
Making no-arbitrage discounting-invariant:
a new FTAP beyond NFLVR and NUPBR

Dániel Ágoston Bálint and Martin Schweizer∗

Department of Mathematics, ETH Zurich,
Rämistrasse 101, CH-8092 Zurich, Switzerland

∗and
Swiss Finance Institute, Walchestrasse 9, CH-8006 Zürich, Switzerland

{daniel.balint, martin.schweizer}@math.ethz.ch

Abstract
In the simplest formulation, this paper addresses the following question: Given two
positive asset prices on a right-open interval, how can one decide, in an economically
natural manner, whether or not this is an arbitrage-free model?

In general multi-asset models of financial markets, the classic notions NFLVR
and NUPBR depend crucially on how prices are discounted. To avoid such issues,
we introduce a discounting-invariant absence-of-arbitrage concept. Like in earlier
work, this rests on zero or some basic strategies being maximal; the novelty is that
maximality of a strategy is defined in terms of share holdings instead of value. This
allows us to generalise both NFLVR, by dynamic share efficiency, and NUPBR, by
dynamic share viability. These concepts are the same for discounted or undiscount-
ed prices, and they can be used in open-ended models under minimal assumptions
on asset prices. We establish corresponding versions of the FTAP, i.e., dual charac-
terisations in terms of martingale properties. As one expects, “properly anticipated
prices fluctuate randomly”, but with an endogenous discounting process which must
not be chosen a priori. The classic Black–Scholes model on [0,∞) is arbitrage-free
in this sense if and only if its parameters satisfy m − r ∈ {0, σ2} or, equivalently,
either bond-discounted or stock-discounted prices are martingales.
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1 Introduction
Consider a financial market with N ≥ 2 assets on the right-open interval [0,∞). Prices are
modelled by an RN

+ -valued semimartingale S = (St)t≥0, are denominated in some abstract
non-tradable unit (one can best think of this as a perishable consumption good), and none
of the Si ≥ 0 need be strictly positive. There is no extra tradable riskless asset or bank
account. We work on [0,∞) for two reasons. Mathematically, this is the most general
setting, including models with finite or random horizons as special cases. Economically,
an open-ended model avoids the unnatural setup where everything is described up to and
including a final time point. In this setting, we look for an economically natural definition
and a subsequent mathematical characterisation of absence of arbitrage (AOA). Such a
concept should capture the idea that one cannot get something out of nothing for free,
and the denomination of prices should not matter — if a positive process D = (Dt)t≥0

describes how price units change over time, then S should satisfy AOA if and only if S/D
does, for all D from a suitable class D. Finding and describing such an AOA concept is
in our view a fundamental question in arbitrage theory.

For models in finite discrete time, and with the extra condition that one asset price
remains strictly positive, this has been solved completely; see the textbook by Delbaen/
Schachermayer [13, Chapter 2] and in particular Section 2.5 there. In general, surprisingly,
the existing literature fails to provide an answer. For markets on [0,∞), the most general
work is due to Delbaen/Schachermayer [9, 12], but they start with already discounted
prices of the form S = (1, X). Their AOA concept is no free lunch with vanishing risk
(NFLVR), and they also study in [10, 11] for which class D of discounters/numéraire
changes this remains invariant. However, very simple examples of N = 2 assets with pos-
itive (even continuous) price processes S1, S2 show that this approach gives no convincing
definition when such an undiscounted model is arbitrage-free. In fact, discounting with
D = S1 may lead to a nice arbitrage-free model, while discounting with D = S2 leads to
a model with arbitrage (it is enough if the ratio X = S2/S1 is a martingale converging
to 0). An illustrating example already appears in [10], where S = (1, X) for a strict local
martingale X > 0 with X0 = 1 and limt→∞ = a < 1. The interpretation in [10] is from
FX trading: 1 is the price of 1 EUR and X is the price of 1 USD, both expressed in EUR,
so that S/X = (1/X, 1) models the same FX market with prices in USD. As argued in
[10], S satisfies NFLVR but S/X does not. Thus the same FX market viewed in EUR
contains no arbitrage, but admits arbitrage when viewed in USD. This looks economically
questionable and highlights the need for a discounting-invariant formulation.

Going in that direction, Herdegen [15] studies a general RN -valued S on [0, T ] and
develops the AOA concept of numéraire-independent no-arbitrage (NINA) which is in-
variant for the class D of all semimartingales D > 0. As all processes in [15] are defined
on the right-closed interval [0, T ], all these D are automatically bounded away from 0
and ∞, P -a.s., and this plays a crucial role in definitions and proofs alike. When S1 and
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S2 in the above simple example are (possibly correlated) geometric Brownian motions
on [0,∞), they do not satisfy this boundedness condition and hence cannot be used for
discounting on [0,∞) in the manner of [15].

Our approach borrows ideas and techniques from both Delbaen/Schachermayer and
Herdegen, and combines them with a key new idea that enables us to solve the above fun-
damental problem. As in Herdegen [15] and Herdegen/Schweizer [16], we define absence
of arbitrage as the property that the zero strategy or a number of basic strategies are
maximal in the sense that they cannot be “improved” by other strategies. In [15] as well
as in earlier work of Delbaen/Schachermayer [9, 10, 11], such improvements are measured
in terms of value or wealth. This can keep the approach invariant under discounting, but
only partially — if a discount factor (or a numéraire) D goes to 0 or explodes to +∞,
the invariance breaks down. While this cannot happen on a right-closed time interval, it
becomes an issue on a right-open interval, and it is exactly why the above simple example
cannot be handled by the approach of [15]. We circumvent this difficulty by measur-
ing “improvements” not in terms of value, but in terms of shares compared to a reference
strategy. This is a self-financing strategy η ≥ 0 whose wealth V(η) remains strictly positive
at all times. Hence η is desirable, because with prices expressed in units of a consumption
good, V(η) > 0 means that an agent using η will never starve completely. We prove as in
Delbaen/Schachermayer [9] a key result saying that if one has an AOA property related
to η, prices discounted by V(η) must converge and hence can be defined on the closed
interval [0,∞]. This in turn allows us to exploit the results from Herdegen [15], after we
have shown how his and our AOA conditions are related.

Our approach leads to genuinely discounting-invariant concepts in almost fully general
frictionless semimartingale models of financial markets. We only assume S ≥ 0 and the
existence of a reference strategy, and the latter already holds as soon as ∑N

i=1 S
i > 0 and∑N

i=1 S
i
− > 0. Two main results are two FTAP versions — one for dynamic share viabil-

ity (DSV), the discounting-invariant counterpart of no unbounded profit with bounded
risk (NUPBR), and one for dynamic share efficiency (DSE) which extends NFLVR. In
contrast to the classic FTAP formulations of Delbaen/Schachermayer [9, 12] or Karatzas/
Kardaras [24], the discounting process in our results must not be chosen a priori, but is
an endogenous part of the dual characterisation of absence of arbitrage.

By providing a discounting-invariant AOA framework for general financial markets, we
lay the foundations for many possible future developments. One project we are currently
pursuing is a general treatment of the growth-optimal portfolio (GOP) and the benchmark
approach, also for an infinite horizon; see Filipović/Platen [14]. We have already shown
in Bálint/Schweizer [4] how one can use ideas from the present paper in the context of
large financial markets. Stochastic portfolio theory (SPT) might benefit from our general
perspective, but this looks at present more speculative. Finally, one can try to study
utility maximisation, maybe in a discounting-invariant form similarly as in Kardaras [26],
or under DSV instead of NUPBR; see Karatzas/Kardaras [24].
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The paper is structured as follows. Section 2 introduces the setup and basic concepts
and presents our main results. Section 3 is the mathematical core; it first shows how
models on right-open intervals can be closed on the right under a weak AOA assumption,
then combines this with Herdegen [15] to prove dual characterisations of value maximality
for a general time interval, and connects our new concept of share maximality to the value
maximality studied in [15]. Section 4 proves the main results from Section 2 by using
Section 3. Section 5 discusses the robustness of our approach with respect to the choice of
the reference strategy η appearing in the concept of share maximality, connects our work
to the classic theory, and provides a comparison to the existing literature. In particular, we
explain in detail why our approach and the numéraire-independence studied in Delbaen/
Schachermayer [10, 11] are conceptually very different. Section 6 contains examples and
counterexamples, including a detailed study of the example with two geometric Brownian
motions, and the Appendix collects some technical proofs and auxiliary results.

2 The main results
We work on a filtered probability space (Ω,F ,F, P ) with the filtration F = (Ft)t≥0 sat-
isfying the usual conditions, assume that F0 is trivial and set F∞ := ∨

t≥0Ft. There are
N basic assets whose prices are modelled by an RN -valued semimartingale S. If there is
a bank account (we do not assume this in general), it must be one component of S. To
have trading possible, we thus must have N ≥ 2. Prices are expressed in some abstract,
non-tradable unit, which is best thought of as a perishable consumption good. Its only
role is to make trading of asset shares possible.

We use general stochastic integration (in the sense of [17, Chapter III.6] or [33]), call
L(S) the space of all RN -valued predictable S-integrable processes H and denote the
(real-valued) stochastic integral of H ∈ L(S) with respect to S by H S :=

∫
H dS. For

any RCLL process Y , we set Y0− := Y0. The scalar product of x, y ∈ RN is x · y := xtry.

Remark 2.1. We assume that S is a semimartingale so that we can use general integrands
with respect to S. Similarly as in [9, 29], one could start with an RN

+ -valued adapted
RCLL process S ≥ 0 and impose an AOA property on S only with respect to elementary
(i.e. piecewise constant) integrands. For the AOA concept we introduce below, this implies
that S/V(ϑ) is a semimartingale for any self-financing elementary strategy ϑ whose wealth
V(ϑ) and V−(ϑ) are strictly positive. In particular, if S = (1, X), then X ≥ 0 must be a
semimartingale. For precise formulations and results, we refer to Bálint/Schweizer [5].

Many of our results involve discounting, i.e. dividing prices by positive processes. We
define Sm := {all Rm-valued semimartingales} and set S := S1, S+ := {D ∈ S : D ≥ 0}
and S++ := {D ∈ S : D > 0, D− > 0}. Elements D ∈ S++ are called discounters,
and we note that 1/D ∈ S++ if D ∈ S++. Sometimes, we also need discounters from
Sunif

++ := {D ∈ S++ : inft≥0Dt > 0, supt≥0Dt <∞, P -a.s.}. For D ∈ S++, we call S/D
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the D-discounted prices. The difference between discounters and deflators is discussed
below after Definition 2.10.

Self-financing strategies are integrands ϑ ∈ L(S) satisfying V(ϑ) := ϑ·S = ϑ0·S0+ϑ S.
We write ϑ ∈ Θsf and call V(ϑ) the value process of ϑ; this is in the same units as S
because ϑ is in numbers of shares. For D-discounted prices S̃ = S/D, we analogously
have V(ϑ, S̃) := ϑ · S̃ = V(ϑ)/D, the value process of ϑ in the units of S̃. Due to [15,
Lemma 2.9], ϑ ∈ Θsf implies both that ϑ ∈ L(S̃) and V(ϑ, S̃) = ϑ0 · S̃0 + ϑ S̃ hold.
Thus Θsf does not depend on units even if value processes do. We also need the spaces
Θsf

+ := {ϑ ∈ Θsf : V(ϑ) ∈ S+} and Θsf
++ := {ϑ ∈ Θsf : V(ϑ) ∈ S++}; they do not depend

on units either. For any η ∈ Θsf
++, the η-discounted prices

Sη := S

V(η) = S

η · S

play an important role in the sequel. Note that V(η, Sη) = η · Sη ≡ 1 and (Sη)η′ = Sη
′ .

Finally, a process Y is called S-tradable if it is the value process of some self-financing
strategy, i.e., Y = V(ϑ) for some ϑ ∈ Θsf .

Definition 2.2. A reference strategy is an η ∈ Θsf
++ with η ≥ 0 (η is long-only).

In the sequel, we usually assume that there exists a reference strategy η, and some
results impose the extra condition that η is bounded (uniformly in (ω, t)). A reference
strategy can be viewed as a desirable investment; indeed, given that values are in terms
of some perishable consumption good, the property V(η) ∈ S++ means that η keeps us
forever from complete starvation. As η is expressed in numbers of shares, it is clearly
discounting-invariant. See also the comment below after Definition 2.8.

Remark 2.3. 1) The existence of a reference strategy η is a very weak condition on the
price process S. Indeed, consider the market portfolio, i.e. the strategy 1 := (1, . . . , 1) ∈
RN of holding one share of each asset. If we have nonnegative prices S ≥ 0, then 1 ∈ Θsf

+

and all components of the 1-discounted price process S1 = S/
∑N
i=1 S

i have values between
0 and 1. (Some authors call S1 the process of market capitalisations.) If S ≥ 0 and the
sum ∑N

i=1 S
i of all prices is strictly positive and has strictly positive left limits, we even

have 1 ∈ Θsf
++ so that the market portfolio is then a reference strategy. Moreover, 1 is of

course bounded itself. However, it is useful to work with a general reference strategy η
because this gives a clearer view on a number of aspects.

2) A reference strategy is by definition long-only, which looks natural from an economic
perspective. Mathematically, ξ ≥ 0 is used in part 1) of the key Theorem 3.10 and
therefore appears indirectly in many results throughout the paper.

Definition 2.4. Fix a strategy η ∈ Θsf . A strategy ϑ ∈ Θsf is called an η-buy-and-hold
strategy if it is of the form ϑ = cη (componentwise product) for some c ∈ RN .
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A strategy ϑ is η-buy-and-hold if and only if it is a coordinatewise nonrandom multiple
of η. If η ≡ 1 is the market portfolio, this reduces to the classic concept of buying and
holding a fixed number of shares of each asset, and so the above buy-and-hold concept is
a natural generalisation. Note that η itself is always an η-buy-and-hold strategy.

For maximal generality with our time horizon, we fix a stopping time ζ and consider
the stochastic interval J0, ζK = {(ω, t) ∈ Ω × [0,∞) : 0 ≤ t ≤ ζ(ω)}. This includes
models indexed by [0, T ] with a nonrandom T < ∞ as well as by [0,∞) where ζ ≡ ∞.
We extend all stochastic processes to J0,∞K = J0,∞J = Ω × [0,∞), almost always by
keeping them constant on Jζ,∞K, with one important exception. To concatenate two
strategies ϑ1, ϑ2 ∈ Θsf at some stopping time τ , we sometimes define, for a mapping F , a
new strategy of the form IJ0,τKϑ

1 + IKτ,∞KF (ϑ1, ϑ2). On the set {τ = ζ <∞}, this is then
constant for t > ζ(ω), but maybe not for t ≥ ζ(ω).

