant for
t > ζ(ω), but maybe not for t ≥ ζ(ω).) In this way, we can and do assume that all
processes are defined on J0,∞K = Ω× [0,∞) = J0,∞J.

With the above convention, we have

inf
t≥0

Yt(ω) =
{

inf0≤t<∞ Yt(ω) for ζ(ω) =∞,
inf0≤t≤ζ(ω) Yt(ω) for ζ(ω) <∞,

lim inf
t→∞

Yt(ω) =
{

lim inft→∞ Yt(ω) for ζ(ω) =∞,
Yζ(ω), for ζ(ω) <∞,

etc. Of course, if we write limt→∞ Yt, we must make sure that this limit exists on
{ζ = ∞}. For a model on [0, T ], inf and sup are then always over 0 ≤ t ≤ T ,
and every lim, lim inf or lim sup is simply the value at T . (If we want a right-
open interval [0, T ) with T ∈ (0,∞), we can map this bijectively to [0,∞) with a
deterministic time-change.)

The next concept is fundamental for our paper.

Definition 2.6. Fix a strategy η ∈ Θsf . A strategy ϑ ∈ Θsf
+ is called share maximal

(sm) for η if there is no [0, 1]-valued adapted process ψ = (ψt)t≥0 converging P -a.s.
as t→∞ to some ψ∞ ∈ L∞+ \ {0} and such that for every ε > 0, there exists some
ϑ̂ε ∈ Θsf

+ with V0(ϑ̂ε) ≤ V0(ϑ) + ε and

lim inf
t→∞

(ϑ̂εt − ϑt − ψtηt) ≥ 0 P -a.s.

We mostly use this concept when η is a reference strategy. Then η is desirable,
as explained after Definition 2.3, and ψη is a dynamic long-only portfolio whose
factor ψ stabilises over time and which asymptotically achieves a significant part
of η. Share maximality says that even with a little extra initial capital ε > 0, one
cannot asymptotically improve ϑ via some ϑ̂ε in such a significant manner.

We also need the following concept inspired by Herdegen [17]; the difference to
[17] is that we work here on a possibly right-open time interval. Note that we replace
“strongly maximal” from [17] by the more explicit terminology “value maximal”.

Definition 2.7. Fix an RN -valued semimartingale Y . A strategy ϑ ∈ Θsf
+ is called

value maximal (vm) for Y if there is no f ∈ L0
+ \ {0} such that for every ε > 0,

there exists some ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε, Y ) ≤ V0(ϑ, Y ) + ε and

lim inf
t→∞

(
Vt(ϑ̂ε, Y )− Vt(ϑ, Y )− f

)
≥ 0 P -a.s.

Maximality of a strategy ϑ always means that ϑ cannot be improved. The key
difference between Definitions 2.6 and 2.7 lies in how improvements are measured.
For value maximality, the comparison is in terms of value, which makes the concept
depend on the unit of account (for the chosen Y ). In contrast, share maximality
looks (via the reference strategy η) at numbers of shares, and this is independent
of any unit for prices.
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Given a maximality concept for strategies, we define viability and efficiency as
in [17].

Definition 2.8. Fix η ∈ Θsf . We say that S satisfies dynamic share viability
(DSV) for η if the zero strategy 0 ∈ Θsf

+ is share maximal for η, and dynamic share
efficiency (DSE) for η if every η-buy-and-hold strategy ϑ ∈ Θsf

+ is share maximal
for η.

It is a key observation that for fixed η, share maximality for η, dynamic share
viability for η and dynamic share efficiency for η are like Θsf all discounting-invari-
ant with respect to S++, in the sense that if one of these properties holds for S, it
also holds for any D-discounted S̃ = S/D with any discounter D ∈ S++, and vice
versa. In contrast, the strong (value) maximality for S from Herdegen [17] (and
derived concepts like NINA there) is invariant under discounting by discounters
D ∈ Sunif

++ ( S++ (see Lemma 3.1 below), but not under discounting by general
D ∈ S++ (see Example 3.2 below). In that sense, the value-related concepts and
results from [17] are only numéraire- or discounting-invariant in a restricted manner.
But for a general discounting-invariant framework, having invariance with respect to
the full class S++ is crucial because the natural class of discounters on a right-open
interval like [0,∞) is S++ and not only Sunif

++ ; see Example 1.1.

Remark 2.9. 1) Theorems 2.14 and 4.1 below give equivalent characterisations for
DSE for η, assuming among other things that η is a reference strategy and bounded
(uniformly in (ω, t)). These results show that equivalent definitions of DSE for η
are possible — one could as well stipulate that only η itself, or all bounded ϑ ∈ Θsf

+,
should be share maximal for η. We have opted for an intermediate definition to
preserve the analogy to [17].

2) All our concepts depend on the choice of η. We discuss this in Section 4.2
and show there in particular that the dependence is fairly weak.

3) The idea of treating as central objects not value processes, but strategies/
portfolios in numbers of shares has already been promoted by Yu. Kabanov in
his geometric approach to markets with transaction costs; see the textbook by
Kabanov/Safarian [22, in particular Section 3.1]. But as also stated in [22, Sec-
tion 3.6.1], models with transaction costs are much less demanding in terms of sto-
chastic calculus because strategies there are processes of finite variation. We cannot
impose this in our frictionless market, and so the tools and techniques developed
by Kabanov and co-authors cannot be used in our setup.

The preceding concepts are all about strategies and hence on the primal side.
For a dual characterisation in terms of martingale properties, we need the following
concept.

Definition 2.10. An E-discounter for an RN -valued semimartingale Y , where
E ∈ {σ-martingale, local martingale, martingale, UI martingale}, is aD ∈ S++ such
that Y/D is an E .

Remark 2.11. 1) In the literature, an E-deflator for a class Y of processes is a
strictly positive local martingale Z (often with Z0 = 1) such that the product ZY
is an E for all Y ∈ Y. There are two differences to the notion of an E-discounter.
First, a deflator acts by multiplication (on Y) while a discounter acts by division
(on Y ). More importantly, however, we impose no (local) martingale property
on an E-discounter D, nor on 1/D. (Some definitions of an E-deflator Z do not
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explicitly ask for Z to be a local martingale. But as Y invariably contains the
process Y ≡ 1, this property follows from the definition and Z > 0.) An analogous
comment applies to supermartingale deflators. In our setup, neither S nor the
family {V(ϑ) : ϑ ∈ Θsf

++} of value processes contains a constant process in general;
so discounters are more natural and more general than deflators. In fact, using
Lemma 2.2 to write D = N/L shows that an E-discounter for a process Y can be
viewed as the combination of a discounter N of finite variation and an E-deflator L
for the N -discounted process Y/N .

2) The reciprocal of what we call a local martingale discounter is usually called
a stochastic discount factor (process) in the financial economics literature; see for
instance Back [4, Section 13.3].

2.2. Main results: Two new versions of an FTAP. After the preceding pre-
liminaries, we can now state our first two main results.

Theorem 2.12. Suppose S ≥ 0 and there exists a reference strategy η. Then the
following are equivalent:
(a) S satisfies dynamic share viability for η.
(b) There exists a σ-martingale discounter D for S with inft≥0(ηt · (St/Dt)) > 0

P -a.s.

Remark 2.13. As pointed out in the proof in Section 3.5, the implication (a)⇒ (b)
in Theorem 2.12 does not need S ≥ 0. The same applies to Theorem 2.14.

Theorem 2.14. Suppose S ≥ 0 and there exists a reference strategy η such that η
and Sη = S/(η · S) are even bounded (uniformly in (ω, t)). Then the following are
equivalent:
(a) S satisfies dynamic share efficiency for η.
(b) There exists a UI martingale discounter D for S with inft≥0(ηt · (St/Dt)) > 0

P -a.s.

The proofs of Theorems 2.12 and 2.14 need extra ideas and additional results.
These are developed in Section 3 and used in Section 3.5 to prove the theorems.

Both Theorems 2.12 and 2.14 are modern formulations of the classic idea due to
Samuelson [36] that “properly anticipated prices fluctuate randomly” or, in other
words, suitably discounted prices form a martingale. The notion of “properly an-
ticipated” or “suitably discounted” is in our paper captured by the existence of a
process D which turns S via discounting to S/D into a “martingale”. The strength
of the martingale property of S/D (σ-martingale or UI martingale) depends on the
strength of the initial no-arbitrage condition (viability or efficiency). In key contrast
to the classic FTAP formulation of Delbaen/Schachermayer [10, 13], the discounting
process cannot be chosen a priori, but is an endogenous part of the dual characteri-
sation of absence of arbitrage. This idea already appears in Herdegen [17] (see also
[18]) where the dual objects are pairs consisting of an S-tradable numéraire and
an equivalent σ-martingale measure. Our σ-martingale discounter combines these
compactly into a single process.

In Section 4, we give an extended result which contains both Theorems 2.12 and
2.14 as well as other equivalent properties. While this involves a minimal amount
of repetition, it serves both to highlight the main contribution of the present paper
and to explain its connection to the existing literature. Proving Theorems 2.12 and
2.14 involves the bulk of the work; the extra equivalences in Theorem 4.1 follow
easily from known results.
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The proofs of our main results involve several ideas and steps. We give here a
short overview and implement this in Section 3. First, because share maximality is
discounting-invariant with respect to S++, we can work with any discounted price
process S/D instead of the original S. We choose an S-tradable D := V(ξ) = ξ · S
and show in Theorem 3.10 that if ξ ≥ 0, then share maximality for ξ is equivalent
to value maximality for Sξ = S/D. This almost gives us access to the results
from Herdegen [17] who derived dual characterisations for his strong (value) max-
imality, of 0 or of a fixed strategy, in terms of certain martingale properties for
suitably discounted prices. (It is at this point that the endogenous discounter ap-
pears.) However, [17] crucially exploits that prices are defined on a right-closed time
interval, and the numéraire-invariance in [17] is only with respect to the smaller,
restrictive class Sunif

++ of discounters. Overcoming this needs an extra step. With
a similar argument as in Delbaen/Schachermayer [10], we show that for tradably
discounted prices Sξ and under value maximality for Sξ of 0, the value process
V(ϑ, Sξ) of any self-financing strategy ϑ ∈ Θsf

+ converges as t → ∞. Therefore, all
the V(ϑ, Sξ) are well defined on a right-closed interval (even if S or Sξ is not), and
this finally allows us to use the results from [17]. Combining everything yields our
assertions.

3. Theory and proofs. This section is the mathematical core of the paper. Its
first three subsections mirror the ideas and steps in the discussion at the end of
Section 2. To have a clearer structure, we proceed in the reverse order than the
above discussion. In addition, we need some classic concepts from the literature.
The last subsection proves the two main results.

3.1. Classic concepts. To relate our work to the literature and present some
important known results, we recall or rewrite some notions from the classic Del-
baen/Schachermayer [10, 13] approach. For any Rk-valued semimartingale Y and
a ≥ 0, we define

Θsf(Y ) := {ϑ ∈ L(Y ) : V(ϑ, Y ) := ϑ · Y = ϑ0 · Y0 + ϑ Y },
Θsf

+(Y ) := {ϑ ∈ Θsf(Y ) : V(ϑ, Y ) ≥ 0},
Laadm(Y ) := {H ∈ L(Y ) : H Y ≥ −a}

as well as

Gaadm(Y ) :=
{

lim
t→∞

Vt(ϑ, Y )− V0(ϑ, Y ) : ϑ ∈ Θsf
+(Y ), V0(ϑ, Y ) = a,

lim
t→∞

Vt(ϑ, Y ) exists
}
.

Each g ∈ Gaadm(Y ) is the net outcome (final minus initial value) of a self-financing
strategy ϑ (investing in Y ) whose value is always ≥ −a, with all quantities in the
same units of account as Y . We then introduce the sets

Gadm(Y ) :=
⋃
a≥0
Gaadm(Y )

=
{

lim
t→∞

Vt(ϑ, Y )− V0(ϑ, Y ) : ϑ ∈ Θsf
+(Y ), lim

t→∞
Vt(ϑ, Y ) exists

}
,

Cadm(Y ) := Gadm(Y )− L0
+,

C∞adm(Y ) := Cadm(Y ) ∩ L∞
∞
,
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where the bar ∞ on the right-hand side denotes the norm closure in L∞. Then
we say that
• NA∞(Y ) holds if Cadm(Y ) ∩ L∞+ = {0};
• NUPBR∞(Y ) holds if G1

adm(Y ) is bounded in L0;
• NFLVR∞(Y ) holds if C∞adm(Y ) ∩ L∞+ = {0}.

It is very important to realise that whether or not one has in the basic model
a riskless asset with a price of 1 makes a big difference. To see this, note first of
all that Θsf(Y ) ( L(Y ) in general; for instance, if k = 1 and Y > 0 is continuous,
solving for ϑ = (ϑ0Y0 + ϑ Y )/Y shows that any ϑ ∈ Θsf(Y ) must be a continuous
semimartingale. Next, any ψ ∈ L(1, Y ) has the form ψ = (ψ0, ϑ), where ψ0 is any
real-valued predictable process and ϑ ∈ L(Y ). Then clearly ψ (1, Y ) = ϑ Y , but
V(ψ, (1, Y )) = ψ · (1, Y ) = ψ0 + ϑ · Y 6= ϑ · Y = V(ϑ, Y ) unless ψ0 ≡ 0. Finally,
choosing ψ0 := c+ ϑ0 · Y0 + ϑ Y − ϑ · Y implies that ψ0

0 = c and

V
(
ψ, (1, Y )

)
− V0

(
ψ, (1, Y )

)
= ψ0 + ϑ · Y − ψ0

0 − ϑ0 · Y0 = ϑ Y = ψ (1, Y ). (3.1)

Thus any pair (c, ϑ) ∈ L0(F0) × L(Y ) can be identified with some ψ ∈ Θsf(1, Y ),
and vice versa, with c = ψ0

0 ; see Herdegen [17, Theorem 2.14] for a more general
result. But as seen above, not any ϑ ∈ L(Y ) is in Θsf(Y ).

