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Abstract

In general multi-asset models of financial markets, the classic no-arbitrage concepts
NFLVR and NUPBR have the serious shortcoming that they depend crucially on
the way prices are discounted. To avoid this economically unnatural behaviour,
we introduce a new way of defining “absence of arbitrage”. It rests on the new
notion of a strategy being strongly share maximal and allows us to generalise both
NFLVR (by dynamic share efficiency) and NUPBR (by dynamic share viability).
These new absence-of-arbitrage concepts do not change when we look at discounted
or undiscounted prices, and they can be used in open-ended models under minimal
assumptions on asset prices. We establish corresponding versions of the FTAP, i.e.,
dual characterisations of our concepts in terms of martingale properties. A key new
feature is that as one expects, “properly anticipated prices fluctuate randomly”, but
with an endogenous discounting process which must not be chosen a priori. We show
that the classic Black–Scholes model on [0,∞) is arbitrage-free in our sense if and
only if its parameters satisfym−r ∈ {0, σ2} or, equivalently, either bond-discounted
or stock-discounted prices are martingales.
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1 Introduction

The fundamental theorem of asset pricing (FTAP) is one of the cornerstones of mathemat-
ical finance and arbitrage theory. Omitting technical details, its usual formulation goes
as follows. Consider d risky assets and model their prices by a stochastic process X on a
probability space (Ω,F , P ). It is common to assume that prices are discounted and there
is one (extra) riskless asset with constant price 1. Then this model (1, X) is “arbitrage-
free” if and only if there exists a probability measure Q equivalent to P under which X
is a “martingale”. If X is a P -semimartingale, one precise version of “arbitrage-free” is
that X satisfies no free lunch with vanishing risk (NFLVR), and “martingale under Q” is
then to be read as Q-σ-martingale. For a full exposition, we refer to Delbaen/Schacher-
mayer [5, 8, 9]. A weaker formulation of “arbitrage-free” is that X satisfies no unbounded
profit with bounded risk (NUPBR), and the dual “martingale” characterisation is then
the existence of an equivalent supermartingale deflator; see Karatzas/Kardaras [17].

One major drawback of the classic results is that the usual approach of working with
discounted prices is not without loss of generality. We illustrate this in a very simple
setting of N = 2 assets with prices given by S = (S1, S2).

Example 1.1. For independent Brownian motions B1, B2 and % ∈ (−1, 1), define %-corre-
lated Brownian motions W 2 := B2, W 1 := %B2 +

√
1− %2B1; so (B1, B2) and (W 1,W 2)

generate the same filtration. For constants m1,m2, σ1, σ2, define the processes S1, S2 by

(1.1) logSit = σiW
i
t +

(
mi −

1
2σ

2
i

)
t, t ≥ 0, i = 1, 2.

We take m1,m2 ∈ R and σ1 ≥ 0, but insist on σ2 > 0 to avoid degenerate models. The
filtration F is generated by S = (S1, S2), made right-continuous and complete. This setup
includes two basic cases. If σ1 = 0 and we set m1 := r ∈ R, m2 := m ∈ R, σ2 := σ > 0,
we have the classic Black–Scholes (BS) model with a bank account S1 and one stock S2.
The filtration is then generated by W 2 only. If σ1 > 0, we have a symmetric market
with two stocks S1, S2 (and no bank account), given by correlated geometric Brownian
motions (GBM). The filtration is then generated by (W 1,W 2) or equivalently (B1, B2).

If we discount all prices by the first asset, this gives the model S/S1 = (1, X) with

logXt =
(
m2 −m1 −

1
2(σ2

2 − σ2
1)
)
t+ σ2W

2
t − σ1W

1
t

= (m2 −m1 + σ2
1 − %σ1σ2)t+ σ̄W̄t −

1
2 σ̄

2t,(1.2)

with σ̄ :=
√
σ2

1 + σ2
2 − 2%σ1σ2 and a new Brownian motion W̄ := (σ2W

2 − σ1W
1)/σ̄.

Suppose m2 −m1 + σ2
1 − %σ1σ2 = 0 so that X is a positive martingale converging to 0.

(This happens for instance in the BS model when m = r.) Then the S1-discounted
model (1, X) is obviously “arbitrage-free”; in fact, (1, X) satisfies NFLVR and hence
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also NUPBR. But the S2-discounted model S/S2 = (1/X, 1) has arbitrage because the
strategy ϑ ≡ (ε,−ε) of holding ε units of asset 1 and −ε units of asset 2 has initial cost 0
and time-t wealth ε/Xt − ε, which is bounded below by −ε (so that ϑ is admissible) and
tends to +∞ as t→∞. So (1/X, 1) does not satisfy NUPBR and hence also not NFLVR.

The insight that the classic absence-of-arbitrage (AOA) concepts depend on the choice
of discounting is not new. An early but less well known analysis appears in the PhD thesis
of Sin [25]. Delbaen/Schachermayer [6] discuss the no-arbitrage property under a change
of numéraire, and Herdegen [10] recently developed a theory of no-arbitrage in a numé-
raire-independent modelling framework where he introduced a number of concepts that
are invariant under a change of numéraire, i.e., under discounting. But the results in [10]
are not general enough to handle Example 1.1 because [10] assumes that prices S are
defined on a right-closed time interval [0, T ]. A simple extension to a right-open interval
or an infinite horizon as in Example 1.1 is not feasible, and a new approach is needed.

The key idea of Herdegen [10] is to define absence of arbitrage as the property that
the zero strategy or a number of basic strategies are maximal in the sense that they
cannot be “improved” by other strategies. In [10] (as well as in earlier work of Del-
baen/Schachermayer [5, 6, 7]), improvements are measured in terms of value or wealth,
in a qualitative (not quantitative) manner. This makes the approach invariant under dis-
counting, but only partially — if a discount factor (or a numéraire) goes to 0 or explodes
to +∞, the invariance breaks down. This is not an issue on a right-closed time interval,
but may well happen on a right-open time interval, and it is exactly why Example 1.1
cannot be handled by the approach of [10]. We circumvent this difficulty by measuring
“improvements” not in terms of value, but in terms of shares compared to a desirable
reference strategy. As we show, this leads to genuinely discounting-invariant concepts in
almost fully general frictionless semimartingale models of financial markets. The main
results are two FTAP versions — one for dynamic share viability which is the discount-
ing-invariant counterpart of NUPBR, and one for dynamic share efficiency which extends
NFLVR. In contrast to the classic FTAP formulations of Delbaen/Schachermayer [5, 8]
or Karatzas/Kardaras [17], the discounting process in our results must not be chosen a
priori, but is an endogenous part of the dual chacterisation of absence of arbitrage.

The paper is structured as follows. Section 2 introduces the setup and basic concepts
and presents our main results. Section 3 is the mathematical core; it first connects our
new concept of share maximality of a strategy to the value maximality studied in Herde-
gen [10], then shows how models on right-open intervals can be closed on the right under a
weak AOA assumption, and finally combines this with [10] to prove dual characterisations
of value maximality for a general time interval. Section 4 proves the main results from Sec-
tion 2 by using Section 3. Section 5 discusses the robustness of our approach with respect
to the choice of the reference strategy appearing in the concept of share maximality, con-
nects our work to the classic theory and provides a comparison to the existing literature.
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Finally, Section 6 contains examples and counterexamples, including a full discussion of
Example 1.1, and the Appendix collects some technical proofs and auxiliary results.

2 The main results

We work on a filtered probability space (Ω,F ,F, P ) with the filtration F = (Ft)t≥0 sat-
isfying the usual conditions, assume that F0 is trivial and set F∞ := ∨

t≥0Ft. There are
N basic assets whose prices are modelled by an RN -valued semimartingale S. If there is
a bank account (we do not assume this in general), it must be one component of S. To
have trading possible, we thus must have N ≥ 2.

We use general stochastic integration (in the sense of [12, Chapter III.6] or [24]), call
L(S) the space of all RN -valued predictable S-integrable processes H and denote the
(real-valued) stochastic integral of H ∈ L(S) with respect to S by H S :=

∫
H dS. For

any RCLL process Y , we set Y0− := Y0. The scalar product of x, y ∈ RN is x · y := xtry.

Remark 2.1. We assume that S is a semimartingale so that we can use general integrands
with respect to S. Similarly as in [5, 20], one could also start with an RN -valued adapted
RCLL process S and impose an AOA type property on S only with respect to elementary
(i.e. piecewise constant) integrands. For the AOA concept we introduce below, this then
implies that S/f(S) is a semimartingale for any linear f : RN → R with f(S) > 0 and
f(S−) > 0. In particular, if S = (1, X), then X must be a semimartingale. For more
precise formulations and details, we refer to forthcoming work of the first author.

Many of our results involve discounting, i.e. dividing prices by positive processes. We
define S := {all real-valued semimartingales} and set S+ := {D ∈ S : D ≥ 0} and
S++ := {D ∈ S : D > 0, D− > 0}. Elements D ∈ S++ are called discounters, and
we note that 1/D ∈ S++ if D ∈ S++. Sometimes, we also need narrow discounters
D ∈ Sunif

++ := {D ∈ S++ : inft≥0Dt > 0, supt≥0Dt <∞, P -a.s.}. For D ∈ S++, we
call S/D the D-discounted prices. The difference between discounters and deflators is
discussed below after Definition 2.9.

Self-financing strategies are integrands ϑ ∈ L(S) satisfying V(ϑ) := ϑ·S = ϑ0·S0+ϑ S.
We write ϑ ∈ Θsf and call V(ϑ) the value process of ϑ; this is in the same currency units as
S because ϑ is in numbers of shares. For D-discounted prices S̃ = S/D, we analogously
have V(ϑ, S̃) := ϑ · S̃ = V(ϑ)/D, the value process of ϑ in the currency units of S̃. It is a
result from [10, Lemma 2.9] that if ϑ ∈ Θsf , then both ϑ ∈ L(S̃) and V(ϑ, S̃) = ϑ0·S̃0+ϑ S̃

hold. Thus Θsf does not depend on currency units even if value processes do. We also
need the spaces Θsf

+ := {ϑ ∈ Θsf : V(ϑ) ∈ S+} and Θsf
++ := {ϑ ∈ Θsf : V(ϑ) ∈ S++}; they

do not depend on currency units either. Finally, a process Y is called S-tradable if it is
the value process of some self-financing strategy, i.e., Y = V(ϑ) for some ϑ ∈ Θsf .

Definition 2.2. A reference strategy is an η ∈ Θsf
++ with η ≥ 0 (η is long-only) and such

that the η-discounted price process Sη := S/(η · S) is bounded uniformly in t ≥ 0, P -a.s.
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In the sequel, we usually work under the assumption that there exists a reference
strategy η, and some results impose the extra condition that η is bounded (uniformly in
ω, t). Because V(η) ∈ S++ by definition, a reference strategy is a desirable investment,
and it is expressed in numbers of shares. Note that if we pass from S to discounted prices
S̃ = S/D with any D ∈ S++, we get S̃η := S̃/(η · S̃) = Sη; hence the notion of a reference
strategy is discounting-invariant. See also the comment below after Definition 2.7.