From now on, we assume that all processes are defined on J0,∞K (but not
necessarily on Ω× [0,∞]). If a process Y is constant on Jζ,∞K, we then have

inf
t≥0

Yt(ω) = I{ζ(ω)=∞} inf
0≤t<∞

Yt(ω) + I{ζ(ω)<∞} inf
0≤t≤ζ(ω)

Yt(ω),

lim inf
t→∞

Yt(ω) = I{ζ(ω)=∞} lim inf
t→∞

Yt(ω) + I{ζ(ω)<∞}Yζ(ω),

etc. Of course, if we write limt→∞ Yt, we must make sure that this limit exists on {ζ =∞}.
These notations allow us to handle all time horizons in a unified manner.

Remark 2.5. Because ζ is an F-stopping time, we have Fζ ⊆ F∞ ⊆ F . We only
distinguish measurabilities when it is relevant, and in particular just write L0 for L0(F).

The next concept is fundamental for our paper.

Definition 2.6. Fix a strategy η ∈ Θsf . A strategy ϑ ∈ Θsf
+ is called strongly share

maximal (ssm) for η if there is no [0, 1]-valued adapted process ψ = (ψt)t≥0 converging
P -a.s. as t→∞ to some ψ∞ ∈ L∞+ \ {0} and such that for every ε > 0, there exists some
ϑ̂ε ∈ Θsf

+ with V0(ϑ̂ε) ≤ V0(ϑ) + ε and

lim inf
t→∞

(ϑ̂εt − ϑt − ψtηt) ≥ 0 P -a.s.

We mostly use this concept when η is a reference strategy. Then having η is desirable,
and ψη is a dynamic long-only portfolio whose factor ψ stabilises over time and which
asymptotically achieves a significant part of η. Strong share maximality says that even
with a little extra initial capital ε > 0, one cannot asymptotically improve ϑ via some ϑ̂ε

in such a significant manner.
We also need the following concept inspired by Herdegen [15]; the difference to [15] is

that we work here on a possibly right-open time interval. Note that we replace “strongly
maximal” from [15] by the more explicit terminology “strongly value maximal”.
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Definition 2.7. Fix an RN -valued semimartingale S̃. A strategy ϑ ∈ Θsf
+ is called strongly

value maximal (svm) for S̃ if there is no f ∈ L0
+ \ {0} such that for every ε > 0, there

exists some ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε, S̃) ≤ V0(ϑ, S̃) + ε and

lim inf
t→∞

(
Vt(ϑ̂ε, S̃)− Vt(ϑ, S̃)− f

)
≥ 0 P -a.s.

Maximality of a strategy ϑ always means that ϑ cannot be improved. The key differ-
ence between Definitions 2.6 and 2.7 lies in how improvements are measured. For strong
value maximality, the comparison is in terms of value, which makes the concept depend
on the unit (of S̃). In contrast, strong share maximality looks (via the reference strategy
η) at numbers of shares, and this is independent of any unit for prices.

Given a maximality concept for strategies, we define viability and efficiency as in [15].

Definition 2.8. Fix η ∈ Θsf . We say that S satisfies dynamic share viability (DSV) for η
if the zero strategy 0 ∈ Θsf

+ is strongly share maximal for η, and dynamic share efficiency
(DSE) for η if every η-buy-and-hold strategy ϑ ∈ Θsf

+ is strongly share maximal for η.

It is a key observation that for fixed η, strong share maximality for η, dynamic share
viability for η and dynamic share efficiency for η are like Θsf all discounting-invariant with
respect to S++, in the sense that if we have one of these properties for S, we also have it
for any D-discounted S̃ = S/D with any discounter D ∈ S++, and vice versa. In contrast,
the strong (value) maximality for S from [15] (and derived concepts like NINA there) is
invariant under discounting by discounters D ∈ Sunif

++ ( S++ (see Lemma 3.1 below), but
not under discounting by D ∈ S++ (see Example 3.2 below). In that sense, the value-
related concepts and results from [15] are only numéraire- or discounting-invariant in a
restricted manner. But for a general discounting-invariant framework, having invariance
with respect to the full class S++ is crucial because the natural class of discounters on a
right-open interval like [0,∞) is S++ and not only Sunif

++ .

Remark 2.9. 1) Theorems 2.14 and 2.15 below give equivalent characterisations for DSE
for η, assuming among other things that η is a reference strategy and bounded (uniformly
in (ω, t)). These results show that equivalent definitions of DSE for η are possible: one
could as well stipulate that only η itself, or all bounded ϑ ∈ Θsf

+, should be ssm for η. We
have opted for an intermediate definition to preserve the analogy to [15].

2) All our concepts depend on the choice of η. We discuss this in Section 5.1 and
show there in particular that the dependence is quite weak.

3) The idea of treating not value processes, but strategies/portfolios in numbers of
shares as central objects has already been promoted by Y. Kabanov in his geometric
approach to markets with transaction costs; see the textbook by Kabanov/Safarian [19]
and in particular Section 3.1 there. But as also stated in [19, Section 3.6.1], models
with transaction costs are much less demanding in terms of stochastic calculus because
strategies there are processes of finite variation. We cannot impose this in our frictionless
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market, and so the tools and techniques developed by Kabanov and his co-authors cannot
be used in our setup.

The preceding concepts are all about strategies and hence on the primal side. For a
dual characterisation in terms of martingale properties, we need the following concept.

Definition 2.10. For E ∈ {σ-martingale, local martingale, martingale, UI martingale},
an E-discounter for an RN -valued semimartingale S̃ is a D ∈ S++ such that S̃/D is an E .

Remark 2.11. In the literature, an E-deflator for a class Y of processes is a strictly
positive local martingale Z (often with Z0 = 1) such that ZY is an E for all Y ∈ Y .
There are two differences to the notion of an E-discounter. Obviously, a deflator acts by
multiplication while a discounter acts by division. More importantly, however, we impose
no (local) martingale property on an E-discounter D, nor on 1/D. (Some definitions of
an E-deflator Z do not explicitly ask for Z to be a local martingale. But as Y invariably
contains the process Y ≡ 1, this property follows from the definition and Z > 0.) In our
setup, neither S nor the family {V(ϑ) : ϑ ∈ Θsf

++} of value processes contains a constant
process in general; so discounters are more natural and more general than deflators.

With these preliminaries, we can already state our first two main results.

Theorem 2.12. Suppose S ≥ 0 and there exists a reference strategy η. Then S satisfies
dynamic share viability for η if and only if there exists a σ-martingale discounter D for
S with inft≥0(ηt · (St/Dt)) > 0 P -a.s.

Remark 2.13. As pointed out in the proof in Section 4, the “only if” part in Theorem 2.12
does not need S ≥ 0. The same applies to Theorem 2.14.

Theorem 2.14. Suppose S ≥ 0 and there exists a reference strategy η such that in
addition, η and Sη = S/(η ·S) are bounded (uniformly in (ω, t)). Then S satisfies dynamic
share efficiency for η if and only if there exists a UI martingale discounter D for S with
inft≥0(ηt · (St/Dt)) > 0 P -a.s.

The proofs of Theorems 2.12 and 2.14 need extra ideas and additional results. These
are developed in Section 3 and used in Section 4 to prove the theorems.

Both Theorems 2.12 and 2.14 are modern formulations of the classic idea due to
Samuelson [32] that “properly anticipated prices fluctuate randomly” or, in other words,
suitably discounted prices form a martingale. The notion of “properly anticipated” or
“suitably discounted” is in our paper captured by the existence of the process D which
turns S via discounting to S/D into a “martingale”. The strength of the martingale
property of S/D (σ-martingale or UI martingale) depends on the strength of the initial
no-arbitrage condition (viability or efficiency). One key contrast to the classic FTAP
formulation of Delbaen/Schachermayer [9, 12] is that the discounting process cannot be
chosen a priori, but is an endogenous part of the dual characterisation of absence of
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arbitrage. A similar idea appears in Herdegen [15] (see also [16]) where the dual objects
are not only “martingale transformers” like martingale measures or deflators, but pairs
consisting of an S-tradable numéraire and a “martingale measure”. Our E-discounter
combines such a pair into a single process; this is more general than a deflator because
the latter’s local martingale property still reflects an a priori discounting of prices.

To relate our work to the literature, we next recall or rewrite some notions from the
classic Delbaen/Schachermayer [9, 12] approach. For any RN -valued semimartingale S̃,
we define

Laadm(S̃) := {H ∈ L(S̃) : H S̃ ≥ −a}

and introduce the sets

• Gaadm(S̃) :=
{

lim
t→∞

Vt(ϑ, S̃)− V0(ϑ, S̃) : ϑ ∈ Θsf
+, V0(ϑ, S̃) = a and lim

t→∞
Vt(ϑ, S̃) exists

}
,

• Gadm(S̃) := ⋃
a≥0 Gaadm(S̃) =

{
lim
t→∞

Vt(ϑ, S̃)−V0(ϑ, S̃) : ϑ ∈ Θsf
+ and lim

t→∞
Vt(ϑ, S̃) exists

}
,

• Cadm(S̃) := Gadm(S̃)− L0
+,

• C∞adm(S̃) := Cadm(S̃) ∩ L∞
∞
;

the bar ∞ denotes the norm closure in L∞. Each g ∈ Gaadm(S̃) is the net outcome (final
minus initial value) of a self-financing strategy ϑ whose value is always ≥ −a, with all
quantities in the same units as S̃. Then we say that

• NA∞(S̃) holds if Cadm(S̃) ∩ L∞+ = {0};

• NUPBR∞(S̃) holds if G1
adm(S̃) is bounded in L0;

• NFLVR∞(S̃) holds if C∞adm(S̃) ∩ L∞+ = {0}.

Using [15, Theorem 2.14] (which easily extends to J0,∞K) allows us to rewrite things in
more familiar form. Fix η ∈ Θsf

++ and recall the η-discounted prices Sη = S/(η ·S). Then

(2.1) Gaadm(Sη) =
{

lim
t→∞

H Sηt : H ∈ Laadm(Sη) and lim
t→∞

H Sηt exists
}
.

If prices S = (1, X) are already discounted, we can take η ≡ e1 := (1, 0, . . . , 0) ∈ RN ,
getting Se1 = (1, X) = S, and note {H S : H ∈ L(S)} = {H X : H ∈ L(X)} to obtain

Gaadm(1, X) =
{

lim
t→∞

H Xt : H ∈ L(X), H X ≥ −a and lim
t→∞

H Xt exists
}
.

Thus Gadm(1, X) = ⋃
a≥0 Gaadm(1, X) is precisely the set K0 (or K) considered in [9] (or

[12]), and NA∞(1, X), NUPBR∞(1, X) and NFLVR∞(1, X) recover the standard notions
NA, NUPBR and NFLVR in the classic theory following [9, 12]. We remark that the
property NUPBR∞(1, X) already appears without a name in [9, Corollary 3.4]; it was
later called BK by Kabanov [20] and NUPBR by Karatzas/Kardaras [24].
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The next result summarises the main connections between our new results and the
classic theory. A full formulation (including more equivalences and a graphical overview)
and the proof are in Section 4.

Theorem 2.15. Suppose S ≥ 0 and there exists a reference strategy η. Consider the
following statements:

(e1) S satisfies dynamic share efficiency for η.

(v1) S satisfies dynamic share viability for η.

(e2) Every bounded ϑ ∈ Θsf
+ is strongly value maximal for Sη.

(v2) 0 is strongly value maximal for Sη = S/(η · S).

(e3) There exists a UI martingale discounter D for S with η · (S/D) ∈ Sunif
++ .

(v3) There exists a σ-martingale discounter D for S with η · (S/D) ∈ Sunif
++ .

(e4) NFLVR∞(Sη) holds, i.e., Sη satisfies NFLVR∞.

(v4) NUPBR∞(Sη) holds, i.e., Sη satisfies NUPBR∞.

Then we have (eK) ⇒ (vK) for K = 1, . . . , 4, and all the statements (vK), K = 1, . . . , 4,
are equivalent among themselves. If in addition η and Sη are bounded (uniformly in
(ω, t)), then also all the statements (eK), K = 1, . . . , 4, are equivalent among themselves.

Proving our main results involves several ideas and steps. We give here a short overview
and implement this in Section 3. First, because strong share maximality is discounting-
invariant with respect to S++, we can work with a discounted price process S/D instead
of the original S. We choose D := V(ξ) = ξ · S and show in Theorem 3.10 that strong
share maximality for ξ is equivalent to strong value maximality for S/D = Sξ. This gives
us almost access to the results from Herdegen [15] who derived dual characterisations for
strong (value) maximality, of 0 or of a fixed strategy, in terms of certain martingale prop-
erties for suitably discounted prices. (It is at this point that the endogenous discounter
appears.) However, [15] crucially exploits that prices there are defined on a right-closed
time interval, and the numéraire-invariance in [15] is only with respect to the smaller, re-
strictive class Sunif

++ of discounters. Overcoming this problem needs an extra step. With a
similar argument as in Delbaen/Schachermayer [9], we show that for tradably discounted
prices Sξ and under strong value maximality for Sξ of 0, the value process V(ϑ, Sξ) of
any self-financing strategy ϑ ∈ Θsf

+ converges as t → ∞. In effect, all the V(ϑ, Sξ) are
therefore well defined on a right-closed interval (even if S or Sξ is not), and this finally
allows us to use the results from [15]. Combining everything yields our assertions.
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3 The theory
This section is the mathematical core of the paper. It consists of three subsections which
mirror the ideas and steps in the discussion at the end of Section 2. To have a clearer
structure, we proceed in the reverse order than the above discussion.

3.1 From a stochastic or right-open interval to a closed interval

In this section, we use absence of arbitrage to pass from a model with a general time hori-
zon (stochastic or not, finite or infinite) to a model effectively defined on Ω× [0,∞]. This
rests on a convergence result in the spirit of Delbaen/Schachermayer [9, Theorem 3.3] com-
bined with ideas from Herdegen [15] to connect strong (value) maximality and NUPBR.

We begin with an auxiliary result.

Lemma 3.1. Suppose ϑ ∈ Θsf
+ is strongly value maximal for S.

1) Strong value maximality is discounting-invariant with respect to Sunif
++ : If D ∈ Sunif

++ ,
then ϑ is also strongly value maximal for S/D. (The converse is clear because D ∈ Sunif

++

implies 1/D ∈ Sunif
++ .)

2) Strongly value maximal strategies form a cone: For any α ≥ 0, αϑ is also strongly
value maximal for S.

Proof. See Appendix.

The next example shows that Sunif
++ cannot be replaced by S++ in Lemma 3.1.

Example 3.2. Strong value maximality is not discounting-invariant with respect to S++.
Consider the standard Black–Scholes model (see Example 6.1) with m = r = σ = 1,
so that S1

t = et and S2
t = eWt+ 1

2 t. Here, 0 is not svm for S because for any ε > 0,
the strategy ϑ̂ε := εe1 = (ε, 0) of buying and holding ε units of S1 has V0(ϑ̂ε) = ε, but
limt→∞ Vt(ϑ̂ε) = +∞. But taking D := S1 ∈ S++ \ Sunif

++ yields S̃ := S/D = (1, eWt− 1
2 t).