Similar issues come up for absence-of-arbitrage considerations. Using the defini-
tion of V(ϑ, Y ), then ϑ Y = ψ (1, Y ) from above and finally (3.1), we can rewrite
Gaadm(Y ) as

Gaadm(Y ) =
{

lim
t→∞

ϑ Yt : ϑ ∈ Θsf(Y ), ϑ Y ≥ −a, lim
t→∞

ϑ Yt exists
}

(
{

lim
t→∞

ϑ Yt : ϑ ∈ L(Y ), ϑ Y ≥ −a, lim
t→∞

ϑ Yt exists
}

=
{

lim
t→∞

ψ (1, Y )t : ψ ∈ L(1, Y ), ψ (1, Y ) ≥ −a, lim
t→∞

ψ (1, Y )t exists
}

= Gaadm(1, Y ). (3.2)

In view of the second line in (3.2), Gadm(1, Y ) =
⋃
a≥0 Gaadm(1, Y ) is precisely the

set K0 (or K) considered in Delbaen/Schachermayer [10, 13], and so

NX∞(1, Y ) = classic NX for Y , with X ∈ {A,FLVR,UPBR}.

We remark that the property NUPBR∞(1, Y ) already appears without a name in
[10, Corollary 3.4]; it was later called BK by Kabanov [23] and (classic) NUPBR
(for Y ) by Karatzas/Kardaras [27].

Classic NUPBR for Y means by definition, see [27], that G1
adm(1, Y ) is bounded

in L0, whereas our notion NUPBR∞(Y ) only imposes that the smaller set G1
adm(Y )

is bounded in L0. So if we have NUPBR∞(Y ), we cannot apply in general the
results from [27] because these rely on the stronger assumption NUPBR∞(1, Y ).
An analogous comment applies to classic NFLVR for Y , NFLVR∞(Y ) and the
results from [10, 13]. So one must be careful if one wants to apply results from the
classic theory of mathematical finance in our setting.

If Y has a special form, things simplify. Start with an RN -valued semimartingale
S, fix ξ ∈ Θsf

++(S) and recall the ξ-discounted prices Sξ = S/(ξ · S). Because
V(ξ, Sξ) ≡ 1, one can use Herdegen [17, Theorem 2.14] (which easily extends to
J0,∞K) to show that

{ϑ Sξ : ϑ ∈ Θsf(Sξ)} = {ψ (1, Sξ) : ψ ∈ Θsf(1, Sξ)} = {ϑ Sξ : ϑ ∈ L(Sξ)}.
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In words, the wealth processes one can generate from self-financing strategies are
the same for the markets with Sξ and with (1, Sξ). In view of (3.2), this implies

Gaadm(Sξ) =
{

lim
t→∞

ϑ Sξt : ϑ ∈ L(Sξ), ϑ Sξ ≥ −a, lim
t→∞

ϑ Sξt exists
}

= Gaadm(1, Sξ), (3.3)

and in consequence that

NX∞(Sξ) = classic NX for Sξ for X ∈ {A,FLVR,UPBR}.

We can therefore use the classic theory and its results for tradably discounted prices
Sξ, but not for general prices Y .

3.2. From a stochastic or right-open interval to a right-closed interval.
In this section, we use absence of arbitrage to pass from a model with a general
time horizon (stochastic or not, finite or infinite) to a model effectively defined on
Ω × [0,∞]. This rests on a convergence result in the spirit of Delbaen/Schacher-
mayer [10, Theorem 3.3] combined with ideas from Herdegen [17] to connect value
maximality and NUPBR.

We begin with an auxiliary result.

Lemma 3.1. Suppose ϑ ∈ Θsf
+ is value maximal for S.

1) Value maximality is discounting-invariant with respect to Sunif
++ : If D ∈ Sunif

++ ,
then ϑ is also value maximal for S/D. (The converse is clear as D ∈ Sunif

++ implies
1/D ∈ Sunif

++ .)
2) Value maximal strategies form a cone: For any α ≥ 0, αϑ is also value maxi-

mal for S.

Proof. See Appendix.

The next example shows that Sunif
++ cannot be replaced by S++ in Lemma 3.1.

Example 3.2. Value maximality is not discounting-invariant with respect to S++.
Consider the Black–Scholes model with m = r = σ = 1, so that S1

t = et and
S2
t = eWt+ 1

2 t. Here, 0 is not value maximal for S because for any ε > 0, the
strategy ϑ̂ε := εe1 = (ε, 0) of buying and holding ε units of S1 has V0(ϑ̂ε) = ε,
but limt→∞ Vt(ϑ̂ε) = +∞. But if we take D := S1 ∈ S++ \ Sunif

++ , we obtain
S/D = Se1 = (1, eWt− 1

2 t). This is a (σ-)martingale, and therefore 0 is value maxi-
mal for Se1 ; see Theorem 3.8 below (applied to ξ ≡ e1).

We first connect value maximality and NUPBR; this is similar to Herdegen [17,
Proposition 3.24].

Proposition 3.3. Fix ξ ∈ Θsf
++ and recall the ξ-discounted price process given by

Sξ = S/(ξ · S). Then the following are equivalent:
(a) The zero strategy 0 ∈ Θsf

+ is value maximal for Sξ.
(b) The set {limt→∞H Sξt : H ∈ L1

adm(Sξ), H has bounded support on [0,∞)} is
bounded in L0.

(c) The set {lim inft→∞H Sξt : H ∈ L1
adm(Sξ)} is bounded in L0.

(d) The set {limt→∞H Sξt : H ∈ L1
adm(Sξ) and limt→∞H Sξt exists} is bounded

in L0.
(e) NUPBR∞(Sξ) holds.
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Proof. (c) ⇒ (d) ⇒ (b) is clear; (b) ⇒ (c) is from the proof of [10, Proposi-
tion 3.2]; and (d) ⇔ (e) follows from the first equality in (3.3) and the definition of
NUPBR∞(Sξ).

We prove (c)⇒ (a) indirectly. If 0 is not vm for Sξ, there are f ∈ L0
+\{0} and for

every ε = 1/n some ϑ̂n ∈ Θsf
+ with V0(ϑ̂n, Sξ) ≤ 1/n and lim inft→∞ Vt(ϑ̂n, Sξ) ≥ f

P -a.s. Then ϑ̃n := nϑ̂n is in Θsf
+ with V0(ϑ̃n, Sξ) ≤ 1, and ϑ̃n is also in L1

adm(Sξ)
because

0 ≤ V(ϑ̃n, Sξ) = V0(ϑ̃n, Sξ) + ϑ̃n Sξ ≤ 1 + ϑ̃n Sξ.

Therefore, lim inft→∞ ϑ̃n Sξt = lim inft→∞ Vt(ϑ̃n, Sξ)− V0(ϑ̃n, Sξ) ≥ nf − 1 P -a.s.
implies that (c) cannot hold as f ∈ L0

+ \ {0}.
Finally, for (a) ⇒ (b), suppose that (b) is not true. Then also the convex set

C :=
{

lim
t→∞

H Sξt + 1 : H ∈ L1
adm(Sξ), H has bounded support on [0,∞)

}
⊆ L0

+

is not bounded in L0. Lemma A.2 therefore yields a sequence (Hn)n∈N ⊆ L1
adm(Sξ),

where each Hn has bounded support on [0,∞), and some f ∈ L0
+ \ {0} with

limt→∞Hn Sξt +1 ≥ nf P -a.s. for all n ∈ N. Note that the limits exist because each
Hn has bounded support. Consider the integrand Hn ∈ L1

adm(Sξ). By [17, Theo-
rem 2.14] (and an easy extension to J0,∞K), there exists a corresponding ϑn ∈ Θsf

+
with V(ϑn, Sξ)− V0(ϑn, Sξ) = Hn Sξ, where we can choose V0(ϑn, Sξ) = 1. Defin-
ing ϑ̃n := ϑn/n ∈ Θsf

+ yields

V(ϑ̃n, Sξ) = V(ϑn, Sξ)/n = (Hn Sξ + 1)/n,

hence V0(ϑ̃n, Sξ) = 1/n and lim inft→∞ Vt(ϑ̃n, Sξ) = limt→∞(Hn Sξt + 1)/n ≥ f
P -a.s. Thus 0 is not vm for Sξ.

Our next result is of crucial importance. It is a variant of the key result in
Delbaen/Schachermayer [10, Theorem 3.3] and shows that loosely speaking, value
processes expressed in good units of account converge under a weak no-arbitrage
assumption.

Proposition 3.4. Fix ξ ∈ Θsf
++ and suppose the zero strategy 0 ∈ Θsf

+ is value
maximal for Sξ. Then for any ϑ ∈ Θsf

+, V∞(ϑ, Sξ) := limt→∞ Vt(ϑ, Sξ) exists and
is finite, P -a.s.

Proof. 1 Fix ξ as above and H ∈ L1
adm(Sξ). We first claim that limt→∞H Sξt exists

and is finite, P -a.s. This follows from upcrossing arguments as in Doob’s martingale
convergence theorem and is based on the proof of [10, Theorem 3.3]. Indeed, by
Proposition 3.3, the value maximality for Sξ of 0 implies that the set{

lim
t→∞

H Sξt : H ∈ L1
adm(Sξ), H has bounded support on [0,∞)

}
is bounded in L0, so that the conclusion of [10, Proposition 3.1] holds (with S in
[10] replaced by Sξ here). A careful look at [10, Proposition 3.2 and Theorem 3.3]
shows that all we need for the proofs of these two results is the conclusion of [10,

1As pointed out by an Associate Editor, one could also prove this result by using the FTAP
from Karatzas/Kardaras [27]. We refrain from doing this because the argument does not become
shorter and needs some extra explanations.
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Proposition 3.1]. So we can repeat the proof of [10, Theorem 3.3] step by step 2 to
obtain our auxiliary claim about the convergence of H Sξ.

Now fix ϑ ∈ Θsf
+, set v0 := V0(ϑ, Sξ) ≥ 0 and define the strategy ϑ̃ := ϑ/(1 + v0).

Then ϑ̃ is in Θsf
+ and ϑ̃ Sξ = V(ϑ̃, Sξ) − V0(ϑ̃, Sξ) ≥ −1 as V0(ϑ̃, Sξ) = v0

1+v0
≤ 1,

so that ϑ̃ is in L1
adm(Sξ). By the first part,

Vt(ϑ, Sξ) = (1 + v0)Vt(ϑ̃, Sξ) = v0 + (1 + v0)(ϑ̃t Sξt )
therefore converges for t→∞ P -a.s. to a finite limit.

Remark 3.5. Both Propositions 3.3 and 3.4 have ξ-discounted prices Sξ = S/(ξ·S);
so the discounter ξ ·S = V(ξ) is S-tradable. One can ask if V(ξ) could be replaced by
an arbitrary D ∈ S++, and hence Sξ by S/D, but this is not possible. Tradability
of V(ξ) is explicitly used in the proof of Proposition 3.3, (a) ⇒ (b) when we use
[17, Theorem 2.14]. For Proposition 3.4, we now give a counterexample with a
nontradable D.

As in Proposition 3.4, suppose 0 is value maximal for Sξ and define D′ ∈ Sunif
++ by

D′t = 2 + sin t. Then D := D′V(ξ) is in S++ like V(ξ), we have S/D = Sξ/D′, and
0 is value maximal for Sξ/D′ by Lemma 3.1, 1), hence also for S/D. But for any
ϑ ∈ Θsf

+, we have V(ϑ, S/D) = V(ϑ, Sξ/D′) = V(ϑ,Sξ)
D′ which does not converge in

general. For example, taking ϑ = ξ yields V(ξ, Sξ) ≡ 1 so that V(ϑ, S/D) = 1/D′.

The significance of Proposition 3.4 is that under its assumptions, the limit
V∞(ϑ, Sξ) exists P -a.s. for all ϑ ∈ Θsf

+. Therefore V(ϑ, Sξ) is well defined on the
right-closed interval [0,∞], and as V(ξ, Sξ) ≡ 1, the model Sξ is on [0,∞] a numé-
raire market in the sense of Herdegen [17]. Hence in the setting of Proposition 3.4,
the situation is as if we had the market resulting from Sξ defined up to ∞, and so
we can essentially use all results from [17] also for J0,∞K. More precisely, as long
as we only use value processes of strategies in Θsf

+, we do not need Sξ itself to be
defined on [0,∞].

An important consequence is that the same weak AOA condition as above allows
us to improve any self-financing strategy asymptotically by a value maximal strategy
at no extra cost. This extends a result from [17, Theorem 4.1] to J0,∞K.

Lemma 3.6. Fix ξ ∈ Θsf
++ and suppose the zero strategy 0 ∈ Θsf

+ is value maximal
for Sξ. Then for any ϑ ∈ Θsf

+, there exists a ϑ̂ ∈ Θsf
+ which is value maximal for Sξ

and satisfies
V0(ϑ̂, Sξ) = V0(ϑ, Sξ) and lim inf

t→∞
Vt(ϑ̂− ϑ, Sξ) ≥ 0 P -a.s.

Proof. Fix ξ as above. For any ϑ ∈ Θsf
+, the limit V∞(ϑ, Sξ) exists and is finite,

P -a.s., by Proposition 3.4. In Definition 2.7 for Sξ instead of S, we can thus
replace the lim inf by a limit, and so our value maximality for Sξ is equivalent to
the strong maximality of Sξ on [0,∞] in the sense of [17]. In particular, having
0 vm for Sξ is equivalent to having NINA on [0,∞] for Sξ in the sense of [17].
Using [17, Theorem 4.1] on [0,∞] for Sξ and rewriting V∞(ϑ̂, Sξ) ≥ V∞(ϑ, Sξ) as
lim inft→∞ Vt(ϑ̂− ϑ, Sξ) ≥ 0 then gives the result.

2There are two minor unclear points or typos in the original proof in [10]. First, a set A2 ∈ Ft2
such that P [A2∆(B1∩A)] > α−ε1−ε2 is not a good approximation for B1∩A; one should rather
impose the requirement that P [A2∆(B1∩A)] < ε2/2. Second, it is not clear why P [B1∩A] > α−ε1
should be true. However, it is clear that P [B1 ∩ A] > α − 2ε1, which is still sufficient to obtain
the conclusion.
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3.3. Dual characterisation of value maximality. In this section, we provide
dual characterisations of value maximality for Sξ, of the zero strategy 0 or of a given
strategy ξ. This uses the results of Herdegen [17] and extends them to a general
time horizon by exploiting Section 3.2.

Proposition 3.7. Fix ξ ∈ Θsf
++. Then the following are equivalent:

(a) ξ is value maximal for Sξ.
(b) Both NA∞(Sξ) and NUPBR∞(Sξ) hold.
(c) NFLVR∞(Sξ) holds.

Proof. Both Cadm(Sξ) and Cadm(Sξ) ∩ L∞ are convex, and NUPBR∞(Sξ) means
that G1

adm(Sξ) is bounded in L0. Due to (3.3), (b) ⇔ (c) can thus be proved like in
Kabanov [23, Lemma 2.2].