Remark 2.3. The existence of a reference strategy η is a very weak condition on the price
process S. Indeed, consider the market portfolio, i.e. the strategy 1 := (1, . . . , 1) ∈ RN of
holding one share of each asset. If we have nonnegative prices S ≥ 0, then 1 ∈ Θsf

+ and
all components of the 1-discounted price process S1 = S/

∑N
i=1 S

i have values between
0 and 1. If S ≥ 0 and the sum ∑N

i=1 S
i of all prices is strictly positive and has strictly

positive left limits, we even have 1 ∈ Θsf
++ so that the market portfolio is then a reference

strategy. Moreover, 1 is of course bounded itself. However, it is useful to work with a
general reference strategy η because this gives a clearer view on a number of aspects.

Definition 2.4. Fix a strategy η ∈ Θsf . A strategy ϑ ∈ Θsf is called an η-buy-and-hold
strategy if it is of the form ϑi = ciηi for i = 1, . . . , N , where c ∈ L∞(F0;RN).

Because F0 is trivial, ϑ is η-buy-and-hold if and only if it is a coordinatewise nonran-
dom multiple of η. If η ≡ 1 is the market portfolio, this reduces to the classic concept
of buying and holding a fixed number of shares of each asset. More generally, if η is a
reference strategy, it is desirable to have ηit shares of asset i at time t, and the above
buy-and-hold concept is then a natural generalisation from the classic case of the market
portfolio. Note that η itself is always an η-buy-and-hold strategy.

For maximal generality with our time horizon, we fix a stopping time ζ and consider
the stochastic interval J0, ζK = {(ω, t) ∈ Ω × [0,∞) : 0 ≤ t ≤ ζ(ω)}. This includes
models indexed by [0, T ] with a nonrandom T < ∞ as well as by [0,∞) where ζ ≡ ∞.
We extend all stochastic processes to J0,∞K = J0,∞J = Ω × [0,∞), almost always by
keeping them constant on Jζ,∞K, with one important exception. To concatenate two
strategies ϑ1, ϑ2 ∈ Θsf at some stopping time τ , we sometimes define, for a mapping F , a
new strategy of the form IJ0,τKϑ

1 + IKτ,∞KF (ϑ1, ϑ2). On the set {τ = ζ <∞}, this is then
constant for t > ζ(ω), but maybe not for t ≥ ζ(ω).

From now on, we assume that all processes are defined on J0,∞K (but not
necessarily on Ω× [0,∞]). If a process Y is constant on Jζ,∞K, we then have

inf
t≥0

Yt(ω) = I{ζ(ω)=∞} inf
0≤t<∞

Yt(ω) + I{ζ(ω)<∞} inf
0≤t≤ζ(ω)

Yt(ω),

lim inf
t→∞

Yt(ω) = I{ζ(ω)=∞} lim inf
t→∞

Yt(ω) + I{ζ(ω)<∞}Yζ(ω),

etc. Of course, if we write limt→∞ Yt, we must make sure that this limit exists on {ζ =∞}.
These notations allow us to handle all time horizons in a unified manner.

The next concept is fundamental for our paper.
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Definition 2.5. Fix a strategy η ∈ Θsf . A strategy ϑ ∈ Θsf
+ is called strongly share

maximal (ssm) for η if there is no [0, 1]-valued adapted process ψ = (ψt)t≥0 converging
P -a.s. as t→∞ to some ψ∞ ∈ L∞+ (F∞) \ {0} and such that for every ε > 0, there exists
some ϑ̂ε ∈ Θsf

+ with V0(ϑ̂ε) ≤ V0(ϑ) + ε and

lim inf
t→∞

(ϑ̂εt − ϑt − ψtηt) ≥ 0 P -a.s.

We shall use this concept when η is a reference strategy. Then having η is desirable,
and ψη is a dynamic long-only portfolio where the factor ψ stabilises over time and which
asymptotically achieves a significant part of η. Strong share maximality then says that
even with a little extra initial capital ε > 0, one cannot asymptotically improve ϑ via
some ϑ̂ε in such a significant manner.

We also need the following concept inspired by Herdegen [10]; the difference to [10]
is that we work here on a possibly open time interval. Note that we replace “strongly
maximal” from [10] by the more explicit terminology “strongly value maximal”.

Definition 2.6. Fix an RN -valued semimartingale S̃. A strategy ϑ ∈ Θsf
+ is called strongly

value maximal (svm) for S̃ if there is no f ∈ L0
+ \ {0} such that for every ε > 0, there

exists some ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε, S̃) ≤ V0(ϑ, S̃) + ε and

lim inf
t→∞

(
Vt(ϑ̂ε, S̃)− Vt(ϑ, S̃)− f

)
≥ 0 P -a.s.

Maximality of a strategy ϑ always means that ϑ cannot be improved. The key differ-
ence between Definitions 2.5 and 2.6 lies in how improvements are measured. For strong
value maximality, the comparison is in terms of value, which makes the concept depend
on the currency unit (of S̃). In contrast, strong share maximality looks (via the reference
strategy η) at numbers of shares, and this is independent of any currency unit.

Given a maximality concept for strategies, we define viability and efficiency as in [10].

Definition 2.7. Fix η ∈ Θsf . We say that S satisfies dynamic share viability (DSV) for η
if the zero strategy 0 ∈ Θsf

+ is strongly share maximal for η, and dynamic share efficiency
(DSE) for η if every η-buy-and-hold strategy ϑ ∈ Θsf

+ is strongly share maximal for η.

It is a key observation that for fixed η, strong share maximality for η, dynamic share
viability for η and dynamic share efficiency for η are like Θsf all discounting-invariant with
respect to S++, in the sense that if we have one of these properties for S, we also have it for
any D-discounted S̃ = S/D with any discounter D ∈ S++, and vice versa. In contrast,
the strong (value) maximality for S from [10] (and derived concepts like NINA there)
is invariant under discounting by narrow discounters D ∈ Sunif

++ ( S++ (see Lemma 3.1
below), but not under discounting byD ∈ S++ (see Example 3.2 below). In that sense, the
value-related concepts and results from [10] are only numéraire- or discounting-invariant in
a restricted manner. But for a general discounting-invariant framework, having invariance
with respect to the full class S++ is crucial because the natural class of discounters on an
open interval like [0,∞) is S++ and not Sunif

++ .
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Remark 2.8. 1) Theorems 2.13 and 2.14 below give equivalent characterisations for DSE
for η, assuming among other things that η is a reference strategy and bounded (uniformly
in ω, t). These results show that equivalent definitions of DSE for η are possible: one
could as well stipulate that only η itself, or all bounded ϑ ∈ Θsf

+, should be ssm for η. We
have opted for an intermediate definition to preserve the analogy to [10].

2) All our concepts depend on the choice of η. We discuss this in Section 5.1 and
show there in particular that the dependence is quite weak.

The preceding concepts are all about strategies and hence on the primal side. For a
dual characterisation in terms of martingale properties, we need the following concept.

Definition 2.9. For E ∈ {σ-martingale, local martingale, martingale, UI martingale},
an E-discounter for an RN -valued semimartingale S̃ is a D ∈ S++ such that S̃/D is an E .

Remark 2.10. In the literature, an E-deflator for a class Y of processes is a strictly
positive local martingale Z (often with Z0 = 1) such that ZY is an E for all Y ∈ Y .
There are two differences to the notion of an E-discounter. Obviously, a deflator acts by
multiplication while a discounter acts by division. More importantly, however, we impose
no (local) martingale property on an E-discounter D, nor on 1/D. (Some definitions of
an E-deflator Z do not explicitly ask for Z to be a local martingale. But as Y invariably
contains the process Y ≡ 1, this property follows from the definition and Z > 0.) In our
setup, neither S nor the family {V(ϑ) : ϑ ∈ Θsf

++} of value processes contains a constant
process in general; so discounters are more natural and more general than deflators.

With these preliminaries, we can already state our first main results.

Theorem 2.11. Suppose S ≥ 0 and there exists a reference strategy η. Fix η. Then S

satisfies dynamic share viability for η if and only if there exists a σ-martingale discounter
D for S with inft≥0(ηt · (St/Dt)) > 0 P -a.s.

Remark 2.12. As pointed out in the proof in Section 4, the “only if” part in Theorem 2.11
does not need S ≥ 0. The same applies to Theorem 2.13.

Theorem 2.13. Suppose S ≥ 0 and there exists a reference strategy η such that in
addition, η and Sη = S/(η · S) are bounded (uniformly in ω, t). Fix such an η. Then
S satisfies dynamic share efficiency for η if and only if there exists a UI martingale
discounter D with inft≥0(ηt · (St/Dt)) > 0 P -a.s.

The proofs of Theorems 2.11 and 2.13 need extra ideas and additional results. These
are developed in Section 3 and used in Section 4 to prove Theorems 2.11 and 2.13.

Both Theorems 2.11 and 2.13 are modern formulations of the classic idea due to
Samuelson [23] that “properly anticipated prices fluctuate randomly” or, in other words,
suitably discounted prices form a martingale. The notion of properly anticipated or
suitably discounted is in our paper captured by the existence of the process D which

7



turns S via discounting to S/D into a “martingale”. The strength of the martingale
property of S/D (σ-martingale or UI martingale) depends on the strength of the initial
no-arbitrage condition (viability or efficiency). The main contrast to the classic FTAP
formulation of Delbaen/Schachermayer [5, 8] is that the discounting process is not chosen
a priori, but an endogenous part of the dual characterisation of absence of arbitrage. A
similar idea appears in Herdegen [10] (see also [11]) where the dual objects are not only
“martingale transformers” like martingale measures or deflators, but pairs consisting of
an S-tradable numéraire and a “martingale measure”. Our E-discounter combines such a
pair into a single process; this is more general than a deflator because the latter’s local
martingale property still reflects the effect of an a priori discounting of prices.

We next relate our work to the existing literature. To that end, we recall or rewrite
some notions from the classic Delbaen/Schachermayer [5, 8] approach. For any RN -valued
semimartingale S̃, we define Laadm(S̃) := {H ∈ L(S̃) : H S̃ ≥ −a} and introduce the sets

• Gaadm(S̃) :=
{

lim
t→∞

Vt(ϑ, S̃)− V0(ϑ, S̃) : ϑ ∈ Θsf
+, V0(ϑ, S̃) = a and lim

t→∞
Vt(ϑ, S̃) exists

}
,

• Gadm(S̃) := ⋃
a≥0 Gaadm(S̃) =

{
lim
t→∞

Vt(ϑ, S̃)−V0(ϑ, S̃) : ϑ ∈ Θsf
+ and lim

t→∞
Vt(ϑ, S̃) exists

}
,

• Cadm(S̃) := Gadm(S̃)− L0
+(Fζ),

• C∞adm(S̃) := Cadm(S̃) ∩ L∞
∞
;

the bar ∞ denotes the norm closure in L∞. Each g ∈ Gaadm(S̃) is the net outcome (final
minus initial value) of a self-financing strategy ϑ whose value is always ≥ −a, with all
quantities in the same currency units as S̃. Then we say that

• NA∞(S̃) holds if Cadm(S̃) ∩ L∞+ = {0};

• NUPBR∞(S̃) holds if G1
adm(S̃) is bounded in L0;

• NFLVR∞(S̃) holds if C∞adm(S̃) ∩ L∞+ = {0}.