This is a (σ-)martingale, and therefore 0 is svm for S̃; see Theorem 3.8 below (applied to
S̃ = Sξ for ξ ≡ e1).

We first connect strong value maximality and NUPBR; this is similar to Herdegen [15,
Proposition 3.24].

Proposition 3.3. Fix ξ ∈ Θsf
++ and recall the ξ-discounted price process Sξ = S/(ξ · S).

Then the following are equivalent:

(a) The zero strategy 0 ∈ Θsf
+ is strongly value maximal for Sξ.

(b) The set {limt→∞H Sξt : H ∈ L1
adm(Sξ), H has bounded support on [0,∞)} is bound-

ed in L0.

(c) The set {lim inft→∞H Sξt : H ∈ L1
adm(Sξ)} is bounded in L0.

11



(d) The set {limt→∞H Sξt : H ∈ L1
adm(Sξ) and limt→∞H Sξt exists} is bounded in L0.

(e) NUPBR∞(Sξ) holds.

Proof. (c) ⇒ (d) ⇒ (b) is clear; (b) ⇒ (c) is from the proof of [9, Proposition 3.2]; and
(d) ⇔ (e) follows directly from (2.1) and the definition of NUPBR∞(Sξ).

We prove (c)⇒ (a) indirectly. If 0 is not svm for Sξ, we can find f ∈ L0
+ \{0} and for

every ε = 1/n some ϑ̂n ∈ Θsf
+ with V0(ϑ̂n, Sξ) ≤ 1/n and lim inft→∞ Vt(ϑ̂n, Sξ) ≥ f P -a.s.

Then ϑ̃n := nϑ̂n is in Θsf
+ with V0(ϑ̃n, Sξ) ≤ 1, and ϑ̃n is also in L1

adm(Sξ) because

0 ≤ V(ϑ̃n, Sξ) = V0(ϑ̃n, Sξ) + ϑ̃n Sξ ≤ 1 + ϑ̃n Sξ.

Therefore, lim inft→∞ ϑ̃n Sξt = lim inft→∞ Vt(ϑ̃n, Sξ)− V0(ϑ̃n, Sξ) ≥ nf − 1 P -a.s. implies
that (c) cannot hold as f ∈ L0

+ \ {0}.
Finally, for (a) ⇒ (b), suppose that (b) is not true. Then also the convex set

C :=
{

lim
t→∞

H Sξt + 1 : H ∈ L1
adm(Sξ), H has bounded support on [0,∞)

}
⊆ L0

+

is not bounded in L0. Lemma A.2 yields a sequence (Hn)n∈N ⊆ L1
adm(Sξ), with each Hn of

bounded support on [0,∞), and some f ∈ L0
+ \ {0} with limt→∞H

n Sξt + 1 ≥ nf P -a.s.
for all n ∈ N. Note that the limit exists because Hn has bounded support. Consider
the integrand Hn ∈ L1

adm(Sξ). By [15, Theorem 2.14] (and an easy extension to J0,∞K),
there exists a corresponding ϑn ∈ Θsf

+ with V(ϑn, Sξ)−V0(ϑn, Sξ) = Hn Sξ, where we can
choose V0(ϑn, Sξ) = 1. Defining ϑ̃n := ϑn/n ∈ Θsf

+ yields

V(ϑ̃n, Sξ) = V(ϑn, Sξ)/n = (Hn Sξ + 1)/n,

hence V0(ϑ̃n, Sξ) = 1/n and lim inft→∞ Vt(ϑ̃n, Sξ) = limt→∞(Hn Sξt + 1)/n ≥ f P -a.s.
Thus 0 is not svm for Sξ.

Our next result is of crucial importance. It is a variant of the key result in Del-
baen/Schachermayer [9, Theorem 3.3] and shows that loosely speaking, value processes
expressed in good units converge under a weak no-arbitrage assumption.

Theorem 3.4. Fix ξ ∈ Θsf
++ and suppose the zero strategy 0 ∈ Θsf

+ is strongly value max-
imal for Sξ. Then for any ϑ ∈ Θsf

+, limt→∞ ϑ Sξt exists and is finite, P -a.s. In particular,
V∞(ϑ, Sξ) := limt→∞ Vt(ϑ, Sξ) exists and is finite, P -a.s.

Proof. Fix ξ as above and H ∈ L1
adm(Sξ). We first claim that limt→∞H Sξt exists and is

finite, P -a.s. This follows from upcrossing arguments as in Doob’s martingale convergence
theorem and is based on the proof of [9, Theorem 3.3]. Indeed, by Proposition 3.3, the
strong value maximality for S of 0 implies that the set{

lim
t→∞

H Sξt : H ∈ L1
adm(Sξ), H has bounded support on [0,∞)

}
12



is bounded in L0, so that the conclusion of [9, Proposition 3.1] holds (with S in [9] replaced
by Sξ here). A careful look at [9, Proposition 3.2 and Theorem 3.3] shows that all we
need for the proofs of these results is the conclusion of [9, Proposition 3.1]. So we can
repeat the proof of [9, Theorem 3.3] step by step1 to obtain our auxiliary claim about the
convergence of H Sξ.

To prove Theorem 3.4, we now fix ϑ ∈ Θsf
+, set v0 := V0(ϑ, Sξ) and define the strategy

ϑ̃ := I{v0 6=0}ϑ/v0 + I{v0=0}(ϑ+ ξ). Then ϑ̃ is in Θsf
+, and as V(ξ, Sξ) = ξ · Sξ ≡ 1,

V(ϑ̃, Sξ) = I{v0 6=0}V(ϑ, Sξ)/v0 + I{v0=0}
(
V(ϑ, Sξ) + 1

)
.

This yields V0(ϑ̃, Sξ) = 1 and hence V(ϑ̃, Sξ) = 1 + ϑ̃ Sξ. Because ϑ̃ ∈ Θsf
+, this shows

that ϑ̃ ∈ L1
adm(Sξ) so that by the first part, limt→∞ Vt(ϑ̃, Sξ) = limt→∞(1 + ϑ̃ Sξt ) exists

and is finite, P -a.s. The result for ϑ = v0ϑ̃+ I{v0=0}(ϑ̃− ξ) then directly follows.

Remark 3.5. Both Proposition 3.3 and Theorem 3.4 are formulated for ξ-discounted
prices Sξ = S/(ξ · S); so the discounter ξ · S = V(ξ) is S-tradable. One can ask if V(ξ)
could be replaced by an arbitrary D ∈ S++, and hence Sξ by S/D. This is possible in
Proposition 3.3, but not in Theorem 3.4; if we take for example Dt = 2+sin t which is even
in Sunif

++ but does not converge, then V(ϑ, Sξ/D) = V(ϑ, Sξ)/D also does not converge.

The significance of Theorem 3.4 is that under its assumptions, the limit V∞(ϑ, Sξ)
exists P -a.s. for all ϑ ∈ Θsf

+. So V(ϑ, Sξ) is well defined on the closed interval [0,∞], and
as V(ξ, Sξ) ≡ 1, the model Sξ is on [0,∞] a numéraire market in the sense of [15]. Hence
in the setting of Theorem 3.4, the situation is as if we had the market from Sξ defined up
to ∞, and so we can essentially use all results from [15] also for J0,∞K. More precisely,
as long as we only use value processes of strategies in Θsf

+, we do not need Sξ itself to be
defined on [0,∞].

An important consequence is that the same weak AOA condition as above allows to
improve any self-financing strategy asymptotically by a strongly value maximal strategy
at no extra cost. This extends a result from Herdegen [15, Theorem 4.1] to J0,∞K.

Lemma 3.6. Fix ξ ∈ Θsf
++ and suppose the zero strategy 0 ∈ Θsf

+ is strongly value maximal
for Sξ. Then for any ϑ ∈ Θsf

+, there exists a ϑ̂ ∈ Θsf
+ which is strongly value maximal for

Sξ and satisfies

V0(ϑ̂, Sξ) = V0(ϑ, Sξ) and lim inf
t→∞

Vt(ϑ̂− ϑ, Sξ) ≥ 0 P -a.s.

Proof. Fix ξ as above. For any ϑ ∈ Θsf
+, the limit V∞(ϑ, Sξ) exists and is finite, P -a.s., by

Theorem 3.4. In Definition 2.7 for Sξ instead of S, we can thus replace the lim inf by a
1There are two minor unclear points or typos in the original proof in [9]. First, a set A2 ∈ Ft2 such

that P [A2∆(B1 ∩ A)] > α − ε1 − ε2 is not a good approximation for B1 ∩ A; one should rather impose
the requirement that P [A2∆(B1 ∩A)] < ε2/2. Second, it is not clear why P [B1 ∩A] > α− ε1 should be
true. However, it is clear that P [B1 ∩A] > α− 2ε1, which is still sufficient to obtain the conclusion.
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limit, and so our strong value maximality for Sξ is equivalent to strong maximality of Sξ

on [0,∞] in the sense of [15]. In particular, having 0 svm for Sξ is equivalent to having
NINA on [0,∞] for Sξ in the sense of [15]. Using [15, Theorem 4.1] on [0,∞] for Sξ and
rewriting V∞(ϑ̂, Sξ) ≥ V∞(ϑ, Sξ) as lim inft→∞ Vt(ϑ̂−ϑ, Sξ) ≥ 0 then gives the result.

3.2 Dual characterisation of strong value maximality

In this section, we provide dual characterisations of strong value maximality for Sξ, of
the zero strategy 0 or of a given strategy ξ. This uses the results of Herdegen [15] and
extends them to a general time horizon by exploiting Section 3.1.

Proposition 3.7. Fix ξ ∈ Θsf
++. Then the following are equivalent:

(a) ξ is strongly value maximal for Sξ.

(b) Both NA∞(Sξ) and NUPBR∞(Sξ) hold.

(c) NFLVR∞(Sξ) holds.

Proof. Both Cadm(Sξ) and Cadm(Sξ) ∩ L∞ are convex, and NUPBR∞(Sξ) means that
G1

adm(Sξ) is bounded in L0. Due to (2.1), (b)⇔ (c) can thus be proved like [20, Lemma 2.2].
Both (a) and (c) imply that 0 ∈ Θsf

+ is svm for Sξ; indeed, under (a), this follows by
Lemma 3.1, 2), and under (c), we combine (c) ⇒ (b) with Proposition 3.3. Theorem 3.4
and the subsequent discussion thus allow us to treat Sξ as if it were defined on [0,∞], and
then the proof of [15, Proposition 3.24, (c)], with T replaced by ∞, gives the conclusion.

Recall that for E ∈ {σ-martingale, local martingale, martingale, UI martingale}, an
E-discounter for an RN -valued semimartingale S̃ is a D ∈ S++ such that S̃/D is an E .

Theorem 3.8. Fix ξ ∈ Θsf
++. Then the following are equivalent:

(a) The zero strategy 0 ∈ Θsf
+ is strongly value maximal for Sξ.

(b) There exists a strategy ϑ̂ ∈ Θsf
++ which is strongly value maximal for Sξ and has

V(ϑ̂, Sξ) ∈ Sunif
++ .

(c) There exists a σ-martingale discounter D ∈ Sunif
++ for Sξ.

Proof. (a) ⇒ (b) By Lemma 3.6, we can find a ϑ̂ ∈ Θsf
+ which is svm for Sξ and satisfies

lim inft→∞ Vt(ϑ̂− ξ, Sξ) ≥ 0 P -a.s. Superadditivity of the lim inf plus V(ξ, Sξ) ≡ 1 yields

lim inf
t→∞

Vt(ϑ̂, Sξ) ≥ lim inf
t→∞

Vt(ϑ̂− ξ, Sξ) + lim inf
t→∞

Vt(ξ, Sξ) ≥ 1 > 0 P -a.s.

But Theorem 3.4 and the subsequent discussion allow us to treat the market given
by Sξ as if it were defined up to ∞, and therefore inft≥0 Vt(ϑ̂, Sξ) > 0 P -a.s. follows
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as in the proof of [15, Proposition 4.4], with T there replaced by ∞. On the other
hand, lim supt→∞ Vt(ϑ̂, Sξ) = limt→∞ Vt(ϑ̂, Sξ) <∞ P -a.s. by Theorem 3.4, and because
V(ϑ̂, Sξ) = V0(ϑ̂, Sξ) + ϑ̂ Sξ is RCLL, this implies supt≥0 Vt(ϑ̂, Sξ) < ∞ P -a.s. Hence
V(ϑ̂, Sξ) is in Sunif

++ . We note for later use that V(ϑ̂, Sξ) = ϑ̂ · Sξ = V(ϑ̂)/V(ξ).
(b) ⇒ (c) By Proposition 3.7, NFLVR∞(Sϑ̂) holds. Note that V(ϑ̂, Sϑ̂) ≡ 1. By the

discussion after [15, Definition 2.18], we can apply [12, Theorem 1.1] to the price process
(1, X) := (V(ϑ̂, Sϑ̂), Sϑ̂) of dimension 1 + N , and so there exists a probability measure
Q ≈ P (on F ⊇ F∞) such that Sϑ̂ is a σ-martingale under Q. The density process Z
of Q with respect to P is in Sunif

++ as it is a strictly positive P -martingale on the closed
interval [0,∞]. Thus also D := V(ϑ̂, Sξ)/Z is in Sunif

++ , and Sξ/D = ZSξ/V(ϑ̂, Sξ) = ZSϑ̂

is a σ-martingale under P by the Bayes rule for stochastic calculus; see Kallsen [22,
Proposition 5.1]. (In classic terminology, Z is a σ-martingale deflator for Sϑ̂.)

(c) ⇒ (a) Because D ∈ Sunif
++ and svm is discounting-invariant with respect to Sunif

++

by Lemma 3.1, 1), we can equivalently prove svm of 0 for Sξ or for Sξ/D. Hence we can
and do assume without loss of generality that Sξ is a P -σ-martingale. If 0 is not svm for
Sξ, we can find f ∈ L0

+ \ {0} and for every ε > 0 some ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε, Sξ) ≤ ε and

lim inft→∞ Vt(ϑ̂ε, Sξ) ≥ f P -a.s. As ϑ̂ε Sξ = V(ϑ̂ε, Sξ)−V0(ϑ̂ε, Sξ) ≥ −ε on [0,∞) P -a.s.,
the Ansel–Stricker lemma [3, Corollary 3.5] implies that V(ϑ̂ε, Sξ) is a local P -martingale
and a P -supermartingale. Combining this with Fatou’s lemma and f ∈ L0

+ \ {0} yields

ε ≥ V0(ϑ̂ε, Sξ) ≥ lim inf
t→∞

E[Vt(ϑ̂ε, Sξ)] ≥ E
[

lim inf
t→∞

Vt(ϑ̂ε, Sξ)
]
≥ E[f ] > 0

for every ε > 0, which is a contradiction.