Both (a) and (c) imply that 0 ∈ Θsf
+ is vm for Sξ; indeed, under (a), this follows

by Lemma 3.1, 2), and under (c), we combine (c) ⇒ (b) with Proposition 3.3.
Proposition 3.4 and the subsequent discussion thus allow us to treat Sξ as if it were
defined on [0,∞], and then the proof of [17, Proposition 3.24, (c)], with T replaced
by ∞, gives the result.

Recall that for E ∈ {σ-martingale, local martingale, martingale, UI martingale},
an E-discounter for an RN -valued semimartingale Y is a D ∈ S++ such that Y/D
is an E .

Theorem 3.8. Fix ξ ∈ Θsf
++. Then the following are equivalent:

(a) The zero strategy 0 ∈ Θsf
+ is value maximal for Sξ.

(b) There exists a strategy ϑ̂ ∈ Θsf
++ which is value maximal for Sξ and which has

V(ϑ̂, Sξ) ∈ Sunif
++ .

(c) There exists a σ-martingale discounter D ∈ Sunif
++ for Sξ.

Proof. (a) ⇒ (b): By Lemma 3.6, we can find a ϑ̂ ∈ Θsf
+ which is vm for Sξ

and satisfies lim inft→∞ Vt(ϑ̂− ξ, Sξ) ≥ 0 P -a.s. Superadditivity of the lim inf plus
V(ξ, Sξ) ≡ 1 yields

lim inf
t→∞

Vt(ϑ̂, Sξ) ≥ lim inf
t→∞

Vt(ϑ̂− ξ, Sξ) + lim inf
t→∞

Vt(ξ, Sξ) ≥ 1 > 0 P -a.s.

But Proposition 3.4 and the subsequent discussion allow us to treat the market given
by Sξ as if it were defined up to ∞, and so inft≥0 Vt(ϑ̂, Sξ) > 0 P -a.s. follows as in
the proof of [17, Proposition 4.4], with T there replaced by ∞. On the other hand,
lim supt→∞ Vt(ϑ̂, Sξ) = limt→∞ Vt(ϑ̂, Sξ) < ∞ P -a.s. by Proposition 3.4, and be-
cause V(ϑ̂, Sξ) = V0(ϑ̂, Sξ)+ϑ̂ Sξ is RCLL, this implies supt≥0 Vt(ϑ̂, Sξ) <∞ P -a.s.
Hence V(ϑ̂, Sξ) is in Sunif

++ . We note for later use that V(ϑ̂, Sξ) = ϑ̂ ·Sξ = V(ϑ̂)/V(ξ).
(b) ⇒ (c): Because ϑ̂ is vm for Sξ = S/(ξ · S) and V(ϑ̂, Sξ) = (ϑ̂ · S)/(ξ · S) is

in Sunif
++ , ϑ̂ is by Lemma 3.1, 1) also vm for Sξ/V(ϑ̂, Sξ) = Sϑ̂. Thus by Propo-

sition 3.7, NFLVR∞(Sϑ̂) holds. Note that V(ϑ̂, Sϑ̂) ≡ 1. By the discussion af-
ter [17, Definition 2.18] 3, we can apply [13, Theorem 1.1] to the price process
(1, X) := (V(ϑ̂, Sϑ̂), Sϑ̂) of dimension 1 +N , and so there exists a probability mea-
sure Q ≈ P (on F ⊇ F∞) such that Sϑ̂ is a σ-martingale under Q. The density

3As has been pointed out to us by an Associate Editor, this amounts to saying that
NFLVR∞(Sξ) = NFLVR∞(1, Sξ) coincides with classic NFLVR for Sξ, which allows to use [13,
Theorem 1.1] for Sξ. This again uses (3.3).
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process Z of Q with respect to P is in Sunif
++ as it is a strictly positive P -martin-

gale on the right-closed interval [0,∞]. Thus also D := V(ϑ̂, Sξ)/Z is in Sunif
++ , and

Sξ/D = ZSξ/V(ϑ̂, Sξ) = ZSϑ̂ is a σ-martingale under P by the Bayes rule for
stochastic calculus; see Kallsen [25, Proposition 5.1]. (In classic terminology, Z is
a σ-martingale deflator for Sϑ̂.)

(c) ⇒ (a): Because D ∈ Sunif
++ and vm is discounting-invariant with respect to

Sunif
++ by Lemma 3.1, 1), we can equivalently prove vm of 0 for Sξ or for Sξ/D.

Hence we can and do assume without loss of generality that Sξ is a P -σ-martingale.
If 0 is not vm for Sξ, we can find f ∈ L0

+ \ {0} and for every ε > 0 some ϑ̂ε ∈ Θsf
+

such that V0(ϑ̂ε, Sξ) ≤ ε and lim inft→∞ Vt(ϑ̂ε, Sξ) ≥ f P -a.s. Because we have
ϑ̂ε Sξ = V(ϑ̂ε, Sξ) − V0(ϑ̂ε, Sξ) ≥ −ε on [0,∞) P -a.s., the Ansel–Stricker lemma
[3, Corollary 3.5] implies that V(ϑ̂ε, Sξ) is a local P -martingale and a P -supermar-
tingale. Combining this with Fatou’s lemma and f ∈ L0

+ \ {0} yields

ε ≥ V0(ϑ̂ε, Sξ) ≥ lim inf
t→∞

E[Vt(ϑ̂ε, Sξ)] ≥ E
[

lim inf
t→∞

Vt(ϑ̂ε, Sξ)
]
≥ E[f ] > 0

for every ε > 0, which is a contradiction.

Theorem 3.9. Suppose that ξ ∈ Θsf
++ is such that both ξ and Sξ are bounded

(uniformly in (ω, t)). Then the following are equivalent:
(a) ξ is value maximal for Sξ.
(b) There exists a UI martingale discounter D ∈ Sunif

++ for Sξ.
(c) Each bounded ϑ ∈ Θsf

+ is value maximal for Sξ.

Proof. (c) ⇒ (a) is clear.
(a) ⇒ (b): If ξ is vm for Sξ, the same argument as in the proof of (b) ⇒ (c)

in Theorem 3.8 yields a Q ≈ P such that Sξ is a σ-martingale under Q. Being
uniformly bounded, Sξ is even a UI martingale under Q, and so the same discounter
D := V(ξ, Sξ)/Z = 1/Z as in the proof of Theorem 3.8 is now a UI martingale
discounter for Sξ and again in Sunif

++ .
(b)⇒ (c): By Theorem 3.8, 0 is vm for Sξ. Take any bounded ϑ ∈ Θsf

+. To show
that ϑ is vm for Sξ, as in the proof of (c) ⇒ (a) in Theorem 3.8, we can assume
that Sξ is a UI martingale; so Sξ∞ = limt→∞ Sξt exists P -a.s. and in L1, and then
Sξ is a martingale on [0,∞]. Moreover, V(ϑ, Sξ) is P -a.s. convergent as t→∞ by
Proposition 3.4. For any stopping time τ , we have |Vτ (ϑ, Sξ)| ≤ ‖ϑ‖∞

∑N
i=1 |(Sξτ )i|,

and the UI property of Sξ on [0,∞] implies that V(ϑ, Sξ) is of class (D). So V(ϑ, Sξ)
is even a UI martingale.

If ϑ is not vm for Sξ, we can find f ∈ L0
+ \ {0} and for every ε > 0 some

ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε, Sξ) ≤ V0(ϑ, Sξ)+ε and lim inft→∞ Vt(ϑ̂ε−ϑ, Sξ) ≥ f P -a.s. As

limt→∞ Vt(ϑ, Sξ) exists, we even have lim inft→∞ Vt(ϑ̂ε, Sξ) ≥ limt→∞ Vt(ϑ, Sξ) +f

P -a.s., and V(ϑ̂ε, Sξ) is a supermartingale by the same argument as for ϑ. Combin-
ing this with Fatou’s lemma, the UI martingale property of V(ϑ, Sξ) and f ∈ L0

+\{0}
then gives a contradiction because

V0(ϑ, Sξ) + ε ≥ V0(ϑ̂ε, Sξ) ≥ lim inf
t→∞

E[Vt(ϑ̂ε, Sξ)]

≥ E
[

lim inf
t→∞

Vt(ϑ̂ε, Sξ)
]
≥ E

[
lim
t→∞

Vt(ϑ, Sξ)
]

+ E[f ]

= lim
t→∞

E[Vt(ϑ, Sξ)] + E[f ] = V0(ϑ, Sξ) + E[f ] > V0(ϑ, Sξ)
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for every ε > 0.

Propositions 3.3 and 3.7 as well as Theorems 3.8 and 3.9 show a clear pattern:
Thanks to the key result in Proposition 3.4, we can fairly easily extend the results
from Herdegen [17] to a market with an infinite horizon, as long as we stick to
ξ-discounted prices Sξ. But what can be said if we want to start instead from the
original prices S?

According to Lemma 3.1, 1), value maximality is discounting-invariant with re-
spect to Sunif

++ , and Sξ = S/V(ξ). If we impose the extra condition that V(ξ) is in
Sunif

++ , all results still hold if we replace “value maximal for Sξ” by “value maximal
for S”. Moreover, in Lemma 3.6, Theorem 3.8 and in (a)–(c) of Theorem 3.9, we
can then also replace Sξ by S.

In [17], the condition V(ξ) ∈ Sunif
++ is automatically satisfied for any ξ ∈ Θsf

++
as the market there is defined on a right-closed time interval. In contrast, on a
right-open interval like [0,∞) we consider here, the condition is very restrictive —
just think of a non-discounted Black–Scholes model with an interest rate r 6= 0 and
the market portfolio ξ ≡ 1. It is precisely the idea of replacing value maximality by
share maximality which allows us to eliminate that restrictive condition and handle
general models for S.

3.4. Connecting share maximality and value maximality. In this section,
we show that under a very mild condition on the pair (S, ξ) of price process and
strategy, share maximality for ξ and value maximality for Sξ are equivalent. This
is the key for proving our main results.

Theorem 3.10. Fix ξ ∈ Θsf
++.

1) If ξ ≥ 0, any ϑ ∈ Θsf
+ which is share maximal for ξ is value maximal for Sξ.

2) If S ≥ 0, any ϑ ∈ Θsf
+ which is value maximal for Sξ is also share maximal

for ξ.

The proof of Theorem 3.10 needs some preparation.

Lemma 3.11. Suppose S ≥ 0 and fix ξ ∈ Θsf
++. If there is a strategy ϑ̂ ∈ Θsf

+ which
is value maximal for Sξ, then (ϑ · S)/(ξ · S) is bounded in t ≥ 0, P -a.s., for every
ϑ ∈ Θsf

+. In particular, Sξ is bounded in t ≥ 0, P -a.s.

Proof. If ϑ̂ is vm for Sξ, then 0 is vm for Sξ by Lemma 3.1, 2). So Proposition 3.4
implies that for any ϑ ∈ Θsf

+, the process (ϑ · S)/(ξ · S) = ϑ · Sξ = ϑ0 · Sξ0 + ϑ Sξ is
P -a.s. convergent as t → ∞ and hence bounded in t ≥ 0, P -a.s. Choosing ϑ := ei
for i = 1, . . . , N gives the second assertion; note that S ≥ 0 is used here to ensure
that ei ∈ Θsf

+.

In the proof of Theorem 3.10, we need to concatenate strategies which requires
some notation. Fix ξ ∈ Θsf

++ and a stopping time τ (as usual with values in [0,∞]).
The ξ-concatenation at time τ of ϑ1, ϑ2 ∈ Θsf is defined by

ϑ1 ?ξ
τ ϑ

2 := IJ0,τKϑ
1 + IKτ,∞K

(
IΓϑ

1 + IΓc
(
ϑ2 + Vτ (ϑ1 − ϑ2, Sξ)ξ

))
with Γ := {Vτ (ϑ1) < Vτ (ϑ2)}. (3.4)

The interpretation is clear: We start with ϑ1 and follow this strategy until time τ
where we compare its value to that of the competitor ϑ2. If ϑ1 is strictly cheaper,
we stick to it. Otherwise, we liquidate ϑ1

τ , start with ϑ2 by buying ϑ2
τ , and invest

the nonnegative rest of the proceeds into ξ. Note that on {τ = ∞}, we have
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ϑ1 ?ξ
τ ϑ

2 = ϑ1 so that the possibly undefined expressions ϑ1
∞, ϑ2

∞, S∞ or Sξ∞ never
appear.

Lemma 3.12. Fix ξ ∈ Θsf
++ and a stopping time τ . If ϑ1, ϑ2 are in Θsf , then so is

ϑ1 ?ξ
τ ϑ

2. If ϑ1, ϑ2 are in Θsf
+, then so is ϑ1 ?ξ

τ ϑ
2.

Proof. See Appendix.

Proof of Theorem 3.10. 1) If ϑ is not vm for Sξ, there are f ∈ L0
+ \ {0} and for

any ε = 1/n some ϑ̂n ∈ Θsf
+ with ϑ̂n0 · S

ξ
0 = V0(ϑ̂n, Sξ) ≤ ϑ0 · Sξ0 + 1/n and

lim inft→∞((ϑ̂nt − ϑt) · S
ξ
t ) ≥ f P -a.s. Choose δ > 0 and A ∈ F with P [A] > 0 such

that f ≥ 2δIA P -a.s., and define

σ′n := inf{t ≥ 0 : (ϑ̂nt − ϑt) · S
ξ
t ≥ δ},

ϕn := inf{t ≥ 0 : P [σ′n ≤ t] ≥ P [A](1− 2−n+1)},
σn := σ′n ∧ ϕn ≤ ϕn.