Using [10, Theorem 2.14] (which easily extends to J0,∞K) allows us to rewrite things in
more familiar form. Fix η ∈ Θsf

++ and recall the η-discounted prices Sη = S/(η ·S). Then

(2.1) Gaadm(Sη) =
{

lim
t→∞

H Sηt : H ∈ Laadm(Sη) and lim
t→∞

H Sηt exists
}
.

If prices S = (1, X) are already discounted, we can take η ≡ e1 := (1, 0, . . . , 0) ∈ RN ,
getting Se1 = (1, X) = S, and note {H S : H ∈ L(S)} = {H X : H ∈ L(X)} to obtain

Gaadm(1, X) =
{

lim
t→∞

H Xt : H ∈ L(X), H X ≥ −a and lim
t→∞

H Xt exists
}
.

Thus Gadm(1, X) = ⋃
a≥0 Gaadm(1, X) is precisely the set K0 (or K) considered in [5] (or [8]),

and NA∞(1, X), NUPBR∞(1, X) and NFLVR∞(1, X) recover the standard notions in the
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classic theory following Delbaen/Schachermayer [5, 8]. We remark that the property
NUPBR∞(1, X) already appears without a name in [5, Corollary 3.4]; it was later called
BK by Kabanov [14] and NUPBR by Karatzas/Kardaras [17].

The next result summarises the connections between our new results and the clas-
sic theory. The verbal formulation is better suited for the proof, while the graphical
representation gives a better overview.

Theorem 2.14. Suppose S ≥ 0 and there exists a reference strategy η. Fix η. Consider
the following statements:

(e1) S satisfies dynamic share efficiency for η.

(v1) S satisfies dynamic share viability for η.

(e2) The reference strategy η ∈ Θsf
+ is strongly share maximal for η.

(e2′) Every bounded ϑ ∈ Θsf
+ is strongly share maximal for η.

(v2) There exists some ϑ ∈ Θsf
+ which is strongly share maximal for η.

(e3) η is strongly value maximal for Sη = S/(η · S).

(v3) 0 is strongly value maximal for Sη = S/(η · S).

(e4) For every D ∈ S++ with η · (S/D) ∈ Sunif
++ , every bounded ϑ ∈ Θsf

+ is strongly value
maximal for the D-discounted price process S/D.

(e4′) Every bounded ϑ ∈ Θsf
+ is strongly value maximal for Sη.

(v4) For every D ∈ S++ with η · (S/D) ∈ Sunif
++ , the zero strategy 0 ∈ Θsf

+ is strongly value
maximal for the D-discounted price process S/D.

(e5) There exists a UI martingale discounter D for S with η · (S/D) ∈ Sunif
++ .

(v5) There exists a σ-martingale discounter D for S with η · (S/D) ∈ Sunif
++ .

(e6) NFLVR∞(Sη) holds, i.e., Sη satisfies NFLVR∞.

(v6) NUPBR∞(Sη) holds, i.e., Sη satisfies NUPBR∞.

Then we have (eK) ⇒ (vK) for K = 1, . . . , 6, and the statements (vK), K = 1, . . . , 6, are
equivalent among themselves. If in addition η and Sη are bounded (uniformly in ω, t),
then also the statements (eK), K = 1, . . . , 6, are equivalent among themselves (including
the prime ′ versions).

In graphical form, this looks as follows:
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S satisfies DSE for η S satisfies DSV for η
(every η-buy-and-hold ϑ ∈ Θsf

+ is ssm for η) (0 is ssm for η)
m

η is ssm for η m
m

every bounded ϑ ∈ Θsf
+ is ssm for η some ϑ ∈ Θsf

+ is ssm for η
m

η is svm for Sη m
m

every bounded ϑ ∈ Θsf
+ is svm for Sη some ϑ ∈ Θsf

+ is svm for Sη
m m

∀D ∈ S++ with η · (S/D) ∈ Sunif
++ : ∀D ∈ S++ with η · (S/D) ∈ Sunif

++ :
every bounded ϑ ∈ Θsf

+ is svm for S/D =⇒ 0 ∈ Θsf
+ is svm for S/D

m m
∃ UI martingale discounter D ∃ σ-martingale discounter D

with η · (S/D) ∈ Sunif
++ with η · (S/D) ∈ Sunif

++
m m

Sη satisfies NFLVR∞ Sη satisfies NUPBR∞

Figure 1: Graphical summary of Theorem 2.14. Assumptions are S ≥ 0 and that η is a
reference strategy (which is assumed to exist). The equivalences on the left side need in
addition that η and Sη are bounded.

Proving our main results involves several ideas and steps. We give here a short overview
and implement this in Section 3. First, because strong share maximality is discounting-
invariant with respect to S++, we can work with a discounted price process S̃ instead of
the original S. If the pair (S̃, η) has good properties, we show that strong share maxi-
mality for η is equivalent to strong value maximality for S̃. Choosing a good discounter
(actually, η ·S) thus gives us almost access to the results from Herdegen [10] who derived
dual characterisations for strong (value) maximality, of 0 or of a fixed strategy, in terms of
certain martingale properties for suitably discounted prices. At this point, the endogenous
discounter comes in. However, [10] crucially exploits that prices there are defined on a
right-closed time interval, and the numéraire-invariance in [10] is only with respect to
the smaller, restrictive class Sunif

++ of discounters. Overcoming this problem needs an extra
step. With a similar argument as in Delbaen/Schachermayer [5], we show that for suitably
(and tradably) discounted prices S̃ and under strong value maximality for S̃ of 0, the value
process V(ϑ, S̃) of any self-financing strategy ϑ ∈ Θsf

+ converges as t → ∞. In effect, all
the V(ϑ, S̃) are hence defined on a right-closed interval (even if S or S̃ is not), and this
finally allows us to use the results from [10]. Combining everything yields our assertions.
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3 The theory

This section is the mathematical core of the paper. It consists of three subsections which
mirror the ideas and steps in the discussion at the end of Section 2.

3.1 Connecting share maximality and value maximality

We first show that under an extra assumption on the pair (S, ξ) of price process and strat-
egy, strong share maximality for ξ and strong value maximality for S are equivalent. This
uses discounting-invariance properties of strong share maximality and explicit arguments.

Lemma 3.1. Strong value maximality is discounting-invariant with respect to Sunif
++ : If

ϑ ∈ Θsf
+ is strongly value maximal for S and D ∈ Sunif

++ , then ϑ is also strongly value max-
imal for S/D. (The converse is clear because D ∈ Sunif

++ implies 1/D ∈ Sunif
++ .) Moreover,

αϑ is then also strongly value maximal for S for any α ≥ 0.

Proof. See Appendix.

The next example shows that Sunif
++ cannot be replaced by S++ in Lemma 3.1.

Example 3.2. Strong value maximality is not discounting-invariant with respect to S++.
Consider the BS model from Example 1.1 with m = r = σ = 1, so that S1

t = et and
S2
t = eWt+ 1

2 t. Here, 0 is not svm for S because for any ε > 0, the strategy ϑ̂ε := εe1 = (ε, 0)
of buying and holding ε units of S1 has V0(ϑ̂ε) = ε, but limt→∞ Vt(ϑ̂ε) = +∞. But taking
D := S1 ∈ S++ \ Sunif

++ yields S̃ := S/D = (1, eWt− 1
2 t). This is a (σ-)martingale, and

therefore 0 is svm for S̃; see Theorem 3.11 below (applied to S̃ and with ξ ≡ e1).

In the proofs in this section, we need to concatenate strategies which requires some
notation. Fix ξ ∈ Θsf

++ and a stopping time τ (as usual with values in [0,∞]). The
ξ-concatenation at time τ of ϑ1, ϑ2 ∈ Θsf is defined by

ϑ1 ?ξ
τ ϑ

2 := IJ0,τKϑ
1 + IKτ,∞K

(
IΓϑ

1 + IΓc

(
ϑ2 + Vτ (ϑ1 − ϑ2, Sξ)ξ

))
with Γ := {Vτ (ϑ1) < Vτ (ϑ2)}.(3.1)

The interpretation is as follows. We start with ϑ1 and follow this strategy until time τ
where we compare its value to that of the competitor ϑ2. If ϑ1 is strictly cheaper, we stick
to it. Otherwise, we liquidate ϑ1

τ , start with ϑ2 by buying ϑ2
τ , and invest the rest of the

proceeds (which is nonnegative) into ξ. Note that on {τ =∞}, we have ϑ1 ?ξ
τ ϑ

2 = ϑ1 so
that the possibly undefined expressions ϑ1

∞, ϑ2
∞, S∞ or Sξ∞ never appear.

Lemma 3.3. Fix ξ ∈ Θsf
++ and a stopping time τ . If ϑ1, ϑ2 are in Θsf , then so is ϑ1 ?ξ

τ ϑ
2.

If ϑ1, ϑ2 are in Θsf
+, then so is ϑ1 ?ξ

τ ϑ
2.

Proof. See Appendix.
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Theorem 3.4. Fix ξ ∈ Θsf
++ and suppose that V(ξ) ∈ Sunif

++ .
1) If ξ ≥ 0, then any ϑ ∈ Θsf

+ which is strongly share maximal for ξ is also strongly
value maximal for S.

2) If S ≥ 0 and Sξ is bounded uniformly in t ≥ 0, P -a.s., then any ϑ ∈ Θsf
+ which is

strongly value maximal for S is also strongly share maximal for ξ.

Before proving Theorem 3.4, we summarise its contents in compact form for future
use. Note that the assumptions are jointly on the pair (S, ξ).

Corollary 3.5. Suppose S ≥ 0 and there exists a reference strategy ξ with V(ξ) ∈ Sunif
++ .

Fix such a ξ. Then ϑ ∈ Θsf
+ is strongly share maximal for ξ if and only if it is strongly

value maximal for S.