Theorem 3.9. Suppose that ξ ∈ Θsf
++ is such that both ξ and Sξ are bounded (uniformly

in (ω, t)). Then the following are equivalent:

(a) ξ is strongly value maximal for Sξ.

(b) There exists a UI martingale discounter D ∈ Sunif
++ for Sξ.

(c) Each bounded ϑ ∈ Θsf
+ is strongly value maximal for Sξ.

Proof. (c) ⇒ (a) is clear.
(a) ⇒ (b) If ξ is svm for Sξ, the same argument as in the proof of (b) ⇒ (c) in

Theorem 3.8 yields a Q ≈ P such that Sξ is a σ-martingale under Q. Being uniformly
bounded, Sξ is even a UI martingale under Q, and so the same D := V(ξ, Sξ)/Z = 1/Z as
in the proof of Theorem 3.8 is now a UI martingale discounter for Sξ and again in Sunif

++ .
(b) ⇒ (c) By Theorem 3.8, 0 is svm for Sξ. Take any bounded ϑ ∈ Θsf

+. To show that
ϑ is svm for Sξ, as in the proof of (c) ⇒ (a) in Theorem 3.8, we can assume that Sξ is
a UI martingale; so Sξ∞ = limt→∞ S

ξ
t exists P -a.s. and in L1, and then Sξ is a martingale
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on [0,∞]. Moreover, V(ϑ, Sξ) is P -a.s. convergent as t → ∞ by Theorem 3.4. For any
stopping time τ , we have |Vτ (ϑ, Sξ)| ≤ ‖ϑ‖∞

∑N
i=1 |(Sξτ )i|, and the UI property of Sξ on

[0,∞] implies that V(ϑ, Sξ) is of class (D). So V(ϑ, Sξ) is even a UI martingale.
If ϑ is not svm for Sξ, we can find f ∈ L0

+ \{0} and for every ε > 0 some ϑ̂ε ∈ Θsf
+ with

V0(ϑ̂ε, Sξ) ≤ V0(ϑ, Sξ) + ε and lim inft→∞ Vt(ϑ̂ε − ϑ, Sξ) ≥ f P -a.s. As limt→∞ Vt(ϑ, Sξ)
exists, we even have lim inft→∞ Vt(ϑ̂ε, Sξ) ≥ limt→∞ Vt(ϑ, Sξ)+f P -a.s., and V(ϑ̂ε, Sξ) is a
supermartingale by the same argument as for ϑ. Combining this with Fatou’s lemma, the
UI martingale property of V(ϑ, Sξ) and f ∈ L0

+ \ {0} then gives a contradiction because

V0(ϑ, Sξ) + ε ≥ V0(ϑ̂ε, Sξ) ≥ lim inf
t→∞

E[Vt(ϑ̂ε, Sξ)] ≥ E
[

lim inf
t→∞

Vt(ϑ̂ε, Sξ)
]

≥ E
[

lim
t→∞

Vt(ϑ, Sξ)
]

+ E[f ] = lim
t→∞

E[Vt(ϑ, Sξ)] + E[f ] = V0(ϑ, Sξ) + E[f ]

> V0(ϑ, Sξ)

for every ε > 0.

Propositions 3.3 and 3.7 as well as Theorems 3.8 and 3.9 show a clear pattern: Thanks
to the key result in Theorem 3.4, we can fairly easily extend the results from Herdegen [15]
to a market with an infinite horizon, as long as we stick to ξ-discounted prices Sξ. But
what can be said if we want to start instead from the original prices S?

According to Lemma 3.1, 1), strong value maximality is discounting-invariant with
respect to Sunif

++ , and Sξ = S/V(ξ). If we impose the extra condition that V(ξ) is in Sunif
++ ,

it is clear that all the results still hold if we replace “strongly value maximal for Sξ” by
“strongly value maximal for S”. Moreover, in Lemma 3.6, Theorem 3.8 and in (a)–(c) of
Theorem 3.9, we can then also replace Sξ by S.

In [15], the condition V(ξ) ∈ Sunif
++ is automatically satisfied for any ξ ∈ Θsf

++ as the
market there is defined on a closed time interval. In contrast, on an right-open interval like
[0,∞) we consider here, the condition is very restrictive — just think of an undiscounted
Black–Scholes model with a positive interest rate r > 0 and the market portfolio ξ ≡ 1.
It is precisely the idea of replacing value maximality by share maximality which allows
us to eliminate that restrictive condition and allow general models for S.

3.3 Connecting share maximality and value maximality

In this section, we show that under a very mild condition on the pair (S, ξ) of price
process and strategy, strong share maximality for ξ and strong value maximality for Sξ

are equivalent. This is the key for proving our main results.

Theorem 3.10. Fix ξ ∈ Θsf
++.

1) If ξ ≥ 0, then any ϑ ∈ Θsf
+ which is strongly share maximal for ξ is strongly value

maximal for Sξ.
2) If S ≥ 0, then any ϑ ∈ Θsf

+ which is strongly value maximal for Sξ is also strongly
share maximal for ξ.
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The proof of Theorem 3.10 needs some preparation.

Lemma 3.11. Suppose S ≥ 0 and fix ξ ∈ Θsf
++. If there is a strategy ϑ̂ ∈ Θsf

+ which is
strongly value maximal for Sξ, then (ϑ · S)/(ξ · S) is bounded in t ≥ 0, P -a.s., for every
ϑ ∈ Θsf

+. In particular, Sξ is bounded in t ≥ 0, P -a.s.

Proof. If ϑ̂ is svm for Sξ, then 0 is svm for Sξ by Lemma 3.1, 2). So Theorem 3.4 implies
that for any ϑ ∈ Θsf

+, the process (ϑ·S)/(ξ ·S) = ϑ Sξ = ϑ·Sξ−ϑ0 ·Sξ0 is P -a.s. convergent
as t→∞ and hence bounded in t ≥ 0, P -a.s. Choosing ϑ := ei for i = 1, . . . , N gives the
second assertion; note that S ≥ 0 is used here to ensure that ei ∈ Θsf

+.

In the proof of Theorem 3.10, we need to concatenate strategies which requires some
notation. Fix ξ ∈ Θsf

++ and a stopping time τ (as usual with values in [0,∞]). The
ξ-concatenation at time τ of ϑ1, ϑ2 ∈ Θsf is defined by

ϑ1 ?ξ
τ ϑ

2 := IJ0,τKϑ
1 + IKτ,∞K

(
IΓϑ

1 + IΓc

(
ϑ2 + Vτ (ϑ1 − ϑ2, Sξ)ξ

))
with Γ := {Vτ (ϑ1) < Vτ (ϑ2)}.(3.1)

The interpretation is as follows. We start with ϑ1 and follow this strategy until time τ
where we compare its value to that of the competitor ϑ2. If ϑ1 is strictly cheaper, we stick
to it. Otherwise, we liquidate ϑ1

τ , start with ϑ2 by buying ϑ2
τ , and invest the rest of the

proceeds (which is nonnegative) into ξ. Note that on {τ =∞}, we have ϑ1 ?ξ
τ ϑ

2 = ϑ1 so
that the possibly undefined expressions ϑ1

∞, ϑ2
∞, S∞ or Sξ∞ never appear.

Lemma 3.12. Fix ξ ∈ Θsf
++ and a stopping time τ . If ϑ1, ϑ2 are in Θsf , then so is ϑ1?ξ

τϑ
2.

If ϑ1, ϑ2 are in Θsf
+, then so is ϑ1 ?ξ

τ ϑ
2.

Proof. See Appendix.

Proof of Theorem 3.10. 1) Assume ϑ is not svm for Sξ. So there are f ∈ L0
+ \ {0}

and for every ε = 1/n some ϑ̂n ∈ Θsf
+ with ϑ̂n0 · S

ξ
0 = V0(ϑ̂n, Sξ) ≤ ϑ0 · Sξ0 + 1/n and

lim inft→∞((ϑ̂nt − ϑt) · S
ξ
t ) ≥ f P -a.s. Choose δ > 0 and A ∈ F with P [A] > 0 such that

f ≥ 2δIA P -a.s., and define

σ′n := inf{t ≥ 0 : (ϑ̂nt − ϑt) · S
ξ
t ≥ δ},

ϕn := inf{t ≥ 0 : P [σ′n ≤ t] ≥ P [A](1− 2−n+1)},
σn := σ′n ∧ ϕn ≤ ϕn.

Then σ′n is a stopping time, ϕn a bounded nonrandom time and σn a bounded stopping
time. Moreover, Bn := {σ′n ≤ ϕn} ∈ Fϕn satisfies P [Bn] ≥ P [A](1− 2−n+1) and we have

(3.2) (ϑ̂nσn
− ϑσn) · Sξσn

= (ϑ̂nσ′n − ϑσ′n) · Sξσ′n ≥ δ on Bn, P -a.s.
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by right-continuity. Due to lim inft→∞((ϑ̂nt − ϑt) · S
ξ
t ) ≥ f ≥ 0 P -a.s.,

τn := inf{t ≥ ϕn : (ϑ̂nt − ϑt) · S
ξ
t ≥ −1/n} ≥ ϕn

is a P -a.s. finite-valued stopping time which satisfies τn ≥ σn.
We now consider the strategy

(3.3) ϑ̃n := IJ0,τnK(ϑ̂n ?ξ
σn
ϑ) + IKτn,∞K

(
ϑ+ Vτn(ϑ̂n ?ξ

σn
ϑ− ϑ, Sξ)ξ

)
+ ξ/n,

with ϑ̂n ?ξ
σn
ϑ defined in (3.1). In words, we hold a (1/n)-multiple of ξ, switch at time σn

from ϑ̂n to ϑ if the value of ϑ is at most the value of ϑ̂n, and always switch to ϑ at time
τn; in both cases, any difference in value is invested into ξ. Using ξ · Sξ ≡ 1, this gives

V0(ϑ̃n, Sξ) = ϑ̃n0 · S
ξ
0 = ϑ̂n0 · S

ξ
0 + (ξ0 · Sξ0)/n ≤ V0(ϑ, Sξ) + 2/n.

Next, as ϑ̂n and ϑ are in Θsf
+, Lemma 3.12 yields ϑ̂n ?ξ

σn
ϑ ∈ Θsf

+, and therefore (3.3) gives
ϑ̃n · Sξ = V(ϑ̃n, Sξ) ≥ 0 P -a.s. on J0, τnK. Using now V(ξ, Sξ) ≡ 1 and the definition (3.1)
allows us to compute, as in the proof of Lemma 3.12 in the Appendix, that

Vτn(ϑ̂n ?ξ
σn
ϑ− ϑ, Sξ) = I{τn=σn}Vτn(ϑ̂n − ϑ, Sξ)

+ I{τn>σn}
(
IΓnVτn(ϑ̂n − ϑ, Sξ) + IΓc

n
Vσn(ϑ̂n − ϑ, Sξ)

)
(3.4)

with Γn := {Vσn(ϑ̂n) < Vσn(ϑ)}. This shows that due to τn <∞ P -a.s., we always have

(3.5) Vτn(ϑ̂n ?ξ
σn
ϑ− ϑ, Sξ) ≥ min

(
(ϑ̂nτn
− ϑτn) · Sξτn

, 0
)
≥ −1/n P -a.s.

Combining (3.3) and (3.5) and using ξ ≥ 0 implies that on Kτn,∞K, we have

(3.6) ϑ̃n − ϑ = Vτn(ϑ̂n ?ξ
σn
ϑ− ϑ, Sξ)ξ + ξ/n ≥ 0,

hence V(ϑ̃n, Sξ) ≥ V(ϑ, Sξ), and so ϑ̃n is like ϑ in Θsf
+.

Now on the set Bn, we have σn = σ′n, hence Vσn(ϑ̂n − ϑ, Sξ) = (ϑ̂nσn
− ϑσn) · Sξσn

≥ δ

P -a.s. as in (3.2) and therefore by (3.4) also

Vτn(ϑ̂n ?ξ
σn
ϑ− ϑ, Sξ) = Vσn(ϑ̂n − ϑ, Sξ) ≥ δ P -a.s.

Thus (3.6) and ξ ≥ 0 yield ϑ̃n − ϑ ≥ δξ on Bn on Kτn,∞K and so, as τn <∞ P -a.s.,

(3.7) lim inf
t→∞

(ϑ̃nt − ϑt − δIBnξt) ≥ 0 P -a.s.

If we define the [0, 1]-valued adapted process ψn = (ψnt )t≥0 by ψnt := δE[IBn|Ft], then
ϕn <∞ and Bn ∈ Fϕn yield ψnt = δIBn for t ≥ ϕn so that ψn∞ := limt→∞ ψ

n
t = δIBn P -a.s.

Moreover, we also obtain via (3.7) that

lim inf
t→∞

(ϑ̃nt − ϑt − ψnt ξt) = lim inf
t→∞

(ϑ̃nt − ϑt − δIBnξt) ≥ 0 P -a.s.
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Set B := ⋂
n∈NBn and ψt := δE[IB|Ft] for t ≥ 0. Then limt→∞ ψt = ψ∞ := δIB P -a.s.,

and B ⊆ Bn for all n implies ψ ≤ ψn for all n. Moreover, ψ∞ ∈ L∞+ \ {0} because

P [B] ≥ P [B ∩ A] = P [A]− P
[
A ∩

⋃
n∈N

Bc
n

]
≥ P [A]−

∞∑
n=1

P [A ∩Bc
n]

= P [A]−
∞∑
n=1

(P [A]− P [A ∩Bn]) ≥ P [A]
(

1−
∞∑
n=1

2−n+1
)

= P [A]/2 > 0.

So we have found ψ and for each n ∈ N a ϑ̃n ∈ Θsf
+ with V0(ϑ̃n, Sξ) ≤ V0(ϑ, Sξ) + 2/n and

lim inf
t→∞

(ϑ̃nt − ϑt − ψtξt) = lim inf
t→∞

(ϑ̃nt − ϑt − ψnt ξt) ≥ 0 P -a.s.,

which contradicts the assumption that ϑ is ssm for ξ.
2) If ϑ is not ssm for ξ, there are a [0, 1]-valued adapted ψ = (ψt)t≥0 converging P -a.s.

to ψ∞ := limt→∞ ψt ∈ L∞+ \ {0} and for each ε > 0 a ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε) ≤ V0(ϑ) + ε,

hence V0(ϑ̂ε, Sξ) ≤ V0(ϑ, Sξ)+ε/V0(ξ), and satisfying lim inft→∞(ϑ̂εt−ϑt−ψtξt) ≥ 0 P -a.s.
By Lemma 3.11, Sξ is bounded in t ≥ 0, P -a.s. Superadditivity of the lim inf, Lemma A.1,
V(ξ, Sξ) = ξ · Sξ ≡ 1 and Sξ ≥ 0 from S ≥ 0 thus yield that P -a.s.,

lim inf
t→∞

Vt(ϑ̂ε − ϑ, Sξ) ≥ lim inf
t→∞

(
(ϑ̂εt − ϑt − ψtξt) · S

ξ
t

)
+ lim inf

t→∞

(
(ψtξt) · Sξt

)
≥
(

lim inf
t→∞

(ϑ̂εt − ϑt − ψtξt)
)
·
(

lim inf
t→∞

Sξt
)

+ ψ∞ ≥ ψ∞.