Then σ′n is a stopping time, ϕn a bounded nonrandom time and σn a bounded stop-
ping time. Moreover, Bn := {σ′n ≤ ϕn} ∈ Fϕn satisfies P [Bn] ≥ P [A](1− 2−n+1)
and we have

(ϑ̂nσn − ϑσn) · Sξσn = (ϑ̂nσ′n − ϑσ′n) · Sξσ′n ≥ δ on Bn, P -a.s. (3.5)

by right-continuity. Due to lim inft→∞((ϑ̂nt − ϑt) · S
ξ
t ) ≥ f ≥ 0 P -a.s.,

τn := inf{t ≥ ϕn : (ϑ̂nt − ϑt) · S
ξ
t ≥ −1/n} ≥ ϕn

is a P -a.s. finite-valued stopping time which satisfies τn ≥ σn.
We now consider the strategy

ϑ̃n := IJ0,τnK(ϑ̂n ?ξ
σn ϑ) + IKτn,∞K

(
ϑ+ Vτn(ϑ̂n ?ξ

σn ϑ− ϑ, S
ξ)ξ
)

+ ξ/n, (3.6)

with ϑ̂n ?ξ
σn ϑ defined in (3.4). In words, we hold a (1/n)-multiple of ξ, switch at

time σn from ϑ̂n to ϑ if the value of ϑ is at most the value of ϑ̂n, and always switch
to ϑ at time τn; in both cases, any difference in value is invested into ξ. Using
ξ · Sξ ≡ 1, this gives

V0(ϑ̃n, Sξ) = ϑ̃n0 · S
ξ
0 = ϑ̂n0 · S

ξ
0 + (ξ0 · Sξ0)/n ≤ V0(ϑ, Sξ) + 2/n.

Next, as ϑ̂n and ϑ are in Θsf
+, Lemma 3.12 yields ϑ̂n ?ξ

σn ϑ ∈ Θsf
+, and therefore

(3.6) gives ϑ̃n · Sξ = V(ϑ̃n, Sξ) ≥ 0 P -a.s. on J0, τnK. Using now V(ξ, Sξ) ≡ 1 and
the definition (3.4) allows us to compute, as in the proof of Lemma 3.12 in the
Appendix, that

Vτn(ϑ̂n ?ξ
σn ϑ− ϑ, S

ξ) = I{τn=σn}Vτn(ϑ̂n − ϑ, Sξ)

+ I{τn>σn}
(
IΓnVτn(ϑ̂n − ϑ, Sξ)

+ IΓcnVσn(ϑ̂n − ϑ, Sξ)
)

(3.7)

with Γn := {Vσn(ϑ̂n) < Vσn(ϑ)}. This shows that due to τn <∞ P -a.s., we always
have

Vτn(ϑ̂n ?ξ
σn ϑ− ϑ, S

ξ) ≥ min
(
(ϑ̂nτn − ϑτn) · Sξτn , 0

)
≥ −1/n P -a.s. (3.8)

Combining (3.6) and (3.8) and using ξ ≥ 0 implies that on Kτn,∞K, we have

ϑ̃n − ϑ = Vτn(ϑ̂n ?ξ
σn ϑ− ϑ, S

ξ)ξ + ξ/n ≥ 0, (3.9)
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hence V(ϑ̃n, Sξ) ≥ V(ϑ, Sξ), and so ϑ̃n is like ϑ in Θsf
+.

Now on the set Bn, we have σn = σ′n, so Vσn(ϑ̂n−ϑ, Sξ) = (ϑ̂nσn −ϑσn) ·Sξσn ≥ δ
P -a.s. as in (3.5) and therefore by (3.7) also

Vτn(ϑ̂n ?ξ
σn ϑ− ϑ, S

ξ) = Vσn(ϑ̂n − ϑ, Sξ) ≥ δ P -a.s.

Thus (3.9) and ξ ≥ 0 yield ϑ̃n−ϑ ≥ δξ on Bn on Kτn,∞K and so, as τn <∞ P -a.s.,
lim inf
t→∞

(ϑ̃nt − ϑt − δIBnξt) ≥ 0 P -a.s. (3.10)

Now define the [0, 1]-valued adapted process ψn = (ψnt )t≥0 by ψnt := δE[IBn |Ft].
Then ϕn < ∞ and the fact that Bn ∈ Fϕn yield ψnt = δIBn for t ≥ ϕn so that
ψn∞ := limt→∞ ψnt = δIBn P -a.s. Moreover, we also obtain via (3.10) that

lim inf
t→∞

(ϑ̃nt − ϑt − ψnt ξt) = lim inf
t→∞

(ϑ̃nt − ϑt − δIBnξt) ≥ 0 P -a.s.

Set B :=
⋂
n∈NBn and ψt := δE[IB |Ft] for t ≥ 0. Then limt→∞ ψt = ψ∞ := δIB

P -a.s., and B ⊆ Bn for all n implies ψ ≤ ψn for all n. Moreover, ψ∞ ∈ L∞+ \ {0}
because

P [B] ≥ P [B ∩A] = P [A]− P
[
A ∩

⋃
n∈N

Bcn

]
≥ P [A]−

∞∑
n=1

P [A ∩Bcn]

= P [A]−
∞∑
n=1

(P [A]− P [A ∩Bn]) ≥ P [A]
(

1−
∞∑
n=1

2−n+1
)

= P [A]/2 > 0.

So we have found ψ and for each n ∈ N a ϑ̃n ∈ Θsf
+ with V0(ϑ̃n, Sξ) ≤ V0(ϑ, Sξ)+2/n

and
lim inf
t→∞

(ϑ̃nt − ϑt − ψtξt) = lim inf
t→∞

(ϑ̃nt − ϑt − ψnt ξt) ≥ 0 P -a.s.,

which contradicts the assumption that ϑ is sm for ξ.
2) If ϑ is not sm for ξ, there are a [0, 1]-valued adapted ψ = (ψt)t≥0 converging

P -a.s. to ψ∞ := limt→∞ ψt ∈ L∞+ \ {0} and for each ε > 0 a strategy ϑ̂ε ∈ Θsf
+

with V0(ϑ̂ε) ≤ V0(ϑ) + ε, hence V0(ϑ̂ε, Sξ) ≤ V0(ϑ, Sξ) + ε/V0(ξ), and satisfying
lim inft→∞(ϑ̂εt − ϑt − ψtξt) ≥ 0 P -a.s. By Lemma 3.11, Sξ is bounded in t ≥ 0,
P -a.s. Superadditivity of the lim inf, Lemma A.1, V(ξ, Sξ) = ξ · Sξ ≡ 1 and Sξ ≥ 0
from S ≥ 0 thus yield that P -a.s.,

lim inf
t→∞

Vt(ϑ̂ε − ϑ, Sξ) ≥ lim inf
t→∞

(
(ϑ̂εt − ϑt − ψtξt) · S

ξ
t

)
+ lim inf

t→∞

(
(ψtξt) · Sξt

)
≥
(

lim inf
t→∞

(ϑ̂εt − ϑt − ψtξt)
)
·
(

lim inf
t→∞

Sξt

)
+ ψ∞ ≥ ψ∞.

So ϑ is not vm for Sξ, and this completes the proof.

3.5. Proofs of the main results. In this section, we prove the main results from
Section 2.

Proof of Theorem 2.12. (a) ⇒ (b): If S satisfies DSV for η, then 0 ∈ Θsf
+ is sm for

η and hence vm for Sη by Theorem 3.10, 1) for ξ = η. Theorem 3.8 for ξ = η
therefore yields a discounter D′ ∈ Sunif

++ such that Sη/D′ is a σ-martingale. Writing
Sη/D′ = S/((η ·S)D′) shows that D := (η ·S)D′ ∈ S++ is a σ-martingale discounter
for S. Moreover, η · (S/D) = 1/D′ is in Sunif

++ like D′, and in particular, we have
inft≥0(ηt · (St/Dt)) > 0 P -a.s. This does not need S ≥ 0.

(b)⇒ (a): If D is a σ-martingale discounter for S, then S̃ := S/D is a σ-martin-
gale. By [3, Corollary 3.5], 0 ≤ V(η, S̃) = V0(η, S̃) + η S̃ is a P -supermartingale so
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that limt→∞ Vt(η, S̃) exists and is finite, P -a.s. (We cannot use Proposition 3.4 here
because D need not be S-tradable; see Remark 3.5.) This yields supt≥0(ηt · S̃t) <∞
P -a.s., and as also inft≥0(ηt · S̃t) > 0 P -a.s. by assumption, V(η, S̃) = η · (S/D) is in
Sunif

++ . Now D′ ≡ 1 ∈ Sunif
++ is a σ-martingale discounter for S̃, and so Theorem 3.8

applied to S̃ and ξ = η implies that 0 is vm for S̃η. By Theorem 3.10, 2) for S̃ ≥ 0
and ξ = η, 0 is then sm for η in the model S̃, and hence also in the model S = S̃D
because D ∈ S++ and share maximality is discounting-invariant with respect to
S++. So S satisfies DSV for η.

Remark 3.13. The above proof shows the useful fact that for a σ-martingale
discounter D for S, the properties η · (S/D) ∈ Sunif

++ and inft≥0(ηt · (St/Dt)) > 0
P -a.s. are equivalent.

Proof of Theorem 2.14. This is very similar to the proof of Theorem 2.12, with the
main difference that we use Theorem 3.9 instead of Theorem 3.8.

(a)⇒ (b): If S satisfies DSE for η, every η-buy-and-hold ϑ ∈ Θsf
+ and in particular

the reference strategy η is sm for η and hence vm for Sη by Theorem 3.10, 1). As η
and Sη are bounded by assumption, Theorem 3.9 for ξ = η yields the existence of
some D′ ∈ Sunif

++ such that Sη/D′ is a UI martingale. As before, D := (η · S)D′ is
then a UI martingale discounter for S, and we also again get inft≥0(ηt ·(St/Dt)) > 0
P -a.s.

(b) ⇒ (a): If D ∈ Sunif
++ is a UI martingale deflator for S and we set S̃ := S/D,

we get V(η, S̃) ∈ Sunif
++ as before. Because η and Sη are bounded by assumption,

Theorem 3.9 applied to S̃ and ξ = η then yields that each bounded ϑ ∈ Θsf
+ is vm

for S̃η. But every η-buy-and-hold ϑ ∈ Θsf
+ is bounded like η itself, hence vm for S̃η

and then sm for η as before. Thus S satisfies DSE for η.

4. Additional results. In this section, we first present a combined theorem which
contains the main new results in Theorems 2.12 and 2.14 together with extra state-
ments that connect our work to the literature. We then discuss to which extent
our approach and results are robust towards the choice of a reference strategy, and
finally present a number of results which clarify the relation of our AOA concepts
to the classic theory and in the classic setup.

4.1. A more detailed version of our main results. To connect our main results
to existing concepts, we give the following combined and more detailed version of
Theorems 2.12 and 2.14.

Theorem 4.1. Suppose S ≥ 0 and there exists a reference strategy η. Consider
the following statements:
(e1) S satisfies dynamic share efficiency for η.
(v1) S satisfies dynamic share viability for η.
(e2) Every bounded ϑ ∈ Θsf

+ is value maximal for Sη.
(e2′) The reference strategy η is bounded and value maximal for Sη = S/(η · S).
(v2) The zero strategy 0 is value maximal for Sη = S/(η · S).
(e3) There exists a UI martingale discounter D for S with η · (S/D) ∈ Sunif

++ .
(v3) There exists a σ-martingale discounter D for S with η · (S/D) ∈ Sunif

++ .
(e4) There exist a local martingale L > 0 with L0 = 1 and a discounter N of finite

variation such that the product L(S/N) is a UI martingale and η · (LS/N) is
in Sunif

++ .
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S satisfies DSE for η S satisfies DSV for η
(every η-buy-and-hold ϑ ∈ Θsf

+ is sm for η) (0 is sm for η)
m m

every bounded ϑ ∈ Θsf
+ is sm for η 0 ∈ Θsf

+ is sm for η
m m

η is bounded and sm for η 0 is sm for η
m m

η is bounded and vm for Sη 0 is vm for Sη
m m

every bounded ϑ ∈ Θsf
+ is vm for Sη some ϑ ∈ Θsf

+ is vm for Sη
m m

∃ UI martingale discounter D for S ∃ σ-martingale discounter D for S
with η · (S/D) ∈ Sunif

++ with η · (S/D) ∈ Sunif
++

m =⇒ m
∃ FV discounter N and ∃ FV discounter N and

local martingale L > 0 with local martingale L > 0 with
L(S/N) UI martingale and L(S/N) σ-martingale and

L(η · (S/N)) ∈ Sunif
++ L(η · (S/N)) ∈ Sunif

++
m m

∃ ϑ ∈ Θsf
++ and Q ≈ P with ∃ ϑ ∈ Θsf

++ and Q ≈ P with
S/V(ϑ) UI martingale and S/V(ϑ) σ-martingale and

V(η)/V(ϑ) ∈ Sunif
++ V(η)/V(ϑ) ∈ Sunif

++
m m

Sη satisfies NFLVR∞ Sη satisfies NUPBR∞
m m

Sη satisfies classic NFLVR Sη satisfies classic NUPBR

Figure 1. Graphical summary of Theorem 4.1. Assumptions
are S ≥ 0 and that η is a reference strategy (which is assumed to
exist). The shorthand sm stands for share maximal, vm stands for
value maximal. The equivalences on the left side need in addition
that η and Sη are bounded (uniformly in (ω, t)).

(v4) There exist a local martingale L > 0 with L0 = 1 and a discounter N of finite
variation such that the product L(S/N) is a σ-martingale and η · (LS/N) is in
Sunif

++ .
(e5) There exist a strategy ϑ ∈ Θsf

++ and a probability measure Q ≈ P such that
Sϑ = S/V(ϑ) is a UI martingale under Q and V(η)/V(ϑ) = (η · S)/(ϑ · S) is
in Sunif

++ .
(v5) There exist a strategy ϑ ∈ Θsf

++ and a probability measure Q ≈ P such that
Sϑ = S/V(ϑ) is a σ-martingale under Q and V(η)/V(ϑ) = (η · S)/(ϑ · S) is in
Sunif

++ .
(e6) NFLVR∞(Sη) holds, i.e., Sη = S/V(η) satisfies NFLVR∞.
(v6) NUPBR∞(Sη) holds, i.e., Sη = S/V(η) satisfies NUPBR∞.
(e7) Sη = S/V(η) satisfies classic NFLVR.
(v7) Sη = S/V(η) satisfies classic NUPBR.
(e8) Every bounded ϑ ∈ Θsf

+ is share maximal for η.
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(e8′) The reference strategy η ∈ Θsf
+ is bounded and share maximal for η.

(v8) There exists some ϑ ∈ Θsf
+ which is share maximal for η.

Then we have (eK)⇒ (vK) for K = 1, . . . , 8, and the statements (vK), K = 1, . . . , 8,
are equivalent among themselves. If in addition η and Sη are bounded (uniform-
ly in (ω, t)), then also the statements (eK), K = 1, . . . , 8, are equivalent among
themselves (including the prime ′ versions).

Figure 1 gives a graphical overview of this result.