Proof of Theorem 3.4. 1) Assume ϑ is not svm for S. As V(ξ) ∈ Sunif
++ , Lemma 3.1 implies

that ϑ is also not svm for Sξ = S/V(ξ). So there are f ∈ L0
+ \ {0} and for every ε = 1/n

some ϑ̂n ∈ Θsf
+ with ϑ̂n0 ·S

ξ
0 = V0(ϑ̂n, Sξ) ≤ ϑ0 ·Sξ0 + 1/n and lim inft→∞((ϑ̂nt −ϑt) ·S

ξ
t ) ≥ f

P -a.s. Choose δ > 0 and A ∈ F with P [A] > 0 such that f ≥ 2δIA P -a.s., and define

σ′n := inf{t ≥ 0 : (ϑ̂nt − ϑt) · S
ξ
t ≥ δ},

ϕn := inf{t ≥ 0 : P [σ′n ≤ t] ≥ P [A](1− 2−n+1)},
σn := σ′n ∧ ϕn ≤ ϕn.

Then σ′n is a stopping time, ϕn a bounded nonrandom time and σn a bounded stopping
time. Moreover, Bn := {σ′n ≤ ϕn} ∈ Fϕn satisfies P [Bn] ≥ P [A](1− 2−n+1) and we have

(3.2) (ϑ̂nσn
− ϑσn) · Sξσn

= (ϑ̂nσ′n − ϑσ′n) · Sξσ′n ≥ δ on Bn, P -a.s.

by right-continuity. Due to lim inft→∞((ϑ̂nt − ϑt) · S
ξ
t ) ≥ f ≥ 0 P -a.s.,

τn := inf{t ≥ ϕn : (ϑ̂nt − ϑt) · S
ξ
t ≥ −1/n} ≥ ϕn

is a P -a.s. finite-valued stopping time which satisfies τn ≥ σn.
We now consider the strategy

(3.3) ϑ̃n := IJ0,τnK(ϑ̂n ?ξ
σn
ϑ) + IKτn,∞K

(
ϑ+ Vτn(ϑ̂n ?ξ

σn
ϑ− ϑ, Sξ)ξ

)
+ ξ/n,

with ϑ̂n ?ξ
σn
ϑ defined in (3.1). In words, we hold a (1/n)-multiple of ξ, switch at time σn

from ϑ̂n to ϑ if the value of ϑ is at most the value of ϑ̂n, and always switch to ϑ at time
τn; in both cases, any difference in value is invested into ξ. Using ξ · Sξ ≡ 1, this gives

V0(ϑ̃n, Sξ) = ϑ̃n0 · S
ξ
0 = ϑ̂n0 · S

ξ
0 + (ξ0 · Sξ0)/n ≤ V0(ϑ, Sξ) + 2/n.

Next, as ϑ̂n and ϑ are in Θsf
+, Lemma 3.3 yields ϑ̂n ?ξ

σn
ϑ ∈ Θsf

+, and therefore (3.3) gives
ϑ̃n · Sξ = V(ϑ̃n, Sξ) ≥ 0 P -a.s. on J0, τnK. Using now V(ξ, Sξ) ≡ 1 and the definition (3.1)
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allows us to compute, as in the proof of Lemma 3.3 in the Appendix, that

Vτn(ϑ̂n ?ξ
σn
ϑ− ϑ, Sξ) = I{τn=σn}Vτn(ϑ̂n − ϑ, Sξ)

+ I{τn>σn}
(
IΓnVτn(ϑ̂n − ϑ, Sξ) + IΓc

n
Vσn(ϑ̂n − ϑ, Sξ)

)
(3.4)

with Γn := {Vσn(ϑ̂n) < Vσn(ϑ)}. This shows that due to τn <∞ P -a.s., we always have

(3.5) Vτn(ϑ̂n ?ξ
σn
ϑ− ϑ, Sξ) ≥ min

(
(ϑ̂nτn
− ϑτn) · Sξτn

, 0
)
≥ −1/n P -a.s.

Combining (3.3) and (3.5) and using ξ ≥ 0 implies that on Kτn,∞K, we have

(3.6) ϑ̃n − ϑ = Vτn(ϑ̂n ?ξ
σn
ϑ− ϑ, Sξ)ξ + ξ/n ≥ 0,

hence V(ϑ̃n, Sξ) ≥ V(ϑ, Sξ), and so ϑ̃n is like ϑ in Θsf
+.

Now on the set Bn, we have σn = σ′n, hence Vσn(ϑ̂n − ϑ, Sξ) = (ϑ̂nσn
− ϑσn) · Sξσn

≥ δ

P -a.s. as in (3.2) and therefore by (3.4) also

Vτn(ϑ̂n ?ξ
σn
ϑ− ϑ, Sξ) = Vσn(ϑ̂n − ϑ, Sξ) ≥ δ P -a.s.

Thus (3.6) and ξ ≥ 0 yield ϑ̃n − ϑ ≥ δξ on Bn on Kτn,∞K and so, as τn <∞ P -a.s.,

(3.7) lim inf
t→∞

(ϑ̃nt − ϑt − δIBnξt) ≥ 0 P -a.s.

If we define the [0, 1]-valued adapted process ψn = (ψnt )t≥0 by ψnt := δE[IBn|Ft], then
ϕn <∞ and Bn ∈ Fϕn yield ψnt = δIBn for t ≥ ϕn so that ψn∞ := limt→∞ ψ

n
t = δIBn P -a.s.

Moreover, we also obtain via (3.7) that

lim inf
t→∞

(ϑ̃nt − ϑt − ψnt ξt) = lim inf
t→∞

(ϑ̃nt − ϑt − δIBnξt) ≥ 0 P -a.s.

Set B := ⋂
n∈NBn and ψt := δE[IB|Ft] for t ≥ 0. Then limt→∞ ψt = ψ∞ := δIB P -a.s.,

and B ⊆ Bn for all n implies ψ ≤ ψn for all n. Moreover, ψ∞ ∈ L∞+ (F∞) \ {0} because

P [B] ≥ P [B ∩ A] = P [A]− P
[
A ∩

⋃
n∈N

Bc
n

]
≥ P [A]−

∞∑
n=1

P [A ∩Bc
n]

= P [A]−
∞∑
n=1

(P [A]− P [A ∩Bn]) ≥ P [A]
(

1−
∞∑
n=1

2−n+1
)

= P [A]/2 > 0.

So we have found ψ and for each n ∈ N a ϑ̃n ∈ Θsf
+ with V0(ϑ̃n, Sξ) ≤ V0(ϑ, Sξ) + 2/n and

lim inf
t→∞

(ϑ̃nt − ϑt − ψtξt) = lim inf
t→∞

(ϑ̃nt − ϑt − ψnt ξt) ≥ 0 P -a.s.,

which contradicts the assumption that ϑ is ssm for ξ.
2) If ϑ is not ssm for ξ, there are a [0, 1]-valued adapted ψ = (ψt)t≥0 converging P -a.s.

to ψ∞ := limt→∞ ψt ∈ L∞+ (F∞)\{0} and for each ε > 0 a ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε) ≤ V0(ϑ)+ε,
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hence V0(ϑ̂ε, Sξ) ≤ V0(ϑ, Sξ)+ε/V0(ξ), and satisfying lim inft→∞(ϑ̂εt−ϑt−ψtξt) ≥ 0 P -a.s.
By assumption, Sξ is bounded uniformly in t ≥ 0, P -a.s. Superadditivity of the lim inf,
Lemma A.1, V(ξ, Sξ) = ξ · Sξ ≡ 1 and Sξ ≥ 0 from S ≥ 0 thus yield that P -a.s.,

lim inf
t→∞

Vt(ϑ̂ε − ϑ, Sξ) ≥ lim inf
t→∞

(
(ϑ̂εt − ϑt − ψtξt) · S

ξ
t

)
+ lim inf

t→∞

(
(ψtξt) · Sξt

)
≥
(

lim inf
t→∞

(ϑ̂εt − ϑt − ψtξt)
)
·
(

lim inf
t→∞

Sξt
)

+ ψ∞ ≥ ψ∞.

So ϑ is not svm for Sξ, and by Lemma 3.1 also not svm for S = SξV(ξ) as V(ξ) ∈ Sunif
++ .

3.2 From a stochastic or open interval to a closed interval

In this section, we show how to pass from a model with a general time horizon (stochastic
or not, finite or infinite) to a model effectively defined on Ω × [0,∞]. This rests on a
convergence result in the spirit of Delbaen/Schachermayer [5, Theorem 3.3] combined
with ideas from Herdegen [10] to connect strong (value) maximality and NUPBR.

Proposition 3.6. Suppose there exists a ξ ∈ Θsf
++ with V(ξ) = ξ · S ∈ Sunif

++ . Recall the
ξ-discounted price process Sξ = S/(ξ · S). Then the following are equivalent:

(a) The zero strategy 0 ∈ Θsf
+ is strongly value maximal for S.

(b) The zero strategy 0 ∈ Θsf
+ is strongly value maximal for Sξ.

(c) The set {limt→∞H Sξt : H ∈ L1
adm(Sξ), H has bounded support on [0,∞)} is bounded

in L0.

(d) The set {lim inft→∞H Sξt : H ∈ L1
adm(Sξ)} is bounded in L0.

(e) The set {limt→∞H Sξt : H ∈ L1
adm(Sξ) and limt→∞H Sξt exists} is bounded in L0.

(f) NUPBR∞(Sξ) holds.

Proof. (d)⇒ (e)⇒ (c) is clear, (c)⇒ (d) is from the proof of [5, Proposition 3.2], (e)⇔ (f)
follows directly from (2.1), and (a) ⇔ (b) is from Lemma 3.1 because V(ξ) ∈ Sunif

++ .
We prove (d)⇒ (b) indirectly. If 0 is not svm for Sξ, we can find f ∈ L0

+ \{0} and for
every ε = 1/n some ϑ̂n with V0(ϑ̂n, Sξ) ≤ 1/n and lim inft→∞ Vt(ϑ̂n, Sξ) ≥ f P -a.s. Then
ϑ̃n := nϑ̂n is in Θsf

+ with V0(ϑ̃n, Sξ) ≤ 1, and ϑ̃n is also in L1
adm(Sξ) because

0 ≤ V(ϑ̃n, Sξ) = V0(ϑ̃n, Sξ) + ϑ̃n Sξ ≤ 1 + ϑ̃n Sξ.

Therefore, lim inft→∞ ϑ̃n Sξt = lim inft→∞ Vt(ϑ̃n, Sξ)− V0(ϑ̃n, Sξ) ≥ nf − 1 P -a.s. implies
that (d) cannot hold as f ∈ L0

+ \ {0}.
Finally, for (b) ⇒ (c), suppose that (c) is not true. Then also the convex set

C :=
{

lim
t→∞

H Sξt + 1 : H ∈ L1
adm(Sξ), H has bounded support on [0,∞)

}
⊆ L0

+
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is not bounded in L0. Lemma A.2 yields a sequence (Hn)n∈N ⊆ L1
adm(Sξ), with each Hn of

bounded support on [0,∞), and some f ∈ L0
+ \ {0} with limt→∞H

n Sξt + 1 ≥ nf P -a.s.
for all n ∈ N. Note that the limit exists because Hn has bounded support. Consider
the integrand Hn ∈ L1

adm(Sξ). By [10, Theorem 2.14] (and an easy extension to J0,∞K),
there exists a corresponding ϑn ∈ Θsf

+ with V(ϑn, Sξ)−V0(ϑn, Sξ) = Hn Sξ, where we can
choose V0(ϑn, Sξ) = 1. Defining ϑ̃n := ϑn/n ∈ Θsf

+ yields

V(ϑ̃n, Sξ) = V(ϑn, Sξ)/n = (Hn Sξ + 1)/n,

hence V0(ϑ̃n, Sξ) = 1/n and lim inft→∞ Vt(ϑ̃n, Sξ) = limt→∞(Hn Sξt + 1)/n ≥ f P -a.s.
Thus 0 is not svm for Sξ.