So ϑ is not svm for Sξ, and this completes the proof.

4 Proofs and a more detailed result
In this section, we prove the main results from Section 2.

Proof of Theorem 2.12. 1) If S satisfies DSV for η, 0 ∈ Θsf
+ is ssm for η and hence svm

for Sη by Theorem 3.10, 1) for ξ = η. Theorem 3.8 for ξ = η thus yields a D′ ∈ Sunif
++

such that Sη/D′ is a σ-martingale. Writing Sη/D′ = S/((η · S)D′) =: S/D shows that
D = (η · S)D′ ∈ S++ is a σ-martingale discounter for S. Moreover, η · (S/D) = 1/D′ is
in Sunif

++ like D′, and in particular, inft≥0(ηt · (St/Dt)) > 0 P -a.s. This argument does not
need S ≥ 0.

2) If D ∈ S++ is a σ-martingale discounter for S, then S̃ := S/D is a σ-martingale.
By [3, Corollary 3.5], 0 ≤ V(η, S̃) = V0(η, S̃) + η S̃ is a P -supermartingale so that
limt→∞ Vt(η, S̃) exists and is finite, P -a.s. (We cannot use Theorem 3.4 here because
D need not be S-tradable; see Remark 3.5.) This yields supt≥0(ηt · S̃t) < ∞ P -a.s., and
because also inft≥0(ηt ·S̃t) > 0 P -a.s. by assumption, we obtain V(η, S̃) = η ·(S/D) ∈ Sunif

++ .
Now D′ ≡ 1 ∈ Sunif

++ is a σ-martingale discounter for S̃, and so Theorem 3.8 applied to S̃
and ξ = η implies that 0 is svm for S̃η. By Theorem 3.10, 2) for S̃ ≥ 0 and ξ = η, 0 is
then ssm for η in the model S̃, and hence also in the model S = S̃D because strong share
maximality is discounting-invariant with respect to S++. So S satisfies DSV for η.
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Proof of Theorem 2.14. This is very similar to the proof of Theorem 2.12, with the main
difference that we use Theorem 3.9 instead of Theorem 3.8.

1) If S satisfies DSE for η, then every η-buy-and-hold ϑ ∈ Θsf
+ and in particular the

reference strategy η is ssm for η and hence svm for Sη by Theorem 3.10, 1). Moreover, η
and Sη are bounded by assumption, and so Theorem 3.9 for ξ = η yields the existence of
some D′ ∈ Sunif

++ such that Sη/D′ is a UI martingale. As before, D := (η · S)D′ is then a
UI martingale discounter for S, and we also again get inft≥0(ηt · (St/Dt)) > 0 P -a.s.

2) If D ∈ Sunif
++ is a UI martingale deflator for S and we set S̃ := S/D, then we get

V(η, S̃) ∈ Sunif
++ as before. Because η and Sη are bounded by assumption, Theorem 3.9

applied to S̃ and ξ = η then yields that each bounded ϑ ∈ Θsf
+ is svm for S̃η. But every

η-buy-and-hold ϑ ∈ Θsf
+ is bounded like η itself, hence svm for S̃η and then ssm for η as

before. Thus S satisfies DSE for η.

Before we prove Theorem 2.15, we give a more detailed statement with a number of
extra equivalent assertions.

Theorem 4.1. (full version of Theorem 2.15) Suppose S ≥ 0 and there exists a
reference strategy η. Consider the following statements:

(e1) S satisfies dynamic share efficiency for η.

(v1) S satisfies dynamic share viability for η.

(e2) Every bounded ϑ ∈ Θsf
+ is strongly value maximal for Sη.

(e2′) η is strongly value maximal for Sη = S/(η · S).

(v2) 0 is strongly value maximal for Sη = S/(η · S).

(e3) There exists a UI martingale discounter D for S with η · (S/D) ∈ Sunif
++ .

(v3) There exists a σ-martingale discounter D for S with η · (S/D) ∈ Sunif
++ .

(e4) NFLVR∞(Sη) holds, i.e., Sη satisfies NFLVR∞.

(v4) NUPBR∞(Sη) holds, i.e., Sη satisfies NUPBR∞.

(e5) Every bounded ϑ ∈ Θsf
+ is strongly share maximal for η.

(e5′) The reference strategy η ∈ Θsf
+ is strongly share maximal for η.

(v5) There exists some ϑ ∈ Θsf
+ which is strongly share maximal for η.

(e6) For every D ∈ S++ with η · (S/D) ∈ Sunif
++ , every bounded ϑ ∈ Θsf

+ is strongly value
maximal for the D-discounted price process S/D.
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(v6) For every D ∈ S++ with η · (S/D) ∈ Sunif
++ , the zero strategy 0 ∈ Θsf

+ is strongly value
maximal for the D-discounted price process S/D.

Then we have (eK) ⇒ (vK) for K = 1, . . . , 6, and the statements (vK), K = 1, . . . , 6, are
equivalent among themselves. If in addition η and Sη are bounded (uniformly in (ω, t)),
then also the statements (eK), K = 1, . . . , 6, are equivalent among themselves (including
the prime ′ versions).

Figure 1 gives a graphical overview of this result.

S satisfies DSE for η S satisfies DSV for η
(every η-buy-and-hold ϑ ∈ Θsf

+ is ssm for η) (0 is ssm for η)
m m

every bounded ϑ ∈ Θsf
+ is ssm for η 0 ∈ Θsf

+ is ssm for η
m m

η is ssm for η 0 is ssm for η
m m

η is svm for Sη 0 is svm for Sη
m m

every bounded ϑ ∈ Θsf
+ is svm for Sη =⇒ some ϑ ∈ Θsf

+ is svm for Sη
m m

∀D ∈ S++ with η · (S/D) ∈ Sunif
++ : ∀D ∈ S++ with η · (S/D) ∈ Sunif

++ :
every bounded ϑ ∈ Θsf

+ is svm for S/D 0 ∈ Θsf
+ is svm for S/D

m m
∃ UI martingale discounter D for S ∃ σ-martingale discounter D for S

with η · (S/D) ∈ Sunif
++ with η · (S/D) ∈ Sunif

++
m m

Sη satisfies NFLVR∞ Sη satisfies NUPBR∞

Figure 1: Graphical summary of Theorem 4.1. Assumptions are S ≥ 0 and that η is a
reference strategy (which is assumed to exist). The equivalences on the left side need in
addition that η and Sη are bounded (uniformly in (ω, t)).

Proof. While we need η ∈ Θsf
++ at once to define Sη, the assumption S ≥ 0 is used only

in some implications. We structure the proof to make this apparent and initially only
assume that there exists a reference strategy η; so η ≥ 0.

It is clear from the statements or definitions that (eK)⇒ (vK) holds for K = 1, . . . , 6.
Because DSV for η means that 0 is ssm for η, (v1) ⇒ (v5) is clear, and (v5) ⇒ (v2)

follows directly from Lemma 3.1, 2) and Theorem 3.10, 1) for ξ = η. Next, (v1)⇒ (v3) is
the “only if” part of Theorem 2.12, and (v6) ⇒ (v2) follows from Lemma 3.1, 1) because
(S/D)/(η · (S/D)) = S/(η · S) = Sη. Finally, (v2) ⇔ (v4) is Proposition 3.3 for ξ = η,
and (v1) implies by Theorem 3.10, 1) that 0 is svm for Sη = (S/D)/(η · (S/D)) and hence
also svm for S/D by Lemma 3.1, 1) so that we get (v6).
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If S ≥ 0, (v2)⇒ (v1) follows from Theorem 3.10, 2) for ξ = η, and (v3)⇒ (v1) is the
“if” part of Theorem 2.12. This proves all implications for the (vK) statements.

DSE for η means that every η-buy-and-hold ϑ ∈ Θsf
+ is ssm for η. Thus (e1) ⇒ (e5′)

is clear, so is (e5) ⇒ (e1) as η is bounded by the assumptions for the statements (eK),
and (e5′) ⇒ (e2′) is from Theorem 3.10, 1) for ξ = η. Moreover, (e2) ⇒ (e2′) is clear
because η is bounded, (e6) ⇒ (e2) is clear by taking D = V(η) so that S/D = Sη and
η · (S/D) ≡ 1 ∈ Sunif

++ , and (e2′) ⇔ (e4) is Proposition 3.7 for ξ = η.
Now suppose S ≥ 0 and recall the assumption that both η and Sη are bounded (uni-

formly in (ω, t)). Then (e1)⇔ (e3) is Theorem 2.14. If (e2′) holds, every bounded ϑ ∈ Θsf
+

is svm for Sη by Theorem 3.9 for η = ξ, and hence by Theorem 3.10, 2) ssm for η, so
that we get (e2′) ⇒ (e5). Finally, every such ϑ is also svm for S/D = Sη(η · (S/D)) by
Lemma 3.1, 1). This gives (e2′) ⇒ (e6) and completes the proof.

5 Robustness, classic theory, and literature
This section has three parts. We first discuss to which extent our approach and results
are robust with respect to the choice of a reference strategy. We then connect our work
to the classic theory, and finally provide a comparison to the existing literature.

5.1 Robustness towards the choice of a reference strategy

As already pointed out in Remark 2.9, 2), our concepts and main results depend on the
choice of a reference strategy η. In this section, we show that this dependence is fairly
weak, which means that our approach is quite robust towards the choice of η.

Consider two reference strategies η, η′; so both are in Θsf
++ and ≥ 0. We also consider

the ratio condition

(η′ · S)/(η · S) = V(η′)/V(η) ∈ Sunif
++ , i.e.,

0 < inf
t≥0

(
Vt(η′)/Vt(η)

)
≤ sup

t≥0

(
Vt(η′)/Vt(η)

)
<∞ P -a.s.(5.1)

As Sunif
++ is closed under taking reciprocals, (5.1) is symmetric in η and η′.

Lemma 5.1. Suppose S ≥ 0 and there exist reference strategies η, η′. Fix ϑ ∈ Θsf
+. If

(5.1) holds, then ϑ is ssm for η if and only if it is ssm for η′.

Proof. If ϑ is ssm for η, then it is svm for Sη by Theorem 3.10, 1). But Sη′ = Sη/D with
D := (η′ ·S)/(η ·S) ∈ Sunif

++ due to (5.1). Thus by Lemma 3.1, 1), ϑ is svm for Sη′ as well,
and hence ssm for η′ by Theorem 3.10, 2). The converse is argued symmetrically.

Proposition 5.2. Suppose S ≥ 0 and there exist reference strategies η, η′.
1) If (5.1) holds, then DSV for η and DSV for η′ are equivalent.
2) If η, η′ as well as Sη, Sη′ are bounded (uniformly in (ω, t)), then DSE for η and

DSE for η′ are equivalent.
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Proof. 1) Apply Lemma 5.1 to ϑ ≡ 0.
2) Because η and Sη

′ are bounded, so is (η · S)/(η′ · S) = η · Sη′ , and analogously,
(η′ · S)/(η · S) is bounded. So (5.1) holds. If we have DSE for η, every bounded ϑ ∈ Θsf

+

and in particular η′ is ssm for η by Theorem 2.15, (e1) ⇒ (e5). By Lemma 5.1, η′ is
thus also ssm for η′, and so Theorem 2.15, (e5′) ⇒ (e1), gives DSE for η′. The converse
argument is symmetric.

The boundedness assumptions in Proposition 5.2, 2) are precisely those we impose in
Theorem 2.14 to obtain a dual characterisation for DSE. So DSE is robust with respect
to the choice of any reference strategy in that class.

Remark 5.3. Suppose S ≥ 0 and ∑N
i=1 S

i is strictly positive with strictly positive left
limits. As seen in Remark 2.3, 1), the market portfolio 1 is then a reference strategy with
1 and S1 = S/

∑N
i=1 S

i bounded (uniformly in (ω, t)). Any η ∈ Θsf
+ with c1 ≤ η ≤ C1

for constants 0 < c ≤ C < ∞ is then also a reference strategy with η and Sη bounded
(uniformly in (ω, t)); indeed, η ·S ≥ c1 ·S and hence Sη ≤ 1

c
S1 (coordinatewise). In view

of Proposition 5.2, 2), DSE for the market portfolio is thus the same as for any bounded
reference strategy which always invests in a uniformly nondegenerate way into all assets.
An “extreme” strategy like ei, buy and hold a single fixed asset i, does not satisfy this.

5.2 Connections to the classic results

Theorem 2.15 indicates that in some way, DSV is related to NUPBR, and DSE to NFLVR.
In this section, we study this in more detail in the classic setup S = (1, X). Because our
results use the condition S ≥ 0, we also impose X ≥ 0.

If S = (1, X) with X ≥ 0, then 1 is a reference strategy (with V(1) ≥ 1) and
S1 = S/V(1) = S/

∑N
i=1 S

i is bounded (uniformly in (ω, t)). Both these properties still
hold if S ≥ 0 only satisfies ∑N

i=1 S
i > 0 and ∑N

i=1 S
i
− > 0. In contrast, ei is a reference

strategy for general S only if Si > 0 and Si− > 0, and Sei = S/Si has in general no
boundedness properties. For S = (1, X), e1 is always a reference strategy and Se1 = S.
But this relies crucially on the particular structure of S = (1, X), and so choosing e1 as
a reference strategy is both more extreme and more delicate than choosing 1. The next
result reflects this.

Proposition 5.4. If S = (1, X) for an Rd
+-valued semimartingale X ≥ 0, classic NUPBR

for X is equivalent to S satisfying DSV for e1 and implies that S satisfies DSV for 1.

Proof. Classic NUPBR forX is the same as NUPBR∞(1, X), and this is by Proposition 3.3
equivalent to 0 being svm for Se1 = S = (1, X). In turn, this is by Theorem 3.10 equivalent
to 0 being ssm for e1, which is DSV for e1 by definition. Next, DSV for 1 is the same
as 0 being ssm for 1, which is equivalent to 0 being svm for S1 by Theorem 3.10 again.
As S1 = S/V(1) = Se1

/V(1), svm for Se1 is by Lemma 3.1, 1) the same as svm for
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S1 whenever V(1) ∈ Sunif
++ , and the point is now that this holds if X satisfies NUPBR.