Proof. First, (v1) ⇔ (v2) is clear from the definition of DSV and Theorem 3.10 for
ξ = η. Next, (v2) ⇔ (v6) is (a) ⇔ (e) from Proposition 3.3, and (v1) ⇔ (v3) is
(a) ⇔ (b) from Theorem 2.12 in view of Remark 3.13. Moreover, (v2) ⇔ (v8) is
clear from Lemma 3.1, 2) together with Theorem 3.10 for ξ = η. The equivalence
(v3) ⇔ (v4) is immediate from Lemma 2.2. If we have (v1), the proof of Theo-
rem 3.8, (a) ⇒ (b) and then (b) ⇒ (c), shows that (v5) holds. Finally, if we have
(v5), the proof of Theorem 3.8, (b) ⇒ (c) and (c) ⇒ (a), with ξ = η shows that 0
is vm for Sη and hence sm for η by Theorem 3.10, 2).

The statements or definitions clearly yield (eK) ⇒ (vK) for K = 1, . . . , 8. More-
over, (v6) ⇔ (v7) as well as (e6) ⇔ (e7) follow from the discussion at the end of
Section 3.1.

Now (e1) ⇔ (e3) is (a) ⇔ (b) in Theorem 2.14, again using Remark 3.13, and
both (e2) ⇔ (e8) and (e2′) ⇔ (e8′) are due to Theorem 3.10. Next, (e2′) ⇔ (e8) is
(a) ⇔ (c) from Theorem 3.9, and (e2′) ⇔ (e6) is (a) ⇔ (c) from Proposition 3.7,
both for ξ = η. Moreover, the definition of DSE directly gives (e1) ⇒ (e8′), and
then also (e8) ⇒ (e1) as η is bounded. Finally, the equivalences (e3) ⇔ (e4) and
(e1) ⇔ (e5) are proved as above, with Theorem 3.9 replacing Theorem 3.8.

Remark 4.2. It is not difficult to prove the equivalence (v3) ⇔ (v6) directly via
the classic result from Karatzas/Kardaras [27, Theorem 4.12]. However, our main
result in Theorem 2.12 is the equivalence of (v3) to the new AOA condition DSV
for η in (v1). This is not available in the literature and has no easy proof, as one
can see in Section 3.

4.2. Robustness towards the choice of a reference strategy. As already
pointed out in Remark 2.9, 2), our concepts and main results depend on the choice
of a reference strategy η. In this section, we show that this dependence is fairly
weak, which means that our approach is quite robust towards the choice of η.

For two reference strategies η, η′, consider the ratio condition
(η′ · S)/(η · S) = V(η′)/V(η) ∈ Sunif

++ , i.e.,

0 < inf
t≥0

Vt(η′)
Vt(η) ≤ sup

t≥0

Vt(η′)
Vt(η) <∞ P -a.s. (4.1)

As Sunif
++ is closed under taking reciprocals, (4.1) is symmetric in η and η′. Intuitively,

(4.1) means that η and η′ are comparable in a certain way.

Lemma 4.3. Suppose S ≥ 0 and there exist reference strategies η, η′. Fix ϑ ∈ Θsf
+.

If (4.1) holds, ϑ is share maximal for η if and only if it is share maximal for η′.

Proof. If ϑ is sm for η, then it is vm for Sη by Theorem 3.10, 1). But Sη′ = Sη/D
with D := (η′ · S)/(η · S) ∈ Sunif

++ due to (4.1). Thus by Lemma 3.1, 1), ϑ is vm
for Sη′ as well, and hence sm for η′ by Theorem 3.10, 2). The converse is argued
symmetrically.
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Proposition 4.4. Suppose S ≥ 0 and there exist reference strategies η, η′.
1) If (4.1) holds, then DSV for η and DSV for η′ are equivalent.
2) If η, η′ as well as Sη, Sη′ are bounded (uniformly in (ω, t)), then DSE for η

and DSE for η′ are equivalent.

Proof. 1) Apply Lemma 4.3 to ϑ ≡ 0.
2) Because η and Sη′ are bounded, so is (η ·S)/(η′ ·S) = η ·Sη′ , and analogously,

(η′ · S)/(η · S) is bounded. So (4.1) holds. If we have DSE for η, every bounded
ϑ ∈ Θsf

+ and in particular η′ is sm for η by Theorem 4.1, (e1)⇒ (e8). By Lemma 4.3,
η′ is thus also sm for η′, and so Theorem 4.1, (e8′) ⇒ (e1), gives DSE for η′. The
converse argument is symmetric.

Note that the boundedness assumptions in Proposition 4.4, 2) are precisely those
we impose in Theorem 2.14 to obtain a dual characterisation for DSE. So DSE is
robust with respect to the choice of any reference strategy in that class.

By Proposition 4.4, 1), the ratio condition (4.1) is sufficient for DSV for η and
η′ to be equivalent. Using Theorem 3.10 and Lemma 3.11, one can show that it is
also necessary.

Remark 4.5. Suppose S ≥ 0 and
∑N
i=1 S

i is strictly positive with strictly positive
left limits. As seen in Remark 2.4, 1), the market portfolio 1 is then a reference strat-
egy which has 1 and S1 = S/

∑N
i=1 S

i bounded (uniformly in (ω, t)). Any η ∈ Θsf
+

with c1 ≤ η ≤ C1 for constants 0 < c ≤ C < ∞ is then also a reference strategy
which has η and Sη bounded (uniformly in (ω, t)). In view of Proposition 4.4, 2),
DSE for the market portfolio is thus the same as for any bounded reference strategy
which always invests into all assets in a uniformly nondegenerate way. An “extreme”
strategy like ei, buy and hold a single fixed asset i, does not satisfy this.

4.3. Connections to the classic results. Theorem 4.1 shows that DSV is related
to NUPBR, and DSE to NFLVR. We now study this in more detail in the classic
setup S = (1, X), for X ≥ 0 as our results need S ≥ 0.

If S = (1, X) with X ≥ 0, then 1 is a reference strategy (with V(1) ≥ 1) and
S1 = S/V(1) = S/

∑N
i=1 S

i is bounded (uniformly in (ω, t)). Both these properties
hold for any S ≥ 0 with

∑N
i=1 S

i > 0 and
∑N
i=1 S

i
− > 0. In contrast, ei is a reference

strategy for general S ≥ 0 only if Si > 0 and Si− > 0, and Sei = S/Si has in general
no boundedness properties. For S = (1, X), e1 is always a reference strategy and
Se1 = S. But this relies crucially on the particular structure of S = (1, X), and
choosing e1 as a reference strategy is therefore both more extreme and more delicate
than choosing 1. The next result reflects this.

Proposition 4.6. If S = (1, X) for an Rd+-valued semimartingale X ≥ 0, then
classic NUPBR for X is equivalent to S satisfying DSV for e1 and implies that S
satisfies DSV for 1.

Proof. Classic NUPBR for X is the same as NUPBR∞(1, X), and this is by Propo-
sition 3.3 for ξ ≡ e1 equivalent to 0 being vm for Se1 = S = (1, X). In turn, this is
by Theorem 3.10 equivalent to 0 being sm for e1, which is DSV for e1 by definition.
Next, DSV for 1 is the same as 0 being sm for 1, which is equivalent to 0 being vm
for S1 by Theorem 3.10 again, now for ξ ≡ 1. As S1 = S/V(1) = Se1

/V(1), vm
for Se1 is by Lemma 3.1, 1) the same as vm for S1 whenever V(1) ∈ Sunif

++ , and the
point is now that this holds if X satisfies NUPBR. Indeed, V(1) ≥ 1 due to X ≥ 0,
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and as NUPBR for X is equivalent to 0 being vm for Se1 = S, Proposition 3.4
for ξ ≡ e1 implies that V(1) is convergent and hence bounded in t ≥ 0, P -a.s. So
V(1) ∈ Sunif

++ and we are done.

The converse of the last implication in Proposition 4.6 is not true in general. A
counterexample is given in Example 6.8. Thus our new concept of dynamic share
viability, when used for the market portfolio 1, is more widely applicable than classic
NUPBR. The same example also shows that DSV for 1 does not imply DSV for e1

in general.
The situation with DSE versus NFLVR is more subtle. We first give a positive

result.
Proposition 4.7. If S = (1, X) for an Rd+-valued semimartingale X ≥ 0, then
classic NFLVR for X is equivalent to S satisfying DSE for e1.
Proof. Classic NFLVR for X is the same as NFLVR∞(1, X), and this is by Propo-
sition 3.3 for ξ ≡ e1 equivalent to e1 being vm for Se1 = S = (1, X). In turn,
this is by Theorem 3.10 equivalent to e1 being sm for e1. But any e1-buy-and-hold
strategy ϑ is of the form ϑ = λe1 for some λ ∈ R, because e1 = (1, 0, . . . , 0), and so
ϑ is in Θsf

+ if and only if λ ≥ 0. Thanks to Lemma 3.1, 2), e1 is therefore sm for e1

if and only if every e1-buy-and-hold ϑ ∈ Θsf
+ is sm for e1, which is DSE for e1 by

definition.

Remark 4.8. It looks tempting to use Theorem 4.1, (e1) ⇔ (e8′), to shorten the
above argument. But the proof of that equivalence uses that both η and Sη are
bounded (uniformly in (ω, t)), which would place (for η ≡ e1) a massive restriction
on Se1 = S = (1, X).

If we want to use the reference strategy η ≡ 1, the situation for DSE versus
NFLVR is different from DSV versus NUPBR. Neither of DSE for 1 and NFLVR
forX implies the other in general in the classic case S = (1, X). Example 6.10 shows
that DSE for 1 does not imply NFLVR for X. Conversely, Example 6.7 shows that
for S = (1, X), we can have NFLVR for X while DSE for 1 fails. (We note that
by Theorem 4.1 with η ≡ 1, S satisfying DSE for 1 is equivalent to S1 satisfying
NFLVR∞, and also to S1 satisfying DSE for 1, by discounting-invariance; but this
only means that we have a result for 1-discounted prices S1, not for the original
prices S.)

The background of this discrepancy is as follows. NFLVR for X is equivalent to
e1 being value maximal for (1, X), whereas DSE for 1 is equivalent to 1 being value
maximal for S1. Here, “e1 value maximal” is weaker than “1 value maximal” as
e1 ≤ 1, but “for (1, X)” is stronger than “for S1” as (1, X) ≥ S1. Upon reflection,
the discrepancy is actually not surprising; in fact, NFLVR is about how e1 or V(e1)
fits into the market, whereas DSE for 1 looks at all the ei, i = 1, . . . , N . The next
result makes this more precise.
Proposition 4.9. Suppose that S ≥ 0 and there exist reference strategies η, η′.
Then NFLVR∞(Sη) plus inft≥0(η′t · S

η
t ) > 0 P -a.s. implies that η is share maximal

for η′. In particular, if S = (1, X) with X ≥ 0, then classic NFLVR for X implies
that e1 is share maximal for 1.
Proof. The second statement follows from the first for η ≡ e1, η′ ≡ 1 by observing
that 1 · Se1 = 1 +

∑d
i=1X

i ≥ 1. If we have NFLVR∞(Sη), then η and 0 are vm for
Sη by Proposition 3.7 and Lemma 3.1, 2), and so V(η′, Sη) is convergent and hence
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bounded in t ≥ 0, P -a.s., by Proposition 3.4. By assumption, inft≥0 Vt(η′, Sη) > 0
P -a.s. so that V(η′, Sη) ∈ Sunif

++ . As η is vm for Sη, it is by Lemma 3.1, 1) also vm
for Sη/V(η′, Sη) = Sη

′ . By Theorem 3.10, 2), η is then sm for η′.

To conclude, we briefly show how our approach yields new results even in the
classic case. Note that the next result does not assume that S ≥ 0.

Proposition 4.10. Suppose that there exists an η ∈ Θsf
++. Then Sη satisfies

NUPBR∞ if and only if there exists a σ-martingale discounter D for Sη with
D∞ := limt→∞Dt <∞ P -a.s.

Proof. By Proposition 3.3 and Theorem 3.8 for ξ = η, Sη satisfies NUPBR∞ if
and only if it admits a σ-martingale discounter D′ ∈ S++ with the extra property
D′ ∈ Sunif

++ . Fix any σ-martingale discounter D for Sη. Because V(η, Sη) ≡ 1,
writing

1/D = V(η, Sη)/D = V(η, Sη/D) = V0(η, Sη/D) + η (Sη/D)

shows that 1/D is a σ-martingale like Sη/D, and in S++ like D. By Ansel/
Stricker [3, Corollary 3.5], 1/D is thus a local martingale > 0, then a supermartin-
gale > 0, and hence P -a.s. convergent to some finite limit. Then D itself is also
P -a.s. convergent and D∞ > 0 P -a.s., which implies inft≥0Dt > 0 P -a.s. The extra
property D ∈ Sunif

++ thus holds if and only if supt≥0Dt <∞ P -a.s. or, equivalently
by convergence, D∞ <∞ P -a.s.

Corollary 4.11. Suppose that X is an Rd-valued semimartingale. Then X sat-
isfies classic NUPBR if and only if there exists a local martingale L > 0 with
L∞ := limt→∞ Lt > 0 P -a.s. and such that the product LX is a σ-martingale.

Proof. For S = (1, X), η ≡ e1 is in Θsf
++ with Sη = Se1 = S. So we can apply

Proposition 4.10 and take L := 1/D. The properties of L are all shown in the above
proof.

Corollary 4.11 sharpens the classic characterisation of NUPBR in Karatzas/
Kardaras [27, Theorem 4.12] in two ways. First, X and X− need not be strictly pos-
itive (i.e., we need not assume X ∈ Sd++); this is also pointed out in [27, Section 4.8].
More importantly, we get a σ-martingale deflator L for X itself, not only a super-
martingale deflator L̃ for all H X with H ∈ Ladm(X); see also Bálint/Schweizer [5,
Lemma 2.13] for the connection between these two and other properties. Unlike 1/L̃,
however, 1/L cannot be chosen S-tradable in general; see Takaoka/Schweizer [39,
Remark 2.8] for a counterexample and [5, Propositions 2.19 and 2.20] for related
positive results. Corollary 4.11 also extends [39, Theorem 2.6] from a right-closed
interval [0, T ] to a general setup.

5. Comparison to the literature. This section compares our ideas and results to
the existing literature. In contrast to Section 4.3, it is qualitative in the sense that
it contains no results and proofs, but only discussion. We first consider absence-of-
arbitrage (AOA) aspects and then discuss numéraire- or discounting-invariance.