Our next result is of crucial importance. It is a variant of the key result in Del-
baen/Schachermayer [5, Theorem 3.3] and shows that loosely speaking, value processes
expressed in good currency units converge under a weak no-arbitrage assumption.

Theorem 3.7. Suppose the zero strategy 0 ∈ Θsf
+ is strongly value maximal for S. Then

for any ξ ∈ Θsf
++ with V(ξ) ∈ Sunif

++ and any ϑ ∈ Θsf
+, limt→∞ ϑ Sξt exists and is finite,

P -a.s. In particular, V∞(ϑ, Sξ) := limt→∞ Vt(ϑ, Sξ) exists and is finite, P -a.s.

Proof. Fix ξ as above and H ∈ L1
adm(Sξ). We first claim that limt→∞H Sξt exists and is

finite, P -a.s. This follows from upcrossing arguments as in Doob’s martingale convergence
theorem and is based on the proof of [5, Theorem 3.3]. Indeed, by Proposition 3.6, the
strong value maximality for S of 0 implies that the set{

lim
t→∞

H Sξt : H ∈ L1
adm(Sξ), H has bounded support on [0,∞)

}
is bounded in L0, so that the conclusion of [5, Proposition 3.1] holds. A careful look at [5,
Proposition 3.2 and Theorem 3.3] shows that all we need for the proofs of these results is
the conclusion of [5, Proposition 3.1]. So we can repeat the proof of [5, Theorem 3.3] step
by step1 to obtain our auxiliary claim about the convergence of H Sξ. (This uses that
V(ξ) is S-tradable because ξ ∈ Θsf

++ has the value process V(ξ, Sξ) = ξ · Sξ ≡ 1.)
To prove Theorem 3.7, we now fix ϑ ∈ Θsf

+, set v0 := V0(ϑ, Sξ) and define the strategy
ϑ̃ := I{v0 6=0}ϑ/v0 + I{v0=0}(ϑ+ ξ). Then ϑ̃ is in Θsf

+, and as V(ξ, Sξ) ≡ 1,

V(ϑ̃, Sξ) = I{v0 6=0}V(ϑ, Sξ)/v0 + I{v0=0}
(
V(ϑ, Sξ) + 1

)
.

This yields V0(ϑ̃, Sξ) = 1 and hence V(ϑ̃, Sξ) = 1 + ϑ̃ Sξ. Because ϑ̃ ∈ Θsf
+, this shows

that ϑ̃ ∈ L1
adm(Sξ) so that limt→∞ Vt(ϑ̃, Sξ) = limt→∞(1+ ϑ̃ Sξt ) exists and is finite, P -a.s.

The result for ϑ = v0ϑ̃+ I{v0=0}(ϑ̃− ξ) then directly follows.
1There are two minor unclear points or typos in the original proof in [5]. First, a set A2 ∈ Ft2 such

that P [A2∆(B1 ∩ A)] > α − ε1 − ε2 is not a good approximation for B1 ∩ A; one should rather impose
the requirement that P [A2∆(B1 ∩A)] < ε2/2. Second, it is not clear why P [B1 ∩A] > α− ε1 should be
true. However, it is clear that P [B1 ∩A] > α− 2ε1, which is still sufficient to obtain the conclusion.
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Remark 3.8. Both Proposition 3.6 and Theorem 3.7 are formulated for ξ-discounted
prices; so the discounter ξ ·S = V(ξ) is S-tradable. One can ask if V(ξ) could be replaced
by an arbitrary D ∈ Sunif

++ , and hence Sξ by S/D. This is possible in the first, but not
in the second result; if we take for example Dt = 2 + sin t which is in Sunif

++ but does not
converge, then V(ϑ, Sξ/D) = V(ϑ, Sξ)/D also does not converge.

The significance of Theorem 3.7 is that under its assumptions, the limit V∞(ϑ, Sξ)
exists P -a.s. for all ϑ ∈ Θsf

+. So V(ϑ, Sξ) is defined on the closed interval [0,∞], and as
V(ξ, Sξ) ≡ 1, the model Sξ is on [0,∞] a numéraire market in the sense of [10]. Hence in
the setting of Theorem 3.7, the situation is as if we had Sξ defined up to ∞, and so we
can essentially use all results from [10] also for J0,∞K. More precisely, as long as we only
use value processes of strategies in Θsf

+, we do not need Sξ itself to be defined on [0,∞].
An important consequence is that the same weak AOA condition as above allows to

improve any self-financing strategy asymptotically by a strongly value maximal strategy
at no extra cost. This extends a result from Herdegen [10, Theorem 4.1] to J0,∞K.

Lemma 3.9. Suppose the zero strategy 0 ∈ Θsf
+ is strongly value maximal for S and there

exists a ξ ∈ Θsf
++ with V(ξ) ∈ Sunif

++ . Then for any ϑ ∈ Θsf
+, there exists a ϑ̂ ∈ Θsf

+ which is
strongly value maximal for S and satisfies

V0(ϑ̂) = V0(ϑ) and lim inf
t→∞

Vt(ϑ̂− ϑ) ≥ 0 P -a.s.

Proof. Fix ξ as above. By Lemma 3.1, svm for S is the same as svm for Sξ. For any
ϑ ∈ Θsf

+, the limit V∞(ϑ, Sξ) exists and is finite, P -a.s., by Theorem 3.7. For Sξ instead
of S, we can thus replace the lim inf in Definition 2.6 by a limit, and so our strong value
maximality for Sξ is equivalent to strong maximality of Sξ on [0,∞] in the sense of [10]. In
particular, having 0 svm for Sξ is equivalent to having NINA on [0,∞] for Sξ in the sense
of [10]. So we can use [10, Theorem 4.1] on [0,∞] for Sξ, and the assertion follows.

3.3 Dual characterisation of strong value maximality

In this section, we provide dual characterisations of strong value maximality for S, of the
zero strategy 0 or of the reference strategy η. This uses the results of Herdegen [10] and
extends them to a general time horizon by exploiting Section 3.2.

Proposition 3.10. If there exists a ξ ∈ Θsf
++ with V(ξ) ∈ Sunif

++ , the following are equiva-
lent:

(a) ξ is strongly value maximal for S.

(b) ξ is strongly value maximal for Sξ.

(c) Both NA∞(Sξ) and NUPBR∞(Sξ) hold.
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(d) NFLVR∞(Sξ) holds.

Proof. (a)⇔ (b) is from Lemma 3.1. Next, both Cadm(Sξ) and Cadm(Sξ)∩L∞ are convex,
and NUPBR∞(Sξ) means that G1

adm(Sξ) is bounded in L0. Due to (2.1), (c) ⇔ (d) can
thus be proved like [14, Lemma 2.2].

Both (a) and (d) imply that 0 ∈ Θsf
+ is svm for S; indeed, under (a), this follows by

Lemma 3.1, and under (d), we combine (d)⇒ (c) with Proposition 3.6. Theorem 3.7 and
the subsequent discussion thus allow us to treat Sξ as if it were defined on [0,∞], and then
the proof of [10, Proposition 3.24, (c)], with T replaced by ∞, gives the conclusion.

Recall that for E ∈ {σ-martingale, local martingale, martingale, UI martingale}, an
E-discounter for an RN -valued semimartingale S̃ is a D ∈ S++ such that S̃/D is an E .

Theorem 3.11. If there exists a ξ ∈ Θsf
++ with V(ξ) ∈ Sunif

++ , the following are equivalent:

(a) The zero strategy 0 ∈ Θsf
+ is strongly value maximal for S.

(b) There exists a strategy ϑ̂ ∈ Θsf
++ which is strongly value maximal for S and has

V(ϑ̂) ∈ Sunif
++ .

(c) There exists a narrow σ-martingale discounter D ∈ Sunif
++ for S.

More precisely, (c) ⇒ (a) also holds without the existence of such a ξ.

Proof. (a) ⇒ (b) By Lemma 3.9, we can find a ϑ̂ ∈ Θsf
+ which is svm for S and satisfies

lim inft→∞ Vt(ϑ̂− ξ, Sξ) ≥ 0 P -a.s. Superadditivity of the lim inf plus V(ξ, Sξ) ≡ 1 yields

lim inf
t→∞

Vt(ϑ̂, Sξ) ≥ lim inf
t→∞

Vt(ϑ̂− ξ, Sξ) + lim inf
t→∞

Vt(ξ, Sξ) ≥ 1 > 0 P -a.s.

But Theorem 3.7 and the subsequent discussion allow us to treat Sξ as if it were defined up
to∞, and so inft≥0 Vt(ϑ̂, Sξ) > 0 P -a.s. follows as in the proof of [10, Proposition 4.4], with
T there replaced by∞. On the other hand, lim supt→∞ Vt(ϑ̂, Sξ) = limt→∞ Vt(ϑ̂, Sξ) <∞
P -a.s. by Theorem 3.7, and because V(ϑ̂, Sξ) = V0(ϑ̂, Sξ) + ϑ̂ Sξ is RCLL, this implies
supt≥0 Vt(ϑ̂, Sξ) <∞ P -a.s. Hence V(ϑ̂, Sξ) is in Sunif

++ and so is V(ϑ̂) = V(ϑ̂, Sξ)V(ξ).
(b) ⇒ (c) By Proposition 3.10, NFLVR∞(Sξ) holds. Note that V(ξ, Sξ) ≡ 1. By the

discussion after [10, Definition 2.18], we can apply [8, Theorem 1.1] to the price process
(1, X) := (V(ξ, Sξ), Sξ) of dimension 1 + N , and so there exists a probability measure
Q ≈ P (on F ⊇ F∞) such that Sξ is a σ-martingale under Q. The density process Z of Q
with respect to P is in Sunif

++ as it is a strictly positive P -martingale on the closed interval
[0,∞]. Thus also D := V(ξ)/Z is in Sunif

++ , and S/D = ZSξ is a σ-martingale under P by
the Bayes rule. (In classic terminology, Z is a σ-martingale deflator for Sξ.)