Indeed, V(1) ≥ 1 due to X ≥ 0, and as NUPBR for X is equivalent to 0 being svm for
Se1 = S, Theorem 3.4 for ξ ≡ e1 implies that V(1) is convergent and hence bounded in
t ≥ 0, P -a.s. So V(1) ∈ Sunif

++ and we are done.

The converse of the implication in Proposition 5.4 is not true in general. A counterex-
ample is given in Example 6.8. Thus our new concept of dynamic share viability, when
used for the market portfolio 1, is more widely applicable than classic NUPBR.

The situation with DSE versus NFLVR is more subtle. We first give a positive result.

Proposition 5.5. If S = (1, X) for an Rd
+-valued semimartingale X ≥ 0, classic NFLVR

for X is equivalent to S satisfying DSE for e1.

Proof. Classic NFLVR for X is the same as NFLVR∞(1, X), and this is by Proposition 3.3
equivalent to e1 being svm for Se1 = S = (1, X). In turn, this is by Theorem 3.10 equiv-
alent to e1 being ssm for e1. But any e1-buy-and-hold strategy ϑ is of the form ϑ = λe1

for some λ ∈ R, because e1 = (1, 0, . . . , 0), and so ϑ is in Θsf
+ if and only if λ ≥ 0. Thanks

to Lemma 3.1, 2), e1 is therefore ssm for e1 if and only if every e1-buy-and-hold ϑ ∈ Θsf
+

is ssm for e1, which is DSE for e1 by definition.

Remark 5.6. It looks tempting to use Theorem 4.1, (e1) ⇔ (e5′), to shorten the above
argument. But the proof of that equivalence uses that both η and Sη are bounded (uni-
formly in (ω, t)), which would place a massive restriction on Se1 = S = (1, X) for η ≡ e1.

If we want to use the reference strategy η ≡ 1, the situation for DSE versus NFLVR
is different from DSV versus NUPBR. Neither of DSE for 1 and NFLVR for X implies
the other in general in the classic case S = (1, X). Example 6.10 shows that DSE for
1 does not imply NFLVR for X. Conversely, Example 6.7 shows that for S = (1, X),
we can have NFLVR for X while DSE for 1 fails. (We do note that by Theorem 2.15,
S satisfying DSE for 1 is equivalent to S1 satisfying NFLVR∞ with η ≡ 1, and also to
S1 satisfying DSE for 1, by discounting-invariance; but this means that we have a result
only for 1-discounted prices, not for the original prices S.)

The background of this discrepancy is the following: NFLVR for X is equivalent to
e1 being svm for (1, X), whereas DSE for 1 is equivalent to 1 being svm for S1. Here,
“e1 svm” is weaker than “1 svm” as e1 ≤ 1, but “for (1, X)” is stronger than “for S1” as
(1, X) ≥ S1. Upon reflection, the discrepancy is actually not surprising; in fact, NFLVR
is about how e1 or V(e1) fits into the market, whereas DSE for 1 looks at all the ei,
i = 1, . . . , N . The next result makes this more precise.

Proposition 5.7. Suppose that S ≥ 0 and there exist reference strategies η, η′. Then
NFLVR∞(Sη) plus inft≥0(η′t · S

η
t ) > 0 P -a.s. implies that η is strongly share maximal for

η′. In particular, if S = (1, X) with X ≥ 0, then classic NFLVR for X implies that e1 is
strongly share maximal for 1.
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Proof. The second statement follows from the first for η ≡ e1, η′ ≡ 1 by observing that
1·Se1 = 1+∑d

i=1X
i ≥ 1. If we have NFLVR∞(Sη), then 0 is svm for Sη by Propositions 3.7

and 3.3, and so V(η′, Sη) is convergent and hence bounded in t ≥ 0, P -a.s., by Theorem 3.4.
By assumption, inft≥0 Vt(η′, Sη) > 0 P -a.s. so that V(η′, Sη) ∈ Sunif

++ . By Proposition 3.7
again, η is svm for Sη and hence by Lemma 3.1, 1) also for Sη/V(η′, Sη) = Sη

′ . By
Theorem 3.10, 2), η is then ssm for η′.

To conclude, we briefly show how our approach yields new results even in the classic
case. Note that the next result does not assume that S ≥ 0.

Proposition 5.8. Suppose there exists an η ∈ Θsf
++. Then Sη satisfies NUPBR∞ if and

only if there exists a σ-martingale discounter D for Sη with D∞ := limt→∞Dt <∞ P -a.s.

Proof. By Proposition 3.3 and Theorem 3.8 for ξ = η, Sη satisfies NUPBR∞ if and only
if it admits a σ-martingale discounter D ∈ S++ with the extra property D ∈ Sunif

++ . Fix
any σ-martingale discounter D for Sη. Because V(η, Sη) ≡ 1, writing

1/D = V(η, Sη)/D = V(η, Sη/D) = V0(η, Sη/D) + η (Sη/D)

shows that 1/D is a σ-martingale like Sη/D, and also in S++ like D. So by [3, Corol-
lary 3.5], 1/D is a local martingale > 0 and a supermartingale ≥ 0, and hence P -a.s.
convergent to some finite limit. D itself is then also P -a.s. convergent and D∞ > 0 P -a.s.,
which implies inft≥0Dt > 0 P -a.s. The extra property D ∈ Sunif

++ thus holds if and only if
supt≥0Dt <∞ P -a.s. or, equivalently by convergence, D∞ <∞ P -a.s.

Corollary 5.9. Suppose X is an Rd-valued semimartingale. Then X satisfies classic
NUPBR if and only if there exists a local martingale L > 0 with L∞ := limt→∞ Lt > 0
P -a.s. and such that LX is a σ-martingale.

Proof. For S = (1, X), η ≡ e1 is in Θsf
++ with Sη = Se1 = S. So we can apply Proposi-

tion 5.8 and take L := 1/D. The properties of L are all shown in the above proof.

Corollary 5.9 sharpens the classic characterisation of NUPBR in Karatzas/Kardaras
[24, Theorem 4.12] in two ways: X and X− need not be strictly positive (i.e., we need not
assumeX ∈ Sd++), and we get a σ-martingale deflatorD forX, not only a supermartingale
deflator D̃ for all H X with H ∈ Ladm(X); see also Bálint/Schweizer [4, Lemma 2.13] for
the connection between these two properties. (Unlike D̃, however, D cannot be chosen
S-tradable in general; see Takaoka/Schweizer [35, Remark 2.8] for a counterexample and
[4, Propositions 2.19 and 2.20] for related positive results.) Corollary 5.9 also extends [35,
Theorem 2.6] from a closed interval [0, T ] to a general time horizon.

5.3 Comparison to the literature

This section compares our ideas and results to the existing literature. We first consider
absence of arbitrage (AOA) aspects and then discuss numéraire- or discounting-invariance.
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5.3.1 Absence of arbitrage

The two most used classic AOA notions in the literature are NFLVR (due to Delbaen/
Schachermayer [9]) and the strictly weaker NUPBR (coined by Karatzas/Kardaras [24]).
The latter condition was introduced under different names by different authors — BK in
Kabanov [20], no cheap thrills in Loewenstein/Willard [30] or NA1 in Kardaras [25, 27];
see also Kabanov/Kramkov [21] for the notion of NAA1. By [25, Proposition 1] and
Kabanov et al. [18, Lemma A.1], all these and NUPBR are equivalent.

Both NFLVR and NUPBR are classically only defined for discounted price processes of
the form S = (1, X). Dual characterisations, in terms of martingale properties for X, first
focused on NFLVR, culminating in the classic FTAP due to Delbaen/Schachermayer [9,
12] that for a general Rd-valued semimartingale X, NFLVR for S = (1, X) is equivalent
to the existence of an equivalent σ-martingale measure for the discounted prices X.

Even if NFLVR does not hold, a market can still be sufficiently nice to allow some AOA-
type arguments. This has been exploited in several papers. Loewenstein/Willard [30]
show in an Itô process setup that already no cheap thrills (NUPBR) is sufficient (and
necessary) to solve utility maximization problems; see also Chau et al. [7]. In the bench-
mark approach presented in Platen/Heath [31], a market may violate NFLVR; but in
units of the so-called numéraire portfolio, the theory works as if there was no arbitrage.
An excellent discussion with more details can be found in Herdegen [15, Section 5.3]. For
stochastic portfolio theory and the study of relative arbitrage (see Karatzas/Fernholz [23]
for an overview), a market may have “arbitrage” in the sense of FLVR; but portfolio
choice still makes sense, and hedging via superreplication can still work. The compre-
hensive paper of Karatzas/Kardaras [24] shows that maximising growth rate, asymptotic
growth or expected logarithmic utility from terminal wealth all make sense if and only
if NUPBR holds. Another overview of the above connections can be found in the recent
work of Choulli et al. [8].

In Bálint/Schweizer [4], we have recently studied the dependence of AOA conditions
on the time horizon as part of an analysis of large financial markets; see [4, Section 5
and in particular Corollary 5.4]. We also point out in [4, Remark 5.6] that in contrast to
common belief, NUPBR on [0,∞) is not stable under localisation. For related work, we
refer to Kardaras [28], Acciaio et al. [1] and Aksamit et al. [2].

Like for NFLVR, the literature contains dual characterisations of NUPBR. Depending
on the setting, they vary in the strength of the dual formulation; see Table 1 for an
overview. For S = (1, X) on [0,∞) with X ∈ Sd++, Karatzas/Kardaras [24] show that
NUPBR is equivalent to the existence of an S-tradable supermartingale discounter for all
wealth processes of admissible self-financing strategies. On [0, T ], this is strengthened by
Takaoka/Schweizer [35] to the existence of a σ-martingale discounter for X, where again
S = (1, X) but X is an Rd-valued semimartingale. Both Kardaras [27] and Kabanov et
al. [18], inspired by the results and a counterexample in [35], work on [0, T ] with S = (1, X)
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for an Rd-valued semimartingale X and characterise NA1 (which is equivalent to NUPBR)
by the existence of a local martingale discounter for all wealth processes of admissible self-
financing strategies. In [27], this is done for d = 1 so that X is real-valued; [18] extend the
result to d ≥ 1 and in addition manage to find an S-tradable local martingale discounter
under any R ≈ P in any neighbourhood of P . An overview of the connections between
different types of discounters is given in Bálint/Schweizer [4, Lemma 2.13].

price process S time condition dual condition

KK [24] (1, X) ∈ S1+d
++ [0,∞) NUPBR

∃ S-tradable SMD D > 0
for all H X with H ∈ Ladm(X),

with D∞ > 0
TS [35] (1, X) ∈ S1+d [0, T ] NUPBR ∃ σMD D > 0 for X

K [27] (1, X) ∈ S1+1 [0, T ] NA1
∃ LMD D > 0

for all H X with H ∈ Ladm(X)

KKS [18] (1, X) ∈ S1+d [0, T ] NA1
∃ S-tradable LMD D > 0

for all H X with H ∈ Ladm(X),
in any neighbourhood of P

H [15] in SN [0, T ] NINA ∃ discounter/EσMM pair for S

here in SN+ [0,∞) DSV for η
∃ LMD D > 0 for S

with inft≥0(ηt · (St/Dt)) > 0 P -a.s.

Table 1: Overview of existing FTAP-type results. Note that NA1 = NUPBR on [0, T ].

Table 1 gives an overview of the dual characterisation results discussed above. We
recall the space Sm of Rm-valued semimartingales and use Sm+ , Sm++ as in Section 2. The
abbreviations SMD, σMD and LMD denote super-, σ- and local martingale discounters,
respectively. The table compares Karatzas/Kardaras [24], Takaoka/Schweizer [35], Kar-
daras [27], Kabanov et al. [18], Herdegen [15], and the present article. Note that on a
right-open interval, the dual characterisation always involves a condition at ∞.

5.3.2 Numéraire- or discounting-invariance

As mentioned above, classic NFLVR and NUPBR are only defined for discounted prices
of the form S = (1, X). It is natural to ask in general what happens to an AOA concept
if one changes the numéraire, i.e., uses a different process for discounting. This can be
done in two different directions, after fixing a price process S:

(A) One can fix a class D of discounting processes and look for an AOA concept A
which is invariant for the chosen class D, in the sense that A holds simultaneously for all
processes S/D with D ∈ D.
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(B) One can fix an AOA concept A′ and look for a class D′ of discounting processes
which leaves the chosen A′ invariant, in the same sense as above.

Both (A) and (B) are concerned with numéraire- or discounting-invariance; but their
objectives and results are fundamentally different. In a nutshell, most of the classic results
and in particular the work by Delbaen/Schachermayer [10, 11] fall into category (B),
whereas both Herdegen’s and our approach here address (A). Put differently, we want to
be liberal about the class D of allowed discounters and thus need to look for a suitable
new AOA concept A. In contrast, [10, 11] want to keep an established AOA concept A′

and therefore look for restrictions on the class D′ of discounters to achieve this.
Historically, probably the first to study questions of numéraire-invariance for AOA

were Delbaen/Schachermayer [10] and Sin [34] (interestingly, these works do not cite each
other). [34] studies problem (A) for the special case D = {S1, . . . , SN} and replaces
for strategies ϑ ∈ Θsf the admissibility concept of [10] by the requirement of feasibility
that the value process should satisfy V(ϑ) ≥ −V(c1) = −∑N

i=1 c
iSi, where ci ≥ 0 is the

number of shares of asset i outstanding at time 0 and the product c1 is componentwise.
For S = S1(1, X(1)) with S1 > 0 and X(1) ≥ 0 a semimartingale, the main result is
then that X(1) satisfies NFLVR with feasible strategies if and only if X(1) admits an
equivalent (true) martingale measure, and that this is also equivalent to NFLVR with
feasible strategies for any X(k) with S = Sk(1, X(k)) whenever Sk > 0 and X(k) ≥ 0 is a
semimartingale. Thus one has indeed an answer to (A), and the new concept A is NFLVR
with feasible strategies. Essentially the same approach was redeveloped later in Yan [37]
(who was apparently unaware of [34]).

In contrast, Delbaen/Schachermayer [10, 11] study problem (B) and answer the ques-
tions appearing there fairly exhaustively. Starting with S = (1, X) and an S-tradable nu-
méraire/discounter D = V(ϑ), they consider the two markets S = (1, X) and S̃ = ( 1

D
, X
D

)
and show in [10] that if S satisfies classic NFLVR, then S̃ admits an equivalent σ-
martingale measure if and only if D∞ − D0 is maximal in Gadm(S). In the spirit of
(B), this characterises those S-tradable discounters which preserve NFLVR. In [11], for
such a D and under NFLVR for S, they derive an isometry between two spaces G(S)
and G(S̃) of (final values of) stochastic integrals. One key assumption for both results is
D∞ > 0; so in addition to being S-tradable, D must also be in Sunif

++ .
After Sin [34], problem (A) was taken up almost 20 years later (without citing [34]) by

Herdegen [15] who worked on [0, T ] with a general RN -valued semimartingale S. He used
the class D = S++ of discounters, which on [0, T ] coincides with Sunif

++ because all processes
are defined up to and including T , and introduced the discounting-invariant AOA condi-
tion NINA or dynamic (value) viability. It generalises NUPBR and is dually characterised
by the existence of a discounter/EσMM pair (D,Q), meaning that D ∈ S++ and Q is an
equivalent σ-martingale measure for S/D. In addition, [15] also presents a discounting-in-
variant alternative to NFLVR. It is called dynamic (value) efficiency and requires that not

28



one particular asset, but each of the N basic assets (or, equivalently, the market portfolio
1) should satisfy (value) maximality. One key insight from Delbaen/Schachermayer [10]
also reappears in [15] — NFLVR describes a maximality property of the discounting asset,
but does not say much about the market as a whole. (Proposition 5.7 extends that to our
framework.)