5.1. Absence of arbitrage. The two most used classic AOA notions in the lit-
erature are NFLVR (due to Delbaen/Schachermayer [10]) and the strictly weaker
NUPBR (coined by Karatzas/Kardaras [27]). The latter condition was introduced
under different names by different authors — BK in Kabanov [23], no cheap thrills
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in Loewenstein/Willard [34] or NA1 in Kardaras [29, 31]; see also Kabanov/Kram-
kov [24] for the notion of NAA1. By [29, Proposition 1] and Kabanov et al. [21,
Lemma A.1], all these and NUPBR are equivalent.

It is very important to note that both NFLVR and NUPBR are classically only
defined for discounted price processes of the form S = (1, X). This entails a serious
loss of generality — already in Example 1.1 with two GBMs S1 and S2, it can easily
happen that the S1-discounted model S/S1 = (1, S2/S1) satisfies classic NFLVR
whereas the S2-discounted model S/S2 = (S1/S2, 1) fails even the weaker property
of classic NUPBR. In other words, the choice of discounting decides here whether
we obtain a discounted model with or without arbitrage. The AOA properties of
the original model (S1, S2) are thus not clarified at all. Similar concerns apply
to general non-discounted models S. One might think that change-of-numéraire
results could help to alleviate this issue, and we discuss this below in Section 5.2.
But it turns out that classic results do not help.

Once one has a definition of AOA for S = (1, X), one can ask about an equivalent
alternative description. Dual characterisations, in terms of martingale properties
for X, first focused on NFLVR, culminating in the classic FTAP due to Delbaen/
Schachermayer [10, 13] that for a general Rd-valued semimartingale X, NFLVR for
S = (1, X) is equivalent to the existence of an equivalent σ-martingale measure for
the discounted prices X.

Even if NFLVR fails to hold, a market can still be nice enough to allow some
AOA-type arguments. This has been exploited in several papers. Loewenstein/
Willard [34] show in an Itô process setup that already no cheap thrills (NUPBR)
is sufficient (and necessary) to solve utility maximization problems; see also Chau
et al. [8]. In the benchmark approach presented in Platen/Heath [35], a market
may violate NFLVR; but in units of the so-called numéraire portfolio, the theory
works as if there was no arbitrage. An excellent discussion with more details can
be found in Herdegen [17, Section 5.3]. For stochastic portfolio theory and the
study of relative arbitrage (see Karatzas/Fernholz [26] for an overview), a market
may have “arbitrage” in the sense of FLVR; but still portfolio choice can make
sense, and hedging via superreplication can work. The comprehensive paper of
Karatzas/Kardaras [27] shows that maximising growth rate, asymptotic growth
or expected logarithmic utility from terminal wealth all make sense if and only if
NUPBR holds. Another overview of these connections is given in the recent work
of Choulli et al. [9].

In Bálint/Schweizer [5], we have recently studied the dependence of AOA condi-
tions on the time horizon as part of an analysis of large financial markets; see [5,
Section 5 and in particular Corollary 5.4]. We point out there in [5, Remark 5.6]
that in contrast to common belief, NUPBR on [0,∞) is not stable under localisa-
tion. Put differently, NUPBR on [0,∞) (which is the original definition in [27]) is
strictly stronger than having NUPBR on [0, T ] for all T ∈ (0,∞). For related work
on the connection of NUPBR to the time horizon, we refer to Kardaras [32], Acciaio
et al. [1] and Aksamit et al. [2]. See also Remark 5.1 below.

Like for NFLVR, the literature contains dual characterisations of NUPBR. De-
pending on the setting, they vary in the strength of the dual formulation; see Ta-
ble 1 below for an overview. For S = (1, X) on [0,∞) with X ∈ Sd++, Karatzas/
Kardaras [27] show that NUPBR is equivalent to the existence of an S-tradable su-
permartingale discounter for all wealth processes of admissible self-financing strate-
gies. On [0, T ], this is strengthened by Takaoka/Schweizer [39] to the existence
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of a σ-martingale discounter for X, where again S = (1, X) but X can be in Sd.
Both Kardaras [31] and Kabanov et al. [21], inspired by the results and a coun-
terexample in [39], work on [0, T ] with S = (1, X) for X ∈ Sd and characterise NA1
(which is equivalent to NUPBR) by the existence of a local martingale discounter
for all wealth processes of admissible self-financing strategies. In [31], this is done
for d = 1 so that X is real-valued; the authors of [21] extend the result to d ≥ 1
and in addition manage to find an S-tradable local martingale discounter under
some R ≈ P , for an R in any neighbourhood of P . An overview of the connections
between different types of discounters is given in Bálint/Schweizer [5, Lemma 2.13].

price process S time condition dual condition

KK [27] (1, X) ∈ S1+d
++ [0,∞) NUPBR

∃ S-tradable SMD D > 0,
∀ H X with H ∈ Ladm(X),

with D∞ > 0
TS [39] (1, X) ∈ S1+d [0, T ] NUPBR ∃ σMD D > 0 for X

K [31] (1, X) ∈ S1+1 [0, T ] NA1
∃ LMD D > 0,

∀ H X with H ∈ Ladm(X)

KKS [21] (1, X) ∈ S1+d [0, T ] NA1
∃ S-tradable LMD D > 0,
∀ H X with H ∈ Ladm(X),
in any neighbourhood of P

H [17] in SN [0, T ] NINA
∃ (discounter, EσMM) pair

for S

here in SN+ [0,∞) DSV for η
∃ σMD = LMD D > 0 for S
with inft≥0(ηt · (St/Dt)) > 0

Table 1. Overview of existing FTAP-type results. Note that we
have NA1 = NUPBR on [0, T ].

Table 1 gives an overview of the dual characterisation results discussed above.
We recall the space Sm of Rm-valued semimartingales and use Sm+ , Sm++ as in
Section 2. The abbreviations SMD, σMD and LMD denote super-, σ- and local
martingale discounters, respectively. The table compares Karatzas/Kardaras [27],
Takaoka/Schweizer [39], Kardaras [31], Kabanov et al. [21], Herdegen [17] and the
present article. Note that on a right-open interval, here called [0,∞), the dual
characterisation always involves a condition at the right endpoint (here called ∞).

5.2. Numéraire- or discounting-invariance. As mentioned above, both classic
NFLVR and NUPBR are only defined for discounted prices of the form S = (1, X).
It is natural to ask in general what happens to an AOA concept if one changes the
numéraire, i.e., uses a different process for discounting. This can be done in two
different directions, after initially fixing only a price process S:

(A) One can first fix a class D of discounting processes and then look for an
AOA concept A which is invariant for the chosen class D, in the sense that A holds
simultaneously for all processes S/D with D ∈ D.
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(B) One can first fix an AOA concept A′ and then look for a class D′ of discount-
ing processes which leaves the chosen A′ invariant, in the same sense as above.

Both (A) and (B) are concerned with numéraire- or discounting-invariance; but their
objectives and results are fundamentally different. In a nutshell, most of the classic
results and in particular Delbaen/Schachermayer [11, 12] fall into category (B),
whereas both Herdegen’s and our approach here address (A). Put differently, we
want to be liberal about the class D of allowed discounters and thus need to look
for a suitable new AOA concept A. In contrast, [11, 12] want to keep an established
AOA concept A′ and therefore look for restrictions on the class D′ of discounters
to achieve this.

Historically, probably the first to study questions of numéraire-invariance for
AOA were Delbaen/Schachermayer [11] and Sin [38] (interestingly, these works do
not cite each other). [38] studies problem (A) for the special case D = {S1, . . . , SN}
and replaces for strategies ϑ ∈ Θsf the concept of admissibility used in [11] by that
of feasibility, i.e., the value process should satisfy V(ϑ) ≥ −V(c1) = −

∑N
i=1 c

iSi,
where ci ≥ 0 is the number of shares of asset i outstanding at time 0 and the
product c1 is componentwise. For S = (1, X(1))S1 with S1 > 0 and X(1) ≥ 0
a semimartingale, the main result is then that X(1) satisfies NFLVR with feasible
strategies if and only if X(1) admits an equivalent (true) martingale measure, and
that this is also equivalent to NFLVR with feasible strategies for any X(k) with
S = (1, X(k))Sk whenever Sk > 0 and X(k) ≥ 0 is a semimartingale. Thus one
has indeed an answer to (A), and the new AOA concept A in [38] is NFLVR with
feasible strategies. Essentially the same approach was redeveloped later in Yan [41]
(who was apparently unaware of [38]).

In contrast, Delbaen/Schachermayer [11, 12] study problem (B) and answer the
questions appearing there fairly exhaustively. Starting with S = (1, X) and tak-
ing an S-tradable numéraire/discounter D = V(ϑ), they consider the two markets
S = (1, X) and S̃ = ( 1

D ,
X
D ) and show in [11] that if S satisfies classic NFLVR, then

S̃ admits an equivalent σ-martingale measure if and only if D∞−D0 is maximal in
Gadm(S). In the spirit of (B), this characterises those S-tradable discounters which
preserve NFLVR. In [12], for such a D and under NFLVR for S, they derive an
isometry between two spaces G(S) and G(S̃) of (final values of) stochastic integrals.
One key assumption for both results is D∞ > 0; so in addition to being S-tradable,
D must also be in Sunif

++ . When we look at Example 1.1 from this perspective, we
see that while both S1, S2 are S-tradable, none of them is in Sunif

++ — so both assets
are not allowed as discounters in the Delbaen/Schachermayer framework, and the
results from Delbaen/Schachermayer do not help to answer our question.

After Sin [38], problem (A) was taken up almost 20 years later (without citing
[38]) by Herdegen [17] who worked on [0, T ] with a general RN -valued semimartin-
gale S. He used the essentially largest possible class D = S++ of discounters, which
on [0, T ] coincides with Sunif

++ because all processes are defined up to and including
the time horizon T , and introduced the discounting-invariant AOA condition NINA
or dynamic (value) viability. This generalises NUPBR and is dually characterised
by the existence of a (discounter, EσMM) pair (D,Q), meaning that D ∈ S++ and
Q is an equivalent σ-martingale measure for S/D. In addition, [17] also presents
a discounting-invariant alternative to NFLVR. It is called dynamic (value) effi-
ciency and requires that not one particular asset, but each of the N basic assets
(or, equivalently, the market portfolio 1) should satisfy (value) maximality. One
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key insight from Delbaen/Schachermayer [11] also reappears in [17] — NFLVR de-
scribes a maximality property of the discounting asset, but it does not say much
about the market as a whole. (Our Proposition 4.9 extends that to the current
framework.)

In the above terminology, the contribution of our paper can be succinctly de-
scribed as follows. For an RN+ -valued semimartingale S ≥ 0 on the right-open
interval [0,∞), we consider the class D = S++ of discounters and tackle problem
(A). We introduce two new AOA concepts DSV and DSE which are discounting-in-
variant for S++ and provide dual characterisations.

An interesting related paper in discrete time is by Tehranchi [40]. The main
result in Theorem 2.10 there is reminiscent of our Theorems 2.12 and 2.14, but has
no dual condition at ∞. Moreover, the formulation in [40] hinges crucially on the
discrete-time setup.

Remark 5.1. A recent new book by Karatzas/Kardaras [28] also introduces a
discounting-invariant AOA concept under the name of viability. [28] consider a
market with d risky assets X = (X1, . . . , Xd) and one riskless bank account S0 ≡ 1,
where each Xi > 0 is a continuous semimartingale. Viability in [28] turns out
to be equivalent to NUPBRloc in the sense that X satisfies NUPBR on [0, T ] for
all T ∈ (0,∞). It is easy to check that NUPBRloc is invariant under discounting
with any strictly positive continuous semimartingale D because NUPBR on [0, T ]
satisfies this. (This actually holds for general Rd-valued semimartingales X and
general semimartingales D > 0 with D− > 0.) In our view, this viability concept
has the drawback that it does not allow to consider problems that genuinely live on
all of [0,∞) — the case of a perpetual exchange option as in Example 1.1 is a good
illustration. Using instead directly (classic) NUPBR on [0,∞) is not a way out
because this is discounting-invariant only for D ∈ Sunif

++ ( S++ = D. (Continuity
of X does not help for this latter point either.)

6. Examples. This section illustrates our results by examples and counterexam-
ples. Most are based on variants of one general example, and so we start with an
analysis of that setup.

6.1. Results for a model with N geometric Brownian motions.

Example 6.1. For i = 1, . . . , N , let Si be a geometric Brownian motion with
parameters mi ∈ R, σi ≥ 0; so W = (W 1, . . . ,WN ) is a vector of correlated
Brownian motions and

logSit = σiW
i
t +

(
mi −

1
2σ

2
i

)
t, t ≥ 0. (6.1)

To constructW , we start with a vector B = (B1, . . . , BN ) of independent Brownian
motions and a constant correlation matrix % ∈ RN×N ; so % is symmetric and positive
semidefinite with %ii = 1 and |%ik| ≤ 1 for i, k = 1, . . . , N . Using the Cholesky
decomposition (see Golub/Van Loan [16, Theorem 4.2.7]), we write % = CC> for a
lower triangular matrix C ∈ RN×N with Cii ≥ 0 for i = 1, . . . , N . (If % is positive
definite, as we assume in the sequel, we even have Cii > 0 for i = 1, . . . , N , and
then C is invertible.) Then

W := CB (6.2)
defines Brownian motions W 1, . . . ,WN with 〈W i,W k〉t = %ikt.
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To avoid degenerate situations, we assume % is positive definite. We also assume
that at most one of σ1, . . . , σN can be 0, and for definiteness, we suppose that
σN ≥ 0 and σi > 0 for i = 1, . . . , N − 1. (If σi = σk = 0 for i 6= k, then
Sit = emit, Skt = emkt and hence either Si ≡ Sk if mi = mk, or there is arbitrage
if mi 6= mk.) The filtration F is generated by S = (S1, . . . , SN ), made right-con-
tinuous and complete. If σN > 0, then F is equivalently generated by W or (using
that C is invertible) by B. If σN = 0, then F is generated by W 1, . . . ,WN−1. As
W k = (CB)k =

∑N
`=1 C

k`B` and Ck` = 0 for ` > k because C is lower triangular,
we see that each W k can only depend on B1, . . . , Bk. In particular, for σN = 0, F
does not depend on BN .