(c) ⇒ (a) Because D ∈ Sunif
++ and strong value maximality is discounting-invariant

with respect to Sunif
++ by Lemma 3.1, we can equivalently prove svm of 0 for S or for S/D.
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Hence we can and do assume without loss of generality that S is a P -σ-martingale. If 0 is
not svm for S, we can find f ∈ L0

+\{0} and for every ε > 0 some ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε) ≤ ε

and lim inft→∞ Vt(ϑ̂ε) ≥ f P -a.s. Because ϑ̂ε S = V(ϑ̂ε) − V0(ϑ̂ε) ≥ −ε on [0,∞) P -a.s.,
the Ansel–Stricker lemma [1, Corollary 3.5] implies that V(ϑ̂ε) is a local P -martingale and
a P -supermartingale. Combining this with Fatou’s lemma and f ∈ L0

+ \ {0} yields

ε ≥ V0(ϑ̂ε) ≥ lim inf
t→∞

E[Vt(ϑ̂ε)] ≥ E
[

lim inf
t→∞

Vt(ϑ̂ε)
]
≥ E[f ] > 0

for every ε > 0, which is a contradiction. This argument does not need the existence of a
ξ ∈ Θsf

++ with V(ξ) ∈ Sunif
++ .

Theorem 3.12. Suppose that S ≥ 0 and there exists a reference strategy η with both η
and Sη = S/V(η) bounded (uniformly in ω, t) and V(η) ∈ Sunif

++ . Fix such an η. Then the
following are equivalent:

(a) η is strongly value maximal for S.

(b) There exists a UI martingale discounter D ∈ Sunif
++ for S with η · (S/D) ∈ Sunif

++ .

(c) There exists a UI martingale discounter D ∈ Sunif
++ for S.

(d) Each bounded ϑ ∈ Θsf
+ is strongly value maximal for S.

Proof. Both (b) ⇒ (c) and (d) ⇒ (a) are clear.
(a) ⇒ (b) If η is svm for S, the same argument as in the proof of (b) ⇒ (c) in

Theorem 3.11 yields a Q ≈ P such that Sη is a σ-martingale under Q. Being uniformly
bounded, Sη is even a UI martingale under Q, and so the same D := V(η)/Z as in the
proof of Theorem 3.11 is now a UI martingale discounter for Sη. Moreover, Z is in Sunif

++

and S/D = ZSη. Because η · Sη ≡ 1, η · (S/D) = Z is in Sunif
++ .

(c)⇒ (d) By Theorem 3.11, 0 is svm for S. Take any bounded ϑ ∈ Θsf
+. To show that

ϑ is svm for S, as in the proof of (c) ⇒ (a) in Theorem 3.11, we can assume that S is a
UI martingale; so S∞ = limt→∞ St exists P -a.s. and in L1, and then S is a martingale on
[0,∞]. Moreover, V(ϑ) = ϑ ·S = V0(ϑ)+ϑ S is a nonnegative σ-martingale, hence a local
martingale and a supermartingale by [1, Corollary 3.5], and thus P -a.s. convergent as
t→∞. For any stopping time τ , we have |Vτ (ϑ)| ≤ ‖ϑ‖∞

∑N
i=1 |Siτ |, and the UI property

of S on [0,∞] implies that V(ϑ) is of class (D). So V(ϑ) is even a UI martingale.
If ϑ is not svm for S, we can find f ∈ L0

+ \{0} and for every ε > 0 some ϑ̂ε ∈ Θsf
+ with

V0(ϑ̂ε) ≤ V0(ϑ) + ε and lim inft→∞ Vt(ϑ̂ε − ϑ) ≥ f P -a.s. As limt→∞ Vt(ϑ) exists, we even
have lim inft→∞ Vt(ϑ̂ε) ≥ limt→∞ Vt(ϑ) + f P -a.s., and V(ϑ̂ε) is a supermartingale by the
same argument as for ϑ. Combining this with Fatou’s lemma, the UI martingale property
of V(ϑ) and f ∈ L0

+ \ {0} then gives a contradiction because for every ε > 0,

V0(ϑ) + ε ≥ V0(ϑ̂ε) ≥ lim inf
t→∞

E[Vt(ϑ̂ε)] ≥ E
[

lim inf
t→∞

Vt(ϑ̂ε)
]

≥ E
[

lim
t→∞

Vt(ϑ)
]

+ E[f ] = lim
t→∞

E[Vt(ϑ)] + E[f ] = V0(ϑ) + E[f ] > V0(ϑ).
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Remark 3.13. 1) A closer look at the proof shows that we do not need that η ≥ 0.
2) Both Theorems 3.11 and 3.12 need a ξ (or η) in Θsf

++ with V(ξ) (resp. V(η)) in
Sunif

++ . It is precisely the idea of replacing value maximality by share maximality which
allows us to eliminate this restrictive condition and hence consider general models for S.

4 Proofs

In this section, we prove the main results from Section 2.

Proof of Theorem 2.11. We often use that V(η) = η · S ∈ S++ as η ∈ Θsf
++ is a reference

strategy, and Sη = S/V(η). Moreover, V(η, Sη) = η · Sη ≡ 1 is in Sunif
++ .

1) By discounting-invariance with respect to S++, if S satisfies DSV for η, so does
Sη so that 0 ∈ Θsf

+ is ssm for η in the model Sη. So Theorem 3.4, 1) used for Sη and
ξ = η implies that 0 is also svm for Sη. Theorem 3.11, (a) ⇒ (b), applied to Sη and
ξ = η then gives the existence of a D′ ∈ Sunif

++ such that Sη/D′ is a σ-martingale. Writing
Sη/D′ = S/((η · S)D′) = S/D, we see that D := (η · S)D′ ∈ S++ is a σ-martingale
discounter for S. Moreover, like D′, η · (S/D) = (η · Sη)/D′ = 1/D′ is in Sunif

++ , and in
particular, inft≥0(ηt · (St/Dt)) > 0 P -a.s. This argument does not need S ≥ 0.

2) If D ∈ S++ is a σ-martingale discounter, S̃ := S/D is a σ-martingale. By [1,
Corollary 3.5], 0 ≤ V(η, S̃) = V0(η, S̃)+η S̃ is a P -supermartingale so that limt→∞ Vt(η, S̃)
exists and is finite, P -a.s. This yields supt≥0(ηt · S̃t) <∞ P -a.s., and because we also have
inft≥0(ηt · S̃t) > 0 P -a.s. by assumption, we obtain V(η, S̃) = η · (S/D) ∈ Sunif

++ . Now
D′ ≡ 1 ∈ Sunif

++ is a narrow σ-martingale discounter for S̃, and so Theorem 3.11 applied
to S̃ and ξ = η implies that 0 is svm for S̃. By Theorem 3.4, 2) for S̃ and ξ = η, 0 is
then ssm for η in the model S̃, and hence also in the model S = S̃D because strong share
maximality is discounting-invariant with respect to S++. So S satisfies DSV for η.

Proof of Theorem 2.13. This is very similar to the proof of Theorem 2.11, with the main
difference that we use Theorem 3.12 instead of Theorem 3.11.

1) If S satisfies DSE for η, so does Sη so that every η-buy-and-hold ϑ ∈ Θsf
+ and

in particular the reference strategy η is ssm for η and hence svm for Sη by the same
argument as for Theorem 2.11, 1). Moreover, η and Sη are bounded by assumption,
and so Theorem 3.12, (a) ⇒ (b), applied to Sη yields the existence of some D′ ∈ Sunif

++

such that Sη/D′ is a UI martingale. As before, D := (η · S)D′ is then a UI martingale
discounter for S, and we also again get inft≥0(ηt · (St/Dt)) > 0 P -a.s.

2) If S admits a UI martingale deflator D as in the assertion and we set S̃ := S/D,
then V(η, S̃) ∈ Sunif

++ as before. As η and Sη are bounded by assumption, Theorem 3.12
applied to S̃ then yields that each bounded ϑ ∈ Θsf

+ is svm for S̃. But every η-buy-and-
hold ϑ ∈ Θsf

+ is bounded like η itself, hence svm for S̃ and then ssm for η in the model S,
as before. Thus S satisfies DSE for η.
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For ease of reference in the proof, we repeat the statement of Theorem 2.14 here.

Theorem 2.14. Suppose S ≥ 0 and there exists a reference strategy η. Fix η. Consider
the following statements:

(e1) S satisfies dynamic share efficiency for η.

(v1) S satisfies dynamic share viability for η.

(e2) The reference strategy η ∈ Θsf
+ is strongly share maximal for η.

(e2′) Every bounded ϑ ∈ Θsf
+ is strongly share maximal for η.

(v2) There exists some ϑ ∈ Θsf
+ which is strongly share maximal for η.

(e3) η is strongly value maximal for Sη = S/(η · S).

(v3) 0 is strongly value maximal for Sη = S/(η · S).

(e4) For every D ∈ S++ with η · (S/D) ∈ Sunif
++ , every bounded ϑ ∈ Θsf

+ is strongly value
maximal for the D-discounted price process S/D.

(e4′) Every bounded ϑ ∈ Θsf
+ is strongly value maximal for Sη.

(v4) For every D ∈ S++ with η · (S/D) ∈ Sunif
++ , the zero strategy 0 ∈ Θsf

+ is strongly value
maximal for the D-discounted price process S/D.

(e5) There exists a UI martingale discounter D for S with η · (S/D) ∈ Sunif
++ .

(v5) There exists a σ-martingale discounter D for S with η · (S/D) ∈ Sunif
++ .

(e6) NFLVR∞(Sη) holds, i.e., Sη satisfies NFLVR∞.

(v6) NUPBR∞(Sη) holds, i.e., Sη satisfies NUPBR∞.

Then we have (eK) ⇒ (vK) for K = 1, . . . , 6, and the statements (vK), K = 1, . . . , 6, are
equivalent among themselves. If in addition η and Sη are bounded (uniformly in ω, t),
then also the statements (eK), K = 1, . . . , 6, are equivalent among themselves (including
the prime ′ versions).

Proof. While we need η ∈ Θsf
++ at once to define Sη, S ≥ 0 is used only in some implica-

tions. We structure the proof to make this apparent and initially only assume that there
exists a reference strategy η; so η ≥ 0.

It is clear from the statements or definitions that (eK)⇒ (vK) holds for K = 1, . . . , 5.
Because DSV for η means that 0 is ssm for η, (v1)⇒ (v2) is clear. By Theorem 3.4, 1)

applied to Sη and ξ = η, which has V(η, Sη) = η ·Sη ≡ 1 ∈ Sunif
++ , any ϑ ∈ Θsf

+ which is ssm
for η is also svm for Sη, and so we get (v2) ⇒ (v3) from Lemma 3.1. Next, (v1) ⇒ (v5)
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is the “only if” part of Theorem 2.11, and (v4) ⇒ (v3) holds because D := V(η) ∈ S++

and η · (S/D) = η · Sη ≡ 1 ∈ Sunif
++ . Finally, (v1) implies that 0 is ssm for η in the model

S/D, by discounting-invariance, so that (v4) follows by applying Theorem 3.4, 1) to S/D
and ξ = η, and (v3) ⇔ (v6) is Proposition 3.6 applied to Sη instead of S and with ξ = η,
noting that (Sη)η = Sη/(η · Sη) = Sη.