In the above terminology, the contribution of the present paper can be succinctly
described as follows. For an RN

+ -valued semimartingale S ≥ 0 on the right-open interval
[0,∞), we consider the classD = S++ of discounters and tackle problem (A). We introduce
two new AOA concepts DSV and DSE which are discounting-invariant for S++ and provide
dual characterisations.

One interesting related paper in discrete time is Tehranchi [36]. The main result in
Theorem 2.10 there is reminiscent of our Theorems 2.12 and 2.14, but has no dual condi-
tion at ∞. Moreover, the formulation in [36] hinges crucially on the discrete-time setup.

6 Examples
This section illustrates our results by examples and counterexamples. Most are based on
variants of one generic example, and so we start with a general analysis of that setup.

6.1 General results for a two-GBM setup

Example 6.1. For independent Brownian motions B1, B2 and % ∈ (−1, 1), define %-corre-
lated Brownian motions W 2 := B2, W 1 := %B2 +

√
1− %2B1; so (B1, B2) and (W 1,W 2)

generate the same filtration. For constants m1,m2, σ1, σ2, define the processes S1, S2 by

(6.1) logSit = σiW
i
t +

(
mi −

1
2σ

2
i

)
t, t ≥ 0, i = 1, 2.

We take m1,m2 ∈ R and σ1 ≥ 0, but insist on σ2 > 0 to avoid degenerate models. The
filtration F is generated by S = (S1, S2), made right-continuous and complete. This setup
includes two basic cases. If σ1 = 0 and we set m1 := r ∈ R, m2 := m ∈ R, σ2 := σ > 0,
we have the classic Black–Scholes (BS) model with a bank account S1 and one stock S2.
The filtration is then generated by W 2 only. If σ1 > 0, we have a symmetric market
with two stocks S1, S2 (and no bank account), given by correlated geometric Brownian
motions (GBM). The filtration is then generated by (W 1,W 2) or equivalently (B1, B2).

If we discount all prices by the first asset, this gives the model S/S1 = (1, X) with

logXt =
(
m2 −m1 −

1
2(σ2

2 − σ2
1)
)
t+ σ2W

2
t − σ1W

1
t

= (m2 −m1 + σ2
1 − %σ1σ2)t+ σ̄W̄t −

1
2 σ̄

2t,(6.2)

with σ̄ :=
√
σ2

1 + σ2
2 − 2%σ1σ2 and a new Brownian motion W̄ := (σ2W

2 − σ1W
1)/σ̄.
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For Example 6.1, we can characterise, in terms of the parameters m1,m2, σ1, σ2, %,
when DSV or DSE for 1 hold, by using σ-martingale discounters D for S. Then S/D

is a σ-martingale > 0 and hence a local martingale > 0. In the filtration generated by
(B1, B2), all positive local martingales starting at 1 have the form E(ξ1 B1 + ξ2 B2),
and as all coefficients of S are constant, one expects that it is enough to consider only
constant processes ξ1, ξ2. So we define

C := {D ∈ S++ : Si/D = E(αiB1 + βiB
2) with constants αi, βi, i = 1, 2}.

Throughout this section, we consider the setting of Example 6.1. Note that
S0 = (1, 1) implies the normalisation D0 = 1 for any D ∈ C.

Proposition 6.2. We always have C 6= ∅, and each D ∈ C corresponds to a tuple
(α1, β1, α2, β2) ∈ R4 with one free parameter. More precisely, we have the three relations

α2 = α1 − σ1

√
1− %2,(6.3)

β2 = β1 − (%σ1 − σ2),(6.4)

α1σ1

√
1− %2 + β1(%σ1 − σ2) = m2 −m1 + σ2

1 − %σ1σ2.(6.5)

In particular, α2 and β2 are always determined from α1 and β1, respectively. Moreover:
1) If σ1 = 0, we must take α1 = 0 and β1 = −m2−m1

σ2
. This yields

D−1
t = E

(
− m2 −m1

σ2
B2
)
t
e−m1t, t ≥ 0,

which is the well-known state price density for the Black–Scholes model.
2) If σ1 > 0, we can choose β1 freely, and α1 is then determined via (6.5).

Proof. Because Si/D = E(αiB1 + βiB
2) for i = 1, 2 and D is one-dimensional, we have

S1/E(α1B
1 + β1B

2) = D = S2/E(α2B
1 + β2B

2). Plug in (6.1) for S1, S2, express W 1,W 2

via B1, B2, write out the results and equate the two sides. The coefficients of B1, B2, t in
the exponents must then coincide, and the resulting three equations yield the claims after
straightforward algebra. Note that in case 1), D is not adapted to F unless α1 = 0.

Each D ∈ C is a (local and) σ-martingale discounter for S in the filtration F. The
next result exhibits a particularly useful choice among these.

Proposition 6.3. There exists a unique S-tradable D̄ ∈ C. In terms of the corresponding
parameter tuple from Proposition 6.2, it is given as follows:

1) If σ1 = 0, then ᾱ1 = 0 = ᾱ2 and

(6.6) β̄1 = −m2 −m1

σ2
, β̄2 = −m2 −m1 − σ2

2
σ2

.
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2) If σ1 > 0, then

ᾱ1

(
σ1

√
1− %2 + (%σ1 − σ2)2

√
1− %2

)
= m2 −m1 + σ2

1 − %σ1σ2,(6.7)

β̄1 = ᾱ1
%σ1 − σ2√

1− %2 ,(6.8)

ᾱ2

(
σ1

√
1− %2 + (%σ1 − σ2)2

√
1− %2

)
= m2 −m1 − σ2

2 + %σ1σ2,(6.9)

β̄2 = ᾱ2
%σ1 − σ2√

1− %2 .(6.10)

Proof. For D̄ to be S-tradable, we must have D̄ = V(ϑ̄) for some ϑ̄ ∈ Θsf . Setting
S̄ := S/D̄, this is equivalent to 1 ≡ V(ϑ̄)/D̄ = V(ϑ̄, S)/D̄ = V(ϑ̄, S̄) or

(6.11) ϑ̄1
t S̄

1
t + ϑ̄2

t S̄
2
t = 1, t ≥ 0.

Moreover, we also have from the self-financing condition that

(6.12) 0 = dVt(ϑ̄, S̄) = ϑ̄1
t dS̄1

t + ϑ̄2
t dS̄2

t .

But S̄i = E(ᾱiB1 + β̄iB
2) yields dS̄it = S̄it(ᾱi dB1

t + β̄i dB2
t ). Plugging this into (6.12) and

using that B1, B2 are independent implies by comparing coefficients that

0 = ϑ̄1
t S̄

1
t ᾱ1 + ϑ̄2

t S̄
2
t ᾱ2,(6.13)

0 = ϑ̄1
t S̄

1
t β̄1 + ϑ̄2

t S̄
2
t β̄2.(6.14)

Now we use (6.11) to get ϑ̄1S̄1 = 1− ϑ̄2S̄2, plug this into (6.13) and (6.14), use (6.3) and
(6.4) to eliminate ᾱ2 and β̄2 and obtain (after simple calculations)

ᾱ1 = ϑ̄2S̄2σ1

√
1− %2,(6.15)

β̄1 = ϑ̄2S̄2(%σ1 − σ2).(6.16)

Because only one of ᾱ1, β̄1 can be chosen freely by Proposition 6.2, there is at most one
choice of D̄ ∈ C which is S-tradable. For existence of D̄, we consider two cases.

1) If σ1 = 0, (6.15) forces ᾱ1 = 0, hence ᾱ2 = 0 by (6.3), and Proposition 6.2 and (6.4)
yield (6.6). Moreover, (6.16) yields for ϑ̄ the explicit formulas

(6.17) ϑ̄2S̄2 ≡ − β̄1

σ2
= m2 −m1

σ2
2

, ϑ̄1S̄1 = 1− ϑ̄2S̄2 ≡ −m2 −m1 − σ2
2

σ2
2

.

2) If σ1 > 0, solve (6.15) for ϑ̄2S̄2 and plug into (6.16) to get (6.8). Insert this into (6.5)
to obtain (6.7). Finally, combine (6.7), (6.3) for (6.9), and (6.4), (6.8), (6.3) for (6.10).

Remark 6.4. 1) In the BS model with parameters m, r, σ, the proportion of wealth in
the stock S2 for the strategy ϑ̄ is given by π̄2 = ϑ̄2S2/V(ϑ̄) = ϑ̄2S̄2 = m−r

σ2 . This is exactly
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the strategy which solves the problem of maximising expected logarithmic utility from
final wealth. We therefore call ϑ̄ from (6.17) the Merton strategy.

2) The strategy ϑ̄2 in (6.17) matches intuition quite well. In addition to its buy-low-
sell-high property, it goes long S1 and short S2 if m1 is much higher than m2, short S1

and long S2 if m1 is much lower than m2, and holds proportional long positions in both
assets if the relation between m1 and m2 is not extreme.

Our main result about Example 6.1 is now

Theorem 6.5. 1) If σ1 = 0, then S satisfies DSV for 1 if and only if

(6.18) m2 −m1 ∈ {0, σ2
2}.

In particular, the BS model with parameters m, r, σ satisfies DSV for 1 if and only if

m− r
σ2 ∈ {0, 1}.

2) If σ1 > 0, the general GBM model satisfies DSV for 1 if and only if

(6.19) mi − σ2
i + %σ1σ2 = m3−i for i = 1 or i = 2.

3) S satisfies DSV for 1 if and only if one of the two processes S/S1 = (1, X) or
S/S2 = (1/X, 1) is a martingale.

4) S never satisfies DSE for 1.

Proof. Because DSV and DSE are discounting-invariant, we can argue for S̄ = S/D̄ from
Proposition 6.3 instead of S. Write S̄i = E(ᾱiB1 + β̄iB

2) = E(ᾱiB1)E(β̄iB2).
1) If σ1 = 0, then ᾱ1 = 0 = ᾱ2 and S̄1 = E(β̄1B

1) and S̄2 = E((β̄1 + σ2)B2) by (6.4).
If either β̄1 = 0 or β̄1 + σ2 = 0, then 1 · S̄ ≥ 1 so that S̄ is a (non-UI) martingale with
inft≥0(1 · S̄t) > 0 P -a.s.; so S̄ satisfies DSV for 1 by Theorem 2.15 with η ≡ 1. If β̄1 6= 0
and β̄1 + σ2 6= 0, then 1 · S̄t → 0 P -a.s. as t → ∞. Because ϑ̄ · S̄ = V(ϑ̄, S̄) ≡ 1, this
implies that (ϑ̄ · S̄)/(1 · S̄) cannot be bounded in t ≥ 0, P -a.s. So 0 is not svm for S̄1

by Lemma 3.12 for S = S̄ and ξ ≡ 1, and therefore S̄ does not satisfy DSV for 1 by
Theorem 3.10, 1). In summary, S satisfies DSV for 1 if and only if β̄1 ∈ {0,−σ2}, which
is equivalent to (6.18) in view of (6.6).

2) If σ1 > 0, (6.3) shows that ᾱ1 and ᾱ2 cannot both be 0, and (6.8), (6.10) imply
β̄i = 0 if ᾱi = 0. So if ᾱi = 0, we get S̄i ≡ 1 and hence again 1 · S̄ ≥ 1, so that S satisfies
DSV for 1 by the same argument as in 1). If ᾱ1 6= 0 and ᾱ2 6= 0, then 1 · S̄t → 0 P -a.s.
as t→∞; so S̄ does not satisfy DSV for 1, again as in 1). Thus S satisfies DSV for 1 if
and only if ᾱi = 0 for i = 1 or i = 2, and this translates into (6.19) in view of (6.7), (6.9).

3) The characterisation of DSV for 1 in terms of martingale properties follows directly
by combining the explicit expression for X in (6.2) with 1) and 2), respectively.

4) Because DSE implies DSV, we can by 3) only have DSE for 1 if either X = S2/S1

or 1/X is a martingale. This martingale is by (6.2) always of the form exp(γW̄t − 1
2γ

2t)
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for some γ 6= 0 and some Brownian motion W̄ , and hence converges to 0 P -a.s. as t→∞.
So if (1, X) = S/S1 = Se1 , say, is a martingale, we have V0(e1, Se1) = 1 = V0(e2, Se1), but
limt→∞ Vt(e1 − e2, Se1) = limt→∞(1 − Xt) = 1 ∈ L0

+ \ {0} so that e2 is not svm for Se1 .
But S1/Se1 = (S1 + S2)/S1 = 1 + X ≥ 1 is in Sunif

++ because X ≥ 0 is convergent, hence
bounded in t ≥ 0, P -a.s. By Lemma 3.1, 1), e2 is thus also not svm for S1 and hence not
ssm for 1 by Theorem 3.10, 1) for ξ ≡ 1. As e2 is a 1-buy-and-hold strategy, this implies
that S or Se1 does not satisfy DSE for 1. If 1/X is a martingale, we just interchange e1

and e2 in the argument.

6.2 Explicit examples I

This section gives explicit counterexamples for several wrong statements or implications.
All these are based on the general GBM setup from Section 6.1, and for concreteness and
simplicity, we work with the BS model. So let S1

t = ert and S2
t = exp(σWt + (m− 1

2σ
2)t)

with m, r ∈ R and σ > 0. We also need X = S2/S1 because S/S1 = (1, X).

Example 6.6. DSV for 1 does not imply DSE for 1. If we takem−r ∈ {0, σ2}, S satisfies
DSV for 1 by Theorem 6.5, 1). But S never satisfies DSE for 1, by Theorem 6.5, 4).

Example 6.7. NFLVR for (1, X) does not imply DSE for 1. Take m = r so that X is a
martingale; then clearly S/S1 = (1, X) satisfies NFLVR∞. But again by Theorem 6.5, 4),
S never satisfies DSE for 1, and neither does S/S1 because DSE is discounting-invariant.