Example 6.2. If we take N = 2, then C = ( 1 0
ρ 1 ) with ρ = %12 and we obtain

two basic cases. If σ2 > 0, then S1 and S2 model two stocks given by geometric
Brownian motions (GBMs) with correlation ρ. If σ2 = 0 and we set m := m1,
σ := σ1, r := m2, we have the classic Black–Scholes (BS) model with bank account
S2 and stock S1.

In the setting of Example 6.1, we want to know when S satisfies DSV or DSE
for η ≡ 1. The key for that analysis is the following result.

Proposition 6.3. In Example 6.1, there exists a unique S-tradable discounter D̄
with the property that

S̄i := Si/D̄ = E(γ̄i ·B), i = 1, . . . , N, (6.3)
for vectors γ̄1, . . . , γ̄N ∈ RN . If σN = 0, then γ̄Ni = 0 for i = 1, . . . , N .

As the proof of Proposition 6.3 is rather lengthy, we postpone this for the moment
and turn directly to consequences.

Theorem 6.4. In Example 6.1,
1) S satisfies DSV for 1 if and only if one of the N processes S/Si, i = 1, . . . , N ,

is a martingale;
2) S never satisfies DSE for 1.

Proof. Because DSV and DSE are both discounting-invariant, we can argue for
S̄ = S/D̄ from Proposition 6.3 instead of S.

1) By Proposition 6.3, S̄i = E(γ̄i · B) is a positive martingale for i = 1, . . . , N ,
and then so is 1 · S̄ =

∑N
i=1 S̄

i. Because B1, . . . , BN are independent, Yor’s formula
yields

E(γ̄i ·B) = E
( N∑
k=1

γ̄ki B
k

)
=

N∏
k=1
E(γ̄ki Bk).

For every α ∈ R and any Brownian motion B̃, the process E(αB̃) is a martingale,
and it converges to 0 as t→∞ if α 6= 0. Therefore

lim
t→∞

S̄it = lim
t→∞

E(γ̄i ·B)t = 0 P -a.s. for γ̄i 6= 0. (6.4)

If there exists an i0 with γ̄i0 = 0, then S̄i0 ≡ 1 and therefore 1 · S̄ is a P -martingale
with 1 · S̄ ≥ S̄i0 = 1. So Theorem 2.12, (b) ⇒ (a), with η ≡ 1 and D ≡ 1 implies
that S̄ (and also S) satisfies DSV for 1. On the other hand, if γi 6= 0 for all i,
then limt→∞ 1 · S̄t = 0 P -a.s. due to (6.4). Because D̄ is S-tradable, we have
D̄ = V(ϑ̄) = ϑ̄ · S for some ϑ̄ ∈ Θsf

++ and therefore ϑ̄ · S̄ = (ϑ̄ · S)/D̄ ≡ 1. Thus
limt→∞

ϑ̄t·S̄t
1·S̄t

= +∞ P -a.s., and Lemma 3.11 for ξ ≡ 1 implies for all strategies in
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Θsf
+ that they cannot be value maximal for S1 and then also not share maximal for

1 by Theorem 3.10, 1). Therefore DSV for 1 does not hold.
Up to here, we have shown that S satisfies DSV for 1 if and only if there exists

an i0 with γ̄i0 = 0. Then S̄i0 ≡ 1 which means that Si0 = D̄ and therefore
S̄ = S/Si0 . Because S̄ is a P -martingale by Proposition 6.3, this proves the only
if part. Conversely, if S/Si is a P -martingale for some i, Theorem 2.12, (b) ⇒ (a),
with η ≡ 1 and D = Si implies that S satisfies DSV for 1; note that 1 · (St/Sit) ≥ 1
P -a.s. This proves 1).

2) Because DSE implies DSV, the proof of 1) shows that we can only have DSE
for 1 if γ̄i0 = 0 for some i0. Then D̄ = Si0 and S/Si0 = S̄ is a martingale. In
consequence, we must have γ̄k 6= 0 for all k 6= i0; indeed, if γ̄k = 0, then also
S/Sk is a martingale so that both Sk/Si0 and Si0/Sk are martingales, which is
impossible. We claim that ek for k 6= i0 is not value maximal for S/Si0 . Indeed,
because all the Si start at 1, we have V0(ek, S/Si0) = 1 = V0(ei0 , S/Si0), and
Skt /S

i0
t = S̄kt = E(γ̄k ·B)t → 0 P -a.s. as t→∞ by (6.4) so that

lim
t→∞

Vt(ei0 − ek, S/Si0) = lim
t→∞

(1− Skt /S
i0
t ) = 1 ∈ L0

+ \ {0}.

But S1/Sei0 =
∑N
i=1 S

i/Si0 ≥ 1 is in Sunif
++ as it is like S/Si0 a martingale ≥ 0

and therefore convergent, hence bounded in t ≥ 0, P -a.s. By Lemma 3.1, 1), ek
is then also not value maximal for S1 and thus also not share maximal for 1 by
Theorem 3.10, 1) for ξ ≡ 1. As ek is a 1-buy-and-hold strategy, this means that S
does not satisfy DSE for 1.

For Example 6.2 where N = 2, we can express the necessary and sufficient
conditions for DSV for 1 directly in terms of the model coefficients. (One could
also do this for general N by looking at the proof of Proposition 6.3, exploiting
the expression for the γ̄i there. However, the resulting conditions look much less
concise, and so we omit them.)

Corollary 6.5. In Example 6.2, S satisfies DSV for 1 if and only if

mi − σ2
i + ρσ1σ2 = m3−i for i = 1 or i = 2. (6.5)

If σ2 = 0 so that we have the Black–Scholes model with parameters m, r, σ2, condi-
tion (6.5) simplifies to

m− r
σ2 ∈ {0, 1}.

Proof. By Theorem 6.4, DSV for 1 holds if and only if either S2/S1 or S1/S2 is a
martingale. Now we can plug in from (6.1) and compute. We omit the details.

Finally, we turn to the

Proof of Proposition 6.3. 1) In a first step, we construct a discounter D̄ such that
(6.3) holds. For this, we need to find vectors γ̄1, . . . , γ̄N ∈ RN such that

Si/E(γ̄i ·B) = D̄ is independent of i. (6.6)

Now E(γ̄i ·B)t = exp(γi ·Bt − 1
2 |γ̄i|

2t) and by (6.1) and (6.2), using W i = ei ·W ,

Sit = exp
(
σiW

i
t +mit−

1
2σ

2
i t

)
= exp

(
σi(ei)>CBt +

(
mi −

1
2σ

2
i

)
t

)
.
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But (ei)>C is the i-th row of the matrix C, and we write this as a column vector
ci ∈ RN . For the ratio Si/E(γ̄i ·B) to be independent of i, we then must have

σici − γ̄i = σ1c1 − γ̄1 for i = 2, . . . , N (6.7)

from the coefficients of B, and from the coefficients of t that

mi −
1
2σ

2
i + 1

2 |γ̄i|
2 = m1 −

1
2σ

2
1 + 1

2 |γ̄1|2 for i = 2, . . . , N . (6.8)

Using (6.7) to compute |γ̄i|2 and plugging this into (6.8) leads to

γ̄1 · (σici − σ1c1) = m1 −
1
2σ

2
1 −mi + 1

2σ
2
i −

1
2 |σici − σ1c1|2

=: ϕi for i = 2, . . . , N . (6.9)

We can already see from (6.7) that γ̄2, . . . , γ̄N are affine functions of γ̄1, and we now
claim that (6.9) determines the coordinates γ̄i1 of γ̄1 as affine functions of γ̄1

1 .
To argue the claim by an induction argument, we exploit the lower diagonal

structure of C, which entails that cji = Cij = 0 for j > i. For i = 2, (6.9) therefore
reduces to

ϕ2 = σ2γ̄1 · c2 − σ1γ̄1 · c1 = (σ2c
1
2 − σ1c

1
1)γ̄1

1 + σ2c
2
2γ̄

2
1 .

As σ2 > 0 and c22 = C22 > 0, this gives γ̄2
1 as an affine function of γ̄1

1 . For i > 2, we
write

ϕi − ϕi−1 = γ̄1 · (σici − σi−1ci−1) = σic
i
iγ̄
i
1 + f(γ̄1

1 , . . . , γ̄
i−1
1 ),

where we use (6.9) and the lower triangular structure of C. Due to (6.9), f is
an affine function of γ̄1

1 , . . . , γ̄
i−1
1 , and by the induction hypothesis, this is in turn

an affine function of γ̄1
1 . As cii > 0, also γ̄i1 is an affine function of γ̄1

1 as long as
σi > 0, which holds by assumption for i < N , i.e., i ≤ N − 1. If σN > 0, we can
also take i = N and the claim is already proved. If σN = 0, we have seen before
that F is generated by W 1, . . . ,WN−1 and contained in the filtration generated by
B1, . . . , BN−1. Because D̄ = Si/E(γ̄i · B) must be adapted to F, it cannot depend
on BN , and so we must have γ̄Ni = 0 for i = 1, . . . , N if σN = 0. In particular,
γ̄N1 = 0 is then trivially again an affine function of γ̄1

1 .
Reversing the above steps shows that we can always construct vectors γ̄1, . . . , γ̄N

in RN such that (6.6) holds; indeed, we use (6.9) to derive γ̄1 and then use (6.7) to
get γ̄2, . . . , γ̄N . We also note that we have one degree of freedom because we can
still choose γ̄1

1 .
2) It remains to show that γ̄1, . . . , γ̄N (or actually only γ̄1

1) can be chosen in such
a way that D̄ is S-tradable, meaning that D̄ = V(ϑ̄) = ϑ̄ · S for some ϑ̄ ∈ Θsf

++.
Because the self-financing property is discounting-invariant, we write it for S̄ instead
of S as

V(ϑ̄, S̄) = ϑ̄ · S̄ = V0(ϑ̄, S̄) +
∫
ϑ̄ dS̄. (6.10)

But ϑ̄ · S̄ = (ϑ̄ · S)/D̄ ≡ 1 if D̄ is S-tradable via ϑ̄, and so (6.10) reduces to

0 = ϑ̄dS̄ =
N∑
i=1

ϑ̄i dS̄i =
N∑
i=1

ϑ̄iS̄i d(γ̄i ·B), (6.11)
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where the last step uses (6.3). By switching from numbers of shares ϑ̄i to wealth
amounts ϑ̄iS̄i =: π̄i, we can rewrite (6.11) as

0 =
N∑
i=1

π̄i d(γ̄i ·B) =
N∑
i=1

π̄i
N∑
k=1

γ̄ki dBk =
N∑
k=1

N∑
i=1

π̄iγ̄ki dBk. (6.12)

Note that
∑N
i=1 π̄

i =
∑N
i=1 ϑ̄

iS̄i = ϑ̄ · S̄ = 1. Because B1, . . . , BN are independent,
(6.12) means that ψk :=

∑N
i=1 π̄

iγ̄ki must be zero for k = 1, . . . , N . But we know
from (6.7) that γ̄i = γ̄1 + σici − σ1c1 for i = 2, . . . , N , and so the condition ψk = 0
becomes

0 =
N∑
i=1

π̄iγ̄ki = γ̄k1 +
N∑
i=1

π̄i(σicki − σ1c
k
1) for k = 1, . . . , N . (6.13)

Now we exploit again the lower triangular structure of C which tells us that we
have cki = Cik = 0 for k > i, i.e., for i < k. This allows us to simplify (6.13) to

0 = γ̄k1 +
N∑
i=k

π̄i(σicki − σ1c
k
1) for k = 1, . . . , N . (6.14)

Note that ck1 = 0 for k ≥ 2. Starting with k = N , we thus obtain
0 = γ̄N1 + π̄NσNc

N
N . (6.15)

If σN = 0, we have seen in 1) that γ̄N1 = 0; so any choice of π̄N satisfies (6.15). If
σN > 0, using cNN > 0 shows that π̄N is uniquely determined as a linear function of
γ̄N1 and hence by 1) as an affine function of γ̄1

1 . For k = N−1, . . . , 2, we inductively
write (6.14) as

0 = γ̄k1 + π̄kσkc
k
k +

N∑
i=k+1

π̄iσic
k
i .

By the induction hypothesis and 1), respectively, the last sum and γ̄k1 are both
affine functions of γ̄1

1 , and then so is π̄k because σk > 0 and ckk > 0. This holds for
k = N, . . . , 2. For k = 1, the summand for i = 1 vanishes and (6.14) becomes

0 = γ̄1
1 +

N∑
i=2

π̄iσic
1
i . (6.16)

But π̄2, . . . , π̄N all are affine functions of γ̄1
1 as seen above, and so (6.16) is an affine

equation for γ̄1
1 which obviously has a unique solution. This in turn determines

π̄2, . . . , π̄N−1, and also π̄N if σN > 0. Finally, π̄1 is given from the condition that∑N
i=1 π̄

i = 1. This completes the proof of 2).
The above proof shows that the vectors γ̄i are unique, and so is then D̄ by

(6.6).

6.2. Explicit examples I. This section gives explicit counterexamples for several
wrong statements or implications. All these are based on the GBM setup from
Section 6.1, and for concreteness and simplicity, we work with the BS model. So
let S2

t = ert and S1
t = exp(σWt + (m − 1

2σ
2)t) with m, r ∈ R and σ > 0. We also

need X = S1/S2 because S/S2 = (X, 1).

Example 6.6. DSV for 1 does not imply DSE for 1. If we take m − r ∈ {0, σ2},
S satisfies DSV for 1 by Corollary 6.5. But S never satisfies DSE for 1, by Theo-
rem 6.4, 2).
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Example 6.7. NFLVR for (X, 1) does not imply DSE for 1. Take m = r so that
X is a martingale; then clearly S/S2 = (X, 1) satisfies NFLVR∞. But again by
Theorem 6.4, 2), S never satisfies DSE for 1, and neither does S/S2 because DSE
is discounting-invariant.
Example 6.8. DSV for 1 does not imply NUPBR for (X, 1). Now take m−r = σ2

so that X ′ = 1/X = S2/S1 is a martingale. Then (X, 1) = S/S2 satisfies DSV for
1 because S does by Corollary 6.5. However, X ′t = exp(−σWt − 1

2σ
2t) → 0 P -a.s.

as t→∞; so limt→∞Xt = +∞ P -a.s. and (X, 1) does not satisfy NUPBR∞.
6.3. Explicit examples II. Some of our examples need models S which satisfy
DSE, or UI martingales, and these requirements cannot be satisfied in the setup of
Section 6.1. Theorem 6.4 shows that the GBM model never satisfies DSE for 1,
and the appearing martingales are always stochastic exponentials E(αB̃) of some
constant multiple of some Brownian motion B̃. Except for α = 0 where E(αB̃) ≡ 1,
such a martingale is never UI because it converges to 0 P -a.s. So we need to construct
our examples in a different way.