If S ≥ 0, (v3) ⇒ (v1) follows from Theorem 3.4, 2) used for Sη and ξ = η, because η
is a reference strategy, and (v5) ⇒ (v1) is the “if” part of Theorem 2.11.

DSE for η means that every η-buy-and-hold ϑ ∈ Θsf
+ is ssm for η. Thus (e1) ⇒ (e2) is

clear, so is (e2′)⇒ (e1) as η is bounded, and (e2)⇒ (e3) is from Theorem 3.4, 1) used for
Sη and ξ = η. Moreover, (e4′) ⇒ (e3) is argued like (v4) ⇒ (v3), (e4) ⇒ (e4′) is clear by
taking D = V(η) so that S/D = Sη and η ·(S/D) ≡ 1, and (e3)⇔ (e6) is Proposition 3.10
applied to Sη instead of S, with ξ = η.

If S ≥ 0 holds, (e1) ⇔ (e5) is Theorem 2.13. If (e3) holds, every bounded ϑ ∈ Θsf
+ is

first svm for Sη by Theorem 3.12 applied for Sη, and then by Theorem 3.4, 2) used for Sη

and ξ = η also ssm for η, so that we get (e3) ⇒ (e2′). Finally, because η · (S/D) ∈ Sunif
++

and S/D = Sη(η ·S)/D = Sη(η · (S/D)), every such ϑ is also svm for S/D by Lemma 3.1.
This gives (e3) ⇒ (e4) and completes the proof.

5 Extensions and connections

This section has three parts. We first discuss to which extent our approach and results
are robust with respect to the choice of a reference strategy. We then connect our work
to the classic theory, and finally provide a comparison to the existing literature.

5.1 Robustness towards the choice of a reference strategy

As already pointed out in Remark 2.8, 2), our concepts and main results depend on the
choice of a reference strategy η. In this section, we show that this dependence is fairly
weak, which means that our approach is quite robust towards the choice of η.

Consider two reference strategies η, η′; so both are in Θsf
++ and ≥ 0, with Sη = S/(η ·S)

and Sη′ both bounded uniformly in t ≥ 0, P -a.s. We also consider the ratio condition

(η′ · S)/(η · S) = V(η′)/V(η) ∈ Sunif
++ , i.e.,

0 < inf
t≥0

(
Vt(η′)/Vt(η)

)
≤ sup

t≥0

(
Vt(η′)/Vt(η)

)
<∞ P -a.s.(5.1)

(As Sunif
++ is closed under taking reciprocals, (5.1) is symmetric in η and η′.)

Lemma 5.1. Suppose S ≥ 0 and there exist reference strategies η, η′. Fix ϑ ∈ Θsf
+.

1) If (5.1) holds, then ϑ is ssm for η if and only if it is ssm for η′.
2) If both η and η′ are bounded uniformly in t ≥ 0, P -a.s., then (5.1) holds.

21



Proof. 1) Suppose ϑ is ssm for η. Because V(η, Sη) ≡ 1 ∈ Sunif
++ , Corollary 3.5 applies for

Sη and ξ = η and implies that ϑ is strongly value maximal for Sη. But Sη′ = Sη/D with
D := (η′ ·S)/(η ·S) ∈ Sunif

++ due to (5.1). Thus by Lemma 3.1, ϑ is strongly value maximal
for Sη′ as well. Corollary 3.5 applied now for Sη′ and ξ = η′ yields that ϑ is ssm for η′.
The converse is argued symmetrically.

2) The ratio (η · S)/(η′ · S) = η · Sη′ is strictly positive like V(η), V(η′) and bounded
uniformly in t ≥ 0, P -a.s., as both η and Sη′ are. Symmetry in η and η′ gives (5.1).

Corollary 5.2. Suppose S ≥ 0 and there exist reference strategies η, η′.
1) If (5.1) holds, then DSV for η and DSV for η′ are equivalent.
2) If η, η′ as well as Sη, Sη′ are bounded (uniformly in ω, t), then DSE for η and DSE

for η′ are equivalent.

Proof. 1) Apply Lemma 5.1, 1) to ϑ ≡ 0.
2) By discounting-invariance, DSE and ssm are the same in the models S or Sη. If we

have DSE for η, every bounded ϑ ∈ Θsf
+ and in particular η′ is ssm for η by Theorem 2.14,

(e1)⇒ (e2′). By Lemma 5.1, 2) and then 1), η′ is thus also ssm for η′, and so Theorem 2.14,
(e2) ⇒ (e1), gives DSE for η′. The converse argument is symmetric.

The assumptions in part 2) of Corollary 5.2 are precisely those we impose in Theo-
rem 2.13 to obtain a dual characterisation for DSE. So DSE is robust with respect to the
choice of any reference strategy in that class.

Remark 5.3. Suppose S ≥ 0 and ∑N
i=1 S

i is strictly positive with strictly positive left
limits. As seen in Remark 2.3, the market portfolio 1 is then a reference strategy with
1 and S1 = S/

∑N
i=1 S

i bounded (uniformly in ω, t). Any η ∈ Θsf
+ with c1 ≤ η ≤ C1

for constants 0 < c ≤ C < ∞ is then also a reference strategy with η and Sη bounded
(uniformly in ω, t); indeed, η ·S ≥ c1 ·S and hence Sη ≤ 1

c
S1 (coordinatewise). In view of

Corollary 5.2, 2), DSE is therefore the same for the market portfolio as for any bounded
reference strategy which always invests in a uniformly nondegenerate way into all assets.
An “extreme” strategy like ei, buy and hold a single fixed asset i, does not satisfy this.

The result for DSV is even better — this criterion is robust towards the choice of any
reference strategies η, η′ satisfying the ratio condition (5.1). We can say a bit more.

Lemma 5.4. Suppose S ≥ 0 and there exists a reference strategy η. Fix η. If DSV for η
holds, then (ϑ · S)/(η · S) is bounded in t ≥ 0, P -a.s., for every ϑ ∈ Θsf

+.

Proof. By Theorem 2.14, 0 is svm for Sη. Now note that (ϑ · S)/(η · S) = V(ϑ, Sη) and
apply Theorem 3.7 for Sη and ξ = η, which has V(ξ, Sη) ≡ 1 ∈ Sunif

++ and (Sη)ξ = Sη.

Corollary 5.5. Suppose S ≥ 0 and there exist reference strategies η, η′. If we have both
DSV for η and DSV for η′, then (5.1) holds.
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Proof. Apply Lemma 5.4 with the pairs (η, ϑ = η′) and (η′, ϑ = η).

Combining Corollary 5.2, 1) and Corollary 5.5 shows that we can interpret the ratio
condition (5.1) as saying that η and η′ are comparable in some sense. If (5.1) holds, either
both or none of η, η′ yield DSV. If we have DSV for one of the two reference strategies,
then DSV for the other holds if and only if (5.1) holds. If (5.1) does not hold, DSV
must fail for at least one of η or η′, but we cannot tell whether for both or only for one.
Example 6.9 shows that both cases can occur.

5.2 Connections to the classic results

Theorem 2.14 indicates that in some way, DSV is connected to NUPBR, and DSE to
NFLVR. In this section, we study this in more detail in the classic setup S = (1, X).
Because our results use the condition S ≥ 0, we also impose X ≥ 0.

Classic NUPBR for X is the same as NUPBR∞(1, X), with (1, X) = S = Se1 . From
Theorem 2.14, we expect that this is equivalent to DSV for η ≡ e1, but this is not clear; in
general, Se1 is not bounded uniformly in t ≥ 0, P -a.s., so that e1 need not be a reference
strategy. But in any case, using one of the ei as a potential “reference strategy” is quite
extreme. For instance, in Example 1.1 with two GBMs as asset prices, there is no reason
to prefer either Se1 = (1, S2/S1) or Se2 = (S1/S2, 1). It seems there much more natural
to use the market portfolio η ≡ 1, and in a setup with S = (1, X) and X ≥ 0, this is a
proper reference strategy. So we can ask how classic NUPBR and NFLVR for X relate
to DSV and DSE for 1.

Proposition 5.6. If S = (1, X) for an Rd
+-valued semimartingale X, classic NUPBR for

X implies that S satisfies dynamic share viability for 1.

Proof. Because V(e1) = V(e1, (1, X)) ≡ 1 ∈ Sunif
++ , Proposition 3.6 with ξ ≡ e1 implies

that NUPBR∞(1, X) is equivalent to 0 being svm for S. This yields by Theorem 3.7 with
ξ ≡ e1 and Sξ = S that V∞(ϑ) = limt→∞ Vt(ϑ) exists and is finite, P -a.s., for any ϑ ∈ Θsf

+.
So we obtain 0 ≤ inft≥0 Vt(ϑ) ≤ supt≥0 Vt(ϑ) < ∞ P -a.s. for any ϑ ∈ Θsf

+, and X ≥ 0
allows us to choose ϑ ≡ (0, eid) ∈ Rd+1 for any eid ∈ Rd, i = 1, . . . , d, and get

0 ≤ inf
t≥0

X i
t ≤ sup

t≥0
X i
t <∞ P -a.s., i = 1, . . . , d.

Thus 0 < 1 ≤ inft≥0 Vt(1) ≤ supt≥0 Vt(1) <∞ P -a.s. and so V(1) = 1 · S = 1 +∑d
i=1X

i

is in Sunif
++ . Part 2) of Theorem 3.4 with ξ ≡ 1 therefore implies that 0 is ssm for 1, and

so S satisfies dynamic share viability for 1.

The converse of Proposition 5.6 is not true in general. A counterexample is given in
Example 6.8 c). Thus our new concept of dynamic share viability, when used for the
market portfolio 1, is more widely applicable than the classic NUPBR concept.
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In contrast to DSV and NUPBR, neither of “dynamic share efficiency for 1” and
“NFLVR for X” implies the other in general in the classic case S = (1, X). Example 6.11
shows that DSE for 1 does not imply NFLVR, at least (see Theorem 2.14) not for the
same model. Conversely, Example 6.8 e) shows that for S = (1, X), we can have NFLVR
for X while DSE for 1 fails. This is actually not surprising; in fact, NFLVR is about how
e1 or V(e1) fits into the market, whereas dynamic share efficiency for 1 looks at all the ei,
i = 1, . . . , N . The next result makes this more precise.

Proposition 5.7. Suppose that S ≥ 0 and there exist reference strategies η, η′. Then
NFLVR∞(Sη) plus inft≥0(η′t · S

η
t ) > 0 P -a.s. implies that η is strongly share maximal for

η′. In particular, if S = (1, X) with X ≥ 0, then X satisfies (classic) NFLVR only if e1

is strongly share maximal for 1.