Example 6.8. DSV for 1 does not imply NUPBR for (1, X). Now take m − r = σ2 so
that X ′ = 1/X = S1/S2 is a martingale. Then (1, X) = S/S1 satisfies DSV for 1 by
Theorem 6.5, 1) because S does. However, X ′t = exp(−σWt− 1

2σ
2t) converges to 0 P -a.s.

as t→∞; so limt→∞Xt = +∞ P -a.s. and (1, X) does not satisfy NUPBR∞.

6.3 Explicit examples II

Some of our examples need models S which satisfy DSE, or UI martingales, and both
these requirements cannot be satisfied in the setup of Section 6.1. Theorem 6.5 shows
that the GBM model never satisfies DSE for 1, and the appearing martingales are always
stochastic exponentials E(γB) of some constant multiple of some Brownian motion B.
Except for γ = 0 where E(γB) ≡ 1, such a martingale is never UI because it converges to
0 P -a.s. So we need to construct our examples in a different way.

For ease of exposition, we work in this section in (infinite) discrete time. Via piecewise
constant interpolations of processes (LCRL for predictable, RCLL for optional) and piece-
wise constant filtrations, our models can be embedded in a continuous-time framework.
We use (only in this subsection) the notation ∆Yn := Yn−Yn−1 for the increment at time
n of the discrete-time process Y = (Yn)n∈N0 . Our examples have two building blocks.

A first basic ingredient is a martingale Y whose increments (or successor values) in each
step only take two (different) values. The martingale condition then uniquely determines
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all one-step transition probabilities as a function of the Y -values, and so we can talk
about “the” corresponding martingale. By choosing the increments or values in a suitable
way, we can moreover ensure that Y is nonnegative and bounded, hence UI and P -a.s.
convergent to some Y∞ which closes Y on the right as a martingale (i.e., Y = (Yn)n∈N0∪{∞}

is a martingale). Finally, one can also ensure that Y∞ only takes two values one of which
is 0, and thus we obtain a UI martingale which converges to 0 with positive probability.

The second idea is more subtle. We want to work with a two-asset model and trade
in such a way that our strategy involves the asymptotic behaviour of both assets in a
specific nontrivial way. To this end, we construct S = (S1, S2) such that in each step,
exactly one of the assets has a price move, and these moves always alternate. This allows
to predict which asset coordinate will move in the next step, which can be exploited to
construct (switching) strategies with a desired behaviour; and as both coordinates move
alternatingly, the resulting wealth process is influenced by each coordinate in turn.

Example 6.9. DSV for η is not equivalent to the existence of a σ-martingale discounter
D for S; the condition inft≥0(ηt · (St/Dt)) > 0 P -a.s. in Theorem 2.12 is indispensable.
To show this, we take η ≡ 1 and construct a bounded martingale S ≥ 0 satisfying
P [limt→∞ St = 0] > 0. Then D ≡ 1 is a UI martingale discounter for S and we have
P [inft≥0(ηt · (St/Dt)) = 0] ≥ P [limt→∞(1 · St) = 0] > 0. We then show that S does not
satisfy DSV for 1.

To start the construction, let Y = (Yn)n∈N0 be the (unique) martingale with Y0 = 1
which at any time n ∈ N only takes the two values un = 2− 2−n or dn = 2−n. Then Y is
P -a.s. strictly positive (but not bounded away from 0 uniformly in n) and bounded by 2.
So (Yn) converges to Y∞ P -a.s., and clearly P [Y∞ = 2] = 1

2 = P [Y∞ = 0].
Now let Y 1, Y 2 be independent copies of Y and define S = (S1, S2) by S1

0 = 1 and

S1
2n−1 = S1

2n = Y 1
n for n ∈ N, S2

2n = S2
2n+1 = Y 2

n for n ∈ N0.

This gives for n ∈ N that ∆S1
2n−1 = ∆Y 1

n , ∆S1
2n = 0 and ∆S2

2n−1 = 0, ∆S2
2n = ∆Y 2

n and
in particular yields that the coordinates of S jump alternatingly because

(6.20) ∆S2
nI{∆S1

n−1=0} = 0 = ∆S1
nI{∆S2

n−1=0}.

Let F = (Fn)n∈N0 be the filtration generated by S. As S is like Y a bounded martingale,
it converges to S∞ P -a.s., and B := {limn→∞(1 ·Sn) = 0} = {S∞ = 0} has P [B] = 1

4 > 0.
Because (Sn)n∈N0 is strictly positive, η ≡ 1 is a reference strategy. If S satisfies

DSV for 1, then 0 is ssm for 1, hence svm for S1 by Theorem 3.10, 1) for ξ ≡ 1,
and so Lemma 3.11 yields supn∈N0(ϑn · Sn)/(1 · Sn) < ∞ P -a.s. for all ϑ ∈ Θsf

+. Write
(ϑ · S)/(1 · S) = V(ϑ)/(1 · S). We exhibit below a strategy ϑ̄ ∈ Θsf

+ with V(ϑ̄) ≡ ε > 0.
This yields supn∈N0(ϑ̄n · Sn)/(1 · Sn) = +∞ on B, and so S cannot satisfy DSV for 1.

To construct ϑ̄, we fix ε > 0 and consider the strategy which invests the amount ε
at time 0 in asset 2 and subsequently reinvests at any time all its wealth into that asset
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which will not jump in the next period. More formally, we set ϑ̄0 := ϑ̄1 := (0, ε) and

(6.21) ϑ̄n+1 := I{∆S1
n=0}

(
0, ε
S2
n

)
+ I{∆S2

n=0}

(
ε

S1
n

, 0
)
.

This is well defined because S1, S2 are both strictly positive, and predictable because S
is adapted. Moreover, S2

0 = S2
1 = 1 yields V0(ϑ̄) = V1(ϑ̄) = ε, and

Vn+1(ϑ̄) = I{∆S1
n=0} ε

S2
n+1
S2
n

+ I{∆S2
n=0} ε

S1
n+1
S1
n

= ε

as S1, S2 always jump alternatingly. So V(ϑ̄) ≡ ε, and ϑ̄ is also self-financing because

∆Vn+1(ϑ̄)− ϑ̄n+1 ·∆Sn+1 = 0− ϑ̄1
n+1∆S1

n+1 − ϑ̄2
n+1∆S2

n+1 ≡ 0

due to (6.21) and (6.20). So ϑ̄ has all the claimed properties, and this ends the example.

Example 6.10. DSE for η need not imply NFLVR∞, not even for a classic model of
the form S = (1, X). Similarly as in Example 6.9, let Y = (Yn)n∈N0 be the (unique)
martingale valued in (0, 1) with Y0 = 1

2 and Yn ∈ {1
22−n, 1− 1

22−n}. This converges P -a.s.
to Y∞ which takes the values 0 and 1 each with probability 1

2 . Set Y
′ := 1−Y and define

S := (1, X) :=
(

1, Y
′

Y

)
=
(

1, 1− Y
Y

)
.

Then 1 · S = 1
Y

and so S1 = (Y, 1 − Y ) = S/(1 · S) is a bounded P -martingale with
1 · S1 ≡ 1 ∈ Sunif

++ . So S satisfies (e3) in Theorem 4.1 with D = 1 · S and η ≡ 1, and this
implies that S satisfies DSE for 1. However, we clearly have X ≥ 0 and

lim
n→∞

Xn = lim
n→∞

1− Yn
Yn

= +∞ on {limn→∞ Yn = 0} = {Y∞ = 0} =: B.

As P [B] = 1
2 > 0, S = (1, X) does not satisfy NUPBR∞ and thus also not NFLVR∞.

A Appendix
This section contains some technical proofs and auxiliary results.

For any function z : [0,∞)→ RN , set z(∞) := lim inft→∞ z(t), with the lim inf taken
coordinatewise. If the limit exists, again coordinatewise, we write z(∞) := limt→∞ z(t).
In R+, the product of ∞ and 0 is 0.

Lemma A.1. Suppose the functions x, y : [0,∞)→ RN satisfy

(a) y ≥ 0 is bounded (uniformly in t ≥ 0) by some C <∞.

(b) xi(∞) ≥ 0 for i = 1, . . . , N .
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Then

(A.1) (x · y)(∞) ≥ x(∞) · y(∞).

Proof. Fix ε > 0. Decompose {1, . . . , N} into indices ` with x`(∞) = ∞ and indices m
with xm(∞) < ∞. For any ` and t ≥ T = T (`), we have x`(t) ≥ 0 and y`(t) ≥ 1

2y
`(∞),

and for any m, we get xm(t) ≥ xm(∞)− ε for t ≥ T = T (m, ε) and 0 ≤ ym(t) ≤ C for all
t. This implies xm(t)ym(t) ≥ (xm(∞)− ε)ym(t) ≥ xm(∞)ym(t)− εC and therefore

(x · y)(t) =
∑
`

x`(t)y`(t) +
∑
m

xm(t)ym(t) ≥ 1
2
∑
`

x`(t)y`(∞) +
∑
m

(
xm(∞)ym(t)− εC

)
.

Let t → ∞ and use on the right-hand side the superadditivity of lim inf, y ≥ 0 and the
fact that xm(∞) ∈ [0,∞) for all m, to obtain

(x · y)(∞) ≥ 1
2
∑
`

x`(∞)y`(∞) +
∑
m

xm(∞)ym(∞)−NεC.

If there is an ` with y`(∞) > 0, the right-hand side is +∞ and (A.1) holds trivially. So
we can assume for the rest of the proof that y`(∞) = 0 for all `; then x`(∞)y`(∞) = 0
for all ` by our convention, and we end up with

(x · y)(∞) ≥
∑
m

xm(∞)ym(∞)−NεC =
N∑
i=1

xi(∞)yi(∞)−NεC.

Letting ε↘ 0 then again gives (A.1) and completes the proof.

Proof of Lemma 3.1. If ϑ is not svm for S/D, there are f ∈ L0
+ \ {0} and for any ε > 0

some ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε, S/D) ≤ V0(ϑ, S/D) + ε, hence V0(ϑ̂ε) ≤ V0(ϑ) + εD0, and

(A.2) lim inf
t→∞

Vt(ϑ̂ε − ϑ, S/D) ≥ f ≥ 0 P -a.s.

As D ∈ Sunif
++ has inft≥0Dt > 0 P -a.s., f ′ := f lim inft→∞Dt is in L0

+ \ {0}. Because
D ∈ Sunif

++ also has supt≥0Dt <∞ P -a.s., (A.2) implies by Lemma A.1 that P -a.s.,

lim inf
t→∞

Vt(ϑ̂ε − ϑ) = lim inf
t→∞

(
Vt(ϑ̂ε − ϑ, S/D)Dt

)
≥ lim inf

t→∞
Vt(ϑ̂ε − ϑ, S/D) lim inf

t→∞
Dt ≥ f ′.

This shows that ϑ is not svm for S either.
For the second part, if αϑ is not svm for S, we can find f ∈ L0

+\{0} and for every ε > 0
some ϑ̂ε ∈ Θsf

+ with V0(ϑ̂ε) ≤ V0(αϑ) + ε and lim inft→∞ Vt(ϑ̂ε− αϑ) ≥ f P -a.s. There are
two cases. If α > 0, then ϑ̃ := ϑ̂ε/α ∈ Θsf

+ satisfies V0(ϑ̃) = V0(ϑ̂ε)/α ≤ V0(ϑ) + ε/α and
lim inft→∞ Vt(ϑ̃−ϑ) = lim inft→∞ Vt(ϑ̂ε−αϑ)/α ≥ f/α P -a.s. So ϑ is not svm for S as f/α
is in L0

+ \{0}. If α = 0, ϑ̃ := ϑ+ ϑ̂ε ∈ Θsf
+ has V0(ϑ̃) ≤ V0(ϑ) +V0(αϑ) + ε = V0(ϑ) + ε and

lim inft→∞ Vt(ϑ̃−ϑ) = lim inft→∞ Vt(ϑ̂ε−αϑ) ≥ f P -a.s.; so again ϑ is not svm for S.
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Proof of Lemma 3.12. For brevity, we introduce the set Γ := {Vτ (ϑ1) < Vτ (ϑ2)} ∈ Fτ and
set ϕ := ϑ1 ?ξ

τ ϑ
2. We use V(ξ, Sξ) = ξ · Sξ ≡ 1, which also gives ξ Sξ ≡ 0. Then using

the definition of ϕ, the general fact that XIJ0,τK = Xτ −XτIKτ,∞K, the fact that ϑ1, ϑ2 are
self-financing and again the definition of ϕ yields

V(ϕ, Sξ)

= IJ0,τKV(ϑ1, Sξ) + IKτ,∞K

(
IΓV(ϑ1, Sξ) + IΓcV(ϑ2, Sξ) + IΓcVτ (ϑ1 − ϑ2, Sξ)

)
=
(
V(ϑ1, Sξ)

)τ
+ IKτ,∞K

(
IΓ
(
V(ϑ1, Sξ)− Vτ (ϑ1, Sξ)

)
+ IΓc

(
V(ϑ2, Sξ)− Vτ (ϑ2, Sξ)

))
= V0(ϑ1, Sξ) + (ϑ1IJ0,τK) Sξ +

(
IKτ,∞K

(
IΓϑ

1 + IΓcϑ2 + IΓcVτ (ϑ1 − ϑ2, Sξ)ξ
))

Sξ

= V0(ϕ, Sξ) + ϕ Sξ.

This shows that ϕ is self-financing. If both ϑ1, ϑ2 are in Θsf
+, the second line above is

nonnegative so that also ϕ is in Θsf
+.

The next auxiliary result is extracted from the proof of [25, Proposition 1].

Lemma A.2. A convex set C ⊆ L0
+ is bounded in L0 if and only if C contains no sequence

(V n)n∈N satisfying V n ≥ nξ P -a.s. for all n ∈ N and for some ξ ∈ L0
+ \ {0}.

Proof. The “only if” part is clear. For the “if” part, suppose C is not bounded in L0

and let Ωu ∈ F be as in [6, Lemma 2.3]. (In the terminology of [6], C is hereditarily
unbounded in probability on Ωu.) Note that P [Ωu] > 0 because P [Ωu] = 0 would imply
that C is bounded in L0. Then [6, Lemma 2.3, part 4)] implies with ε := 2−n that for
each n ∈ N, there is some V n ∈ C such that

P [{V n ≤ n} ∩ Ωu] ≤ P [{V n ≤ 2n} ∩ Ωu] ≤ 2−n.

Take N ∈ N with ∑∞n=N 2−n ≤ P [Ωu]/2. For n ≥ N , set An := {V n > n} ∩ Ωu ∈ F and
define A := ⋂

n≥N An ∈ F so that V n ≥ nIAn ≥ nIA due to V n ∈ C ⊆ L0
+. Then

P [A] ≥ P [Ωu]−
∞∑
n=N

P [Acn ∩ Ωu] ≥ P [Ωu]/2 > 0

shows that ξ := IA ∈ L0
+ \ {0}, and we have V n ≥ nξ P -a.s. for all n ∈ N. But this

contradicts the assumption for the “if” part, and so we are done.
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