For ease of exposition, we work in this section in (infinite) discrete time. Via
piecewise constant interpolations of processes (LCRL for predictable, RCLL for
optional) and piecewise constant filtrations, our models can be embedded in a con-
tinuous-time framework. Moreover, we use (only in this subsection) the notation
∆Yn := Yn − Yn−1 for the increment at time n of a generic discrete-time process
Y = (Yn)n∈N0 . Our examples have two building blocks.

A first basic ingredient is a martingale Y whose increments (or successor values)
in each step only take two (different) values. The martingale condition then uniquely
determines all one-step transition probabilities as a function of the Y -values, and
so we can talk about “the” corresponding martingale. By choosing the increments
or values in a suitable way, we can moreover ensure that Y is nonnegative and
bounded, hence UI and P -a.s. convergent to some Y∞ which closes Y on the right
as a martingale (i.e., Y = (Yn)n∈N0∪{∞} is a martingale). Finally, one can also
ensure that Y∞ only takes two values one of which is 0, and thus we obtain a UI
martingale which converges to 0 with positive probability.

The second idea is more subtle. We want to work with a two-asset model and
trade in such a way that our strategy involves the asymptotic behaviour of both
assets in a specific nontrivial way. To this end, we construct S = (S1, S2) such
that in each step, exactly one of the assets has a price move, and these moves
always alternate. This allows to predict which asset coordinate will move in the
next step, which can be exploited to construct (switching) strategies with a desired
behaviour; and as both coordinates move alternatingly, the resulting wealth process
is influenced by each coordinate in turn.
Example 6.9. DSV for η is not equivalent to the existence of a σ-martingale
discounter D for S; the condition inft≥0(ηt · (St/Dt)) > 0 P -a.s. in Theorem 2.12
is indispensable. To show this, we take η ≡ 1 and construct a bounded R2-valued
martingale S ≥ 0 satisfying P [limt→∞ St = 0 ∈ R2] > 0. Then D ≡ 1 is a UI
martingale discounter for S and we have

P
[

inf
t≥0

(
ηt · (St/Dt)

)
= 0
]
≥ P

[
lim
t→∞

(1 · St) = 0
]
> 0.

We then show that S does not satisfy DSV for 1.
To start the construction, let Y = (Yn)n∈N0 be the (unique) real-valued martin-

gale with Y0 = 1 which at any time n ∈ N only takes the two values un = 2− 2−n
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or dn = 2−n. Then Y is P -a.s. strictly positive (but not bounded away from 0
uniformly in n) and bounded by 2. So (Yn) converges to Y∞ P -a.s., and clearly
P [Y∞ = 2] = 1

2 = P [Y∞ = 0].
Now let Y 1, Y 2 be independent copies of Y and define S = (S1, S2) by S1

0 = 1
and

S1
2n−1 = S1

2n = Y 1
n for n ∈ N, S2

2n = S2
2n+1 = Y 2

n for n ∈ N0.

This gives for n ∈ N that ∆S1
2n−1 = ∆Y 1

n , ∆S1
2n = 0 and ∆S2

2n−1 = 0, ∆S2
2n = ∆Y 2

n

and in particular yields that the coordinates of S move alternatingly because

∆S2
nI{∆S1

n−1=0} = 0 = ∆S1
nI{∆S2

n−1=0}. (6.17)

Let F = (Fn)n∈N0 be the filtration generated by S. As S is like Y a bounded
martingale, it converges to S∞ P -a.s., and B := {limn→∞(1 ·Sn) = 0} = {S∞ = 0}
has P [B] = 1

4 > 0.
Because (Sn)n∈N0 is strictly positive, η ≡ 1 is a reference strategy. If S satisfies

DSV for 1, then 0 is share maximal for 1, hence value maximal for S1 by Theo-
rem 3.10, 1) for ξ ≡ 1, and so Lemma 3.11 yields supn∈N0(ϑn · Sn)/(1 · Sn) < ∞
P -a.s. for all ϑ ∈ Θsf

+. Write (ϑ · S)/(1 · S) = V(ϑ)/(1 · S). We exhibit below a
strategy ϑ̄ ∈ Θsf

+ with V(ϑ̄) ≡ ε > 0. This yields supn∈N0(ϑ̄n · Sn)/(1 · Sn) = +∞
on B, and so S cannot satisfy DSV for 1.

To construct ϑ̄, we fix ε > 0 and consider the strategy which invests the amount
ε at time 0 in asset 2 and subsequently reinvests at any time all its wealth into that
asset which will not jump in the next period. More formally, we set ϑ̄0 := ϑ̄1 := (0, ε)
and

ϑ̄n+1 := I{∆S1
n=0}

(
0, ε
S2
n

)
+ I{∆S2

n=0}

(
ε

S1
n

, 0
)
. (6.18)

This is well defined because S1, S2 are both strictly positive, and Fn-measurable
(so that ϑ̄ is predictable) because S is adapted. Moreover, S2

0 = S2
1 = 1 yields

V0(ϑ̄) = V1(ϑ̄) = ε, and

Vn+1(ϑ̄) = I{∆S1
n=0} ε

S2
n+1
S2
n

+ I{∆S2
n=0} ε

S1
n+1
S1
n

= ε

as S1, S2 always jump alternatingly. So V(ϑ̄) ≡ ε, and ϑ̄ is also self-financing
because

∆Vn+1(ϑ̄)− ϑ̄n+1 ·∆Sn+1 = 0− ϑ̄1
n+1∆S1

n+1 − ϑ̄2
n+1∆S2

n+1 ≡ 0

due to (6.18) and (6.17). So ϑ̄ has all the claimed properties, and this ends the
example.

Example 6.10. DSE for η need not imply NFLVR∞, not even for a classic model of
the form S = (1, X). Similarly as in Example 6.9, let Y = (Yn)n∈N0 be the (unique)
real-valued martingale valued in (0, 1) with Y0 = 1

2 and Yn ∈ { 1
22−n, 1 − 1

22−n}.
This converges P -a.s. to Y∞ which takes the values 0 and 1 each with probability
1
2 . Set Y

′ := 1− Y and define

S := (1, X) :=
(

1, Y
′

Y

)
=
(

1, 1− Y
Y

)
.

Then 1 ·S = 1
Y and so S1 = S/(1 ·S) = (Y, 1−Y ) is a bounded P -martingale with

1 · S1 ≡ 1 ∈ Sunif
++ . So S satisfies (e3) in Theorem 4.1 with D = 1 · S and η ≡ 1,
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and this implies that S satisfies DSE for 1. However, we clearly have X ≥ 0 and

lim
n→∞

Xn = lim
n→∞

1− Yn
Yn

= +∞ on {limn→∞ Yn = 0} = {Y∞ = 0} =: B.

As P [B] = 1
2 > 0, S = (1, X) does not satisfy NUPBR∞ and thus also not NFLVR∞.

Appendix. This section contains some technical proofs and auxiliary results.
For any function z : [0,∞)→ RN , set z(∞) := lim inft→∞ z(t) (coordinatewise).

If the limit exists, write z(∞) := limt→∞ z(t). In R+, the product of ∞ and 0 is 0.

Lemma A.1. Suppose the functions x, y : [0,∞)→ RN satisfy
(a) y ≥ 0 is bounded (uniformly in t ≥ 0) by some C <∞;
(b) xi(∞) ≥ 0 for i = 1, . . . , N .
Then

(x · y)(∞) ≥ x(∞) · y(∞). (A.1)

Proof. Fix ε > 0. Decompose {1, . . . , N} into indices ` with x`(∞) = ∞ and
indices m with xm(∞) < ∞. For any ` and t ≥ T = T (`), we have x`(t) ≥ 0 and
y`(t) ≥ 1

2y
`(∞), and for any m, we get xm(t) ≥ xm(∞) − ε for t ≥ T = T (m, ε)

and 0 ≤ ym(t) ≤ C for all t. This implies
xm(t)ym(t) ≥ (xm(∞)− ε)ym(t) ≥ xm(∞)ym(t)− εC

and therefore
(x · y)(t) =

∑
`

x`(t)y`(t) +
∑
m

xm(t)ym(t)

≥ 1
2
∑
`

x`(t)y`(∞) +
∑
m

(
xm(∞)ym(t)− εC

)
.

Let t→∞ and use on the right-hand side the superadditivity of lim inf, y ≥ 0 and
the fact that xm(∞) ∈ [0,∞) for all m, to obtain

(x · y)(∞) ≥ 1
2
∑
`

x`(∞)y`(∞) +
∑
m

xm(∞)ym(∞)−NεC.

If there is an ` with y`(∞) > 0, the right-hand side is +∞ and (A.1) holds triv-
ially. So we can assume for the rest of the proof that y`(∞) = 0 for all `; then
x`(∞)y`(∞) = 0 for all ` by our convention, and we end up with

(x · y)(∞) ≥
∑
m

xm(∞)ym(∞)−NεC =
N∑
i=1

xi(∞)yi(∞)−NεC.

Letting ε↘ 0 then again gives (A.1) and completes the proof.

Proof of Lemma 3.1. If ϑ is not vm for S/D, there are f ∈ L0
+\{0} and for any ε > 0

some ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε, S/D) ≤ V0(ϑ, S/D) + ε, hence V0(ϑ̂ε) ≤ V0(ϑ) + εD0,

and
lim inf
t→∞

Vt(ϑ̂ε − ϑ, S/D) ≥ f ≥ 0 P -a.s. (A.2)

As D ∈ Sunif
++ has inft≥0Dt > 0 P -a.s., f ′ := f lim inft→∞Dt is in L0

+\{0}. Because
D ∈ Sunif

++ also has supt≥0Dt <∞ P -a.s., (A.2) implies by Lemma A.1 that

lim inf
t→∞

Vt(ϑ̂ε − ϑ) = lim inf
t→∞

(
Vt(ϑ̂ε − ϑ, S/D)Dt

)
≥ lim inf

t→∞
Vt(ϑ̂ε − ϑ, S/D) lim inf

t→∞
Dt ≥ f ′ P -a.s.
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This shows that ϑ is not vm for S either.
For the second part, if αϑ is not vm for S, we can find f ∈ L0

+ \{0} and for every
ε > 0 some ϑ̂ε ∈ Θsf

+ with V0(ϑ̂ε) ≤ V0(αϑ) + ε and lim inft→∞ Vt(ϑ̂ε − αϑ) ≥ f

P -a.s. Now we distinguish two cases. If α > 0, then ϑ̃ := ϑ̂ε/α ∈ Θsf
+ satisfies

V0(ϑ̃) = V0(ϑ̂ε)/α ≤ V0(ϑ) + ε/α,

lim inf
t→∞

Vt(ϑ̃− ϑ) = lim inf
t→∞

Vt(ϑ̂ε − αϑ)/α ≥ f/α P -a.s.

So ϑ is not vm for S as f/α is in L0
+ \ {0}. If α = 0, then ϑ̃ := ϑ+ ϑ̂ε ∈ Θsf

+ has

V0(ϑ̃) ≤ V0(ϑ) + V0(αϑ) + ε = V0(ϑ) + ε,

lim inf
t→∞

Vt(ϑ̃− ϑ) = lim inf
t→∞

Vt(ϑ̂ε − αϑ) ≥ f P -a.s.;

so again ϑ is not vm for S.

Proof of Lemma 3.12. For brevity, we define the set Γ := {Vτ (ϑ1) < Vτ (ϑ2)} ∈ Fτ
and set ϕ := ϑ1 ?ξ

τ ϑ
2. We use V(ξ, Sξ) = ξ · Sξ ≡ 1, which also gives ξ Sξ ≡ 0.

Then using the definition of ϕ, the general fact that XIJ0,τK = Xτ −XτIKτ,∞K, the
fact that ϑ1, ϑ2 are self-financing and again the definition of ϕ yields

V(ϕ, Sξ)

= IJ0,τKV(ϑ1, Sξ) + IKτ,∞K
(
IΓV(ϑ1, Sξ) + IΓcV(ϑ2, Sξ) + IΓcVτ (ϑ1 − ϑ2, Sξ)

)
=
(
V(ϑ1, Sξ)

)τ + IKτ,∞K

(
IΓ
(
V(ϑ1, Sξ) − Vτ (ϑ1, Sξ)

)
+ IΓc

(
V(ϑ2, Sξ) − Vτ (ϑ2, Sξ)

))
= V0(ϑ1, Sξ) + (ϑ1IJ0,τK) Sξ +

(
IKτ,∞K

(
IΓϑ

1 + IΓcϑ
2 + IΓcVτ (ϑ1 − ϑ2, Sξ)ξ

))
Sξ

= V0(ϕ, Sξ) + ϕ Sξ.

This shows that ϕ is self-financing. If both ϑ1, ϑ2 are in Θsf
+, the second line above

is nonnegative so that also ϕ is in Θsf
+.

The next auxiliary result is extracted from the proof of [29, Proposition 1].

Lemma A.2. A convex set C ⊆ L0
+ is bounded in L0 if and only if C contains no

sequence (V n)n∈N satisfying V n ≥ nξ P -a.s. for all n ∈ N and for some ξ ∈ L0
+\{0}.

Proof. The only if part is clear. For the if part, suppose C is not bounded in L0

and let Ωu ∈ F be as in [7, Lemma 2.3]. (In the terminology of [7], C is hereditarily
unbounded in probability on Ωu.) Note that P [Ωu] > 0 because P [Ωu] = 0 would
imply that C is bounded in L0. Then [7, Lemma 2.3, part 4)] implies with ε := 2−n
that for each n ∈ N, there is some V n ∈ C such that

P [{V n ≤ n} ∩ Ωu] ≤ P [{V n ≤ 2n} ∩ Ωu] ≤ 2−n.

Take N ∈ N with
∑∞
n=N 2−n ≤ P [Ωu]/2. For n ≥ N , set An := {V n > n}∩Ωu ∈ F

and define A :=
⋂
n≥N An ∈ F so that V n ≥ nIAn ≥ nIA due to V n ∈ C ⊆ L0

+.
Then

P [A] ≥ P [Ωu]−
∞∑
n=N

P [Acn ∩ Ωu] ≥ P [Ωu]/2 > 0

shows that ξ := IA ∈ L0
+ \ {0}, and we have V n ≥ nξ P -a.s. for all n ∈ N. But this

contradicts the assumption for the if part, and so we are done.
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