Proof. The second statement follows from the first by taking η ≡ e1, η′ ≡ 1 and observing
that 1 · Se1 = 1 + ∑d

i=1X
i ≥ 1. If we have NFLVR∞(Sη), the discussion after [10,

Definition 2.18] allows us to apply the FTAP from [8, Theorem 1.1] to the asset price
process (1, X̃) := (V(η, Sη), Sη) of dimension 1 +N , and this yields a probability measure
Q ≈ P such that X̃ = Sη is a Q-σ-martingale. The density process D of P with respect
to Q is in Sunif

++ and Sη/D is a P -σ-martingale by the Bayes rule. Because η′ ∈ Θsf
+,

η′ · (Sη/D) = V(η′, Sη/D) is then a P -σ-martingale ≥ 0, hence a P -supermartingale by [1,
Corollary 3.5], and thus P -a.s. convergent as t→∞. Therefore supt≥0(η′t · (S

η
t /Dt)) <∞

P -a.s. and then also supt≥0(η′t · S
η
t ) < ∞ P -a.s. because D ∈ Sunif

++ . Combining this with
inft≥0(η′t·S

η
t ) > 0 P -a.s. gives V(η′, Sη) ∈ Sunif

++ . Proposition 3.10 and then Theorem 3.4, 2),
both applied for Sη and ξ = η′, now imply that η′ is svm for Sη and then ssm for η.

5.3 Comparison to the literature

The two most used classic AOA notions in the literature are NFLVR (due to Delbaen/
Schachermayer [5]) and the strictly weaker NUPBR (coined by Karatzas/Kardaras [17]).
The latter condition was introduced by different authors under different names — BK in
Kabanov [14], no cheap thrills in Loewenstein/Willard [21] or NA1 in Kardaras [19]; see
also Kabanov/Kramkov [15]. By [19, Proposition 1], all these and NUPBR are equivalent.

Both NFLVR and NUPBR are classically only defined for discounted price processes of
the form S = (1, X). Dual characterisations in terms of martingale properties first focused
on NFLVR, culminating in the classic FTAP due to Delbaen/Schachermayer [5, 8] that
for a general Rd-valued semimartingale X, NFLVR for S = (1, X) is equivalent to the
existence of an equivalent σ-martingale measure for the discounted prices X. The fact
that NFLVR depends on the numéraire chosen for discounting was probably first noted
in [6] or [25]. Herdegen [10] made this observation more precise; he showed that NFLVR
describes a maximality property of the discounting asset, but does not say too much about
the market as a whole. Proposition 5.7 extends that to our framework.
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Even if NFLVR does not hold, a market can still be sufficiently nice to allow AOA-type
arguments. This has been exploited in several papers. Loewenstein/Willard [21] show in
an Itô process setup that already no cheap thrills (NUPBR) is sufficient (and necessary) to
solve utility maximization problems; see also [3]. In the benchmark approach presented in
Platen/Heath [22], a market may violate NFLVR; but in units of the so-called numéraire
portfolio, the theory works as if there was no arbitrage. For stochastic portfolio theory and
the study of relative arbitrage (see Karatzas/Fernholz [16] for an overview), a market may
have “arbitrage” in the sense of FLVR; but portfolio choice still makes sense, and hedging
via superreplication can still work. The comprehensive paper of Karatzas/Kardaras [17]
shows that maximising growth rate, asymptotic growth or expected logarithmic utility
from terminal wealth all make sense if and only if NUPBR holds. Another overview of
the above connections can be found in the recent work of Choulli et al. [4].

In addition to the above good properties, NUPBR is also more stable than NFLVR
under discounting or changes of numéraire. Proposition 3.6 together with Lemma 3.1
shows that NUPBR∞(Sη) is equivalent to NUPBR∞(Sη′) whenever η and η′ are reference
strategies with V(η) and V(η′) both in Sunif

++ . But this no longer holds if V(η) or V(η′) are
only in S++\Sunif

++ ; see Examples 1.1 and 3.2 as well as the comment after Proposition 5.6.
Like for NFLVR, the literature contains dual characterisations of NUPBR. Depend-

ing on the setting, they vary in the strength of the dual formulation; see Figure 1 for
an overview. For S = (1, X) with a d-dimensional semimartingale X > 0 on [0,∞),
Karatzas/Kardaras [17] show that NUPBR is equivalent to the existence of an S-tradable
supermartingale discounter for all wealth processes of admissible self-financing strategies.
On [0, T ], this is strengthened by Takaoka/Schweizer [26] to the existence of a σ-martin-
gale discounter for X, where again S = (1, X) but X is an Rd-valued semimartingale.
Both Kardaras [19] and Kabanov et al. [13], inspired by the results and a counterexample
in [26], work on [0, T ] with S = (1, X) for an Rd-valued semimartingaleX and characterise
NA1 (which is equivalent to NUPBR) by the existence of a local martingale discounter for
all wealth processes of admissible self-financing strategies. In [19], this is done for d = 1
so that X is real-valued; [13] extend the result to d ≥ 1 and in addition manage to find
an S-tradable local martingale discounter under any R ≈ P in any neighbourhood of P .

All results above are for the special (discounted) case S = (1, X). This was first
dropped by Herdegen [10] who worked on [0, T ] with a general RN -valued semimartingale
S. His AOA condition NINA or dynamic (value) viability generalises NUPBR and is
dually characterised by the existence of a discounter/EσMM pair (D,Q), meaning that
D ∈ S++ and Q is an equivalent σ-martingale measure for D-discounted prices S/D. Our
new concept of dynamic share viability for η extends NINA to the infinite-horizon setting
[0,∞) with prices S ≥ 0, and its dual characterisation in Theorem 2.11 is the existence
of a σ-martingale discounter D for S with inft≥0(ηt · (St/Dt)) > 0 P -a.s.

Table 1 gives an overview of the dual characterisation results discussed above. We
write Sm for the space of Rm-valued semimartingales and use Sm+ , Sm++ as in Section 2.
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price process S time condition dual condition

KK [17] (1, X) ∈ S1+d
++ [0,∞) NUPBR

∃ S-tradable SMD D > 0 for
all H X with H ∈ Ladm(X),

with D∞ > 0
TS [26] (1, X) ∈ S1+d [0, T ] NUPBR ∃ σMD D > 0 for X

K [19] (1, X) ∈ S1+1 [0, T ] NA1 ∃ LMD D > 0 for
all H X with H ∈ Ladm(X)

KKS [13] (1, X) ∈ S1+d [0, T ] NA1
∃ S-tradable LMD D > 0 for
all H X with H ∈ Ladm(X),
in any neighbourhood of P

H [10] in SN [0, T ] NINA ∃ discounter/EσMM pair for S

here in SN+ [0,∞) DSV for η ∃ LMD D > 0 for S
with inft≥0(ηt · (St/Dt)) > 0 P -a.s.

Table 1: Overview of existing FTAP-type results. Note that NA1 = NUPBR on [0, T ].

The abbreviations SMD, σMD and LMD denote super-, σ- and local martingale discoun-
ters, respectively. The table compares Karatzas/Kardaras [17], Takaoka/Schweizer [26],
Kardaras [19], Kabanov et al. [13], Herdegen [10], and the present article.

The key difference between NUPBR and NINA (= dynamic (value) viability) on [0, T ]
is that the latter is, by design, stable with respect to discounting or numéraire changes
on [0, T ]. In addition, [10] also presents a discounting-stable alternative to NFLVR. It is
called dynamic (value) efficiency and requires that not one particular asset, but each of the
N basic assets (or equivalently the market portfolio 1) should satisfy (value) maximality.
A similar approach was presented in Yan [27] who, without justification, chose to discount
with the market wealth V(1) = 1 ·S and then verified the validity of known duality results
for the resulting discounted model. Very similar ideas and results can also be found earlier
in the PhD thesis of Sin [25]. [10, 27, 25] all work on [0, T ], and our new concept of
dynamic share efficiency for η extends dynamic (value) efficiency to [0,∞) in a discount-
ing-invariant manner. Section 5.1 discusses the choice of η and shows in Corollary 5.2
and Remark 5.3 that if η uses the whole market in a relevant way, the properties of the
V(η)-discounted model are actually global market properties and do not really depend on
η. In particular, this motivates (ex post) the definitions and approach in [27].

To illustrate how our approach yields new results even in the classic case, we first prove

Proposition 5.8. Suppose there exists an η ∈ Θsf
++. Then Sη satisfies NUPBR∞ if and

only if there exists a σ-martingale discounter D for Sη with D∞ := limt→∞Dt <∞ P -a.s.

Proof. Because V(η, Sη) ≡ 1 ∈ Sunif
++ , Proposition 3.6 and Theorem 3.11 for Sη and

ξ = η imply that Sη satisfies NUPBR∞ if and only if it admits a σ-martingale discounter
D ∈ S++ with the extra property D ∈ Sunif

++ . Now D being a σ-martingale discounter is

26



equivalent to Sη/D being a σ-martingale, and therefore

1/D = V(η, Sη)/D = V(η, Sη/D) = V0(η, Sη/D) + η (Sη/D)

is a σ-martingale. Moreover, D ∈ S++ implies that 1/D is also in S++, hence a local
martingale > 0 and a supermartingale ≥ 0 by [1, Corollary 3.5], and therefore P -a.s.
convergent to some finite limit. So D is also P -a.s. convergent and D∞ > 0 P -a.s., which
implies that inft≥0Dt > 0 P -a.s. The extra property D ∈ Sunif

++ thus holds if and only if
supt≥0Dt <∞ P -a.s. or, equivalently by convergence, D∞ <∞ P -a.s.

Corollary 5.9. Suppose X is an Rd-valued semimartingale. Then X satisfies (classic)
NUPBR if and only if there exists a local martingale L > 0 with L∞ := limt→∞ Lt > 0
P -a.s. and such that LX is a σ-martingale.

Proof. For S = (1, X), η := e1 is in Θsf
++ with Sη = Se1 = S. So we can apply Proposi-

tion 5.8 and take L := 1/D. The properties of L are all shown in the proof above.

Corollary 5.9 sharpens the classic characterisation of NUPBR in [17, Theorem 4.12] in
two ways: We do not need X and X− to be strictly positive, and we get a σ-martingale
deflator for X, not only a supermartingale deflator for all H X with H ∈ Ladm(X). The
result also extends [26, Theorem 2.6] from a closed interval [0, T ] to a general time horizon.

6 Examples

This section illustrates our results by examples and counterexamples. Most are based on
variants of Example 1.1, and so we start with a general analysis of that setup.

6.1 General results for a two-GBM setup

For Example 1.1, we can characterise completely, in terms of the model parameters
m1,m2, σ1, σ2, %, when DSV or DSE for 1 hold. This needs σ-martingale discounters
for S. If D is a σ-martingale discounter for S, then S/D is a σ-martingale > 0 and
hence a local martingale > 0. In the filtration generated by (B1, B2), all positive local
martingales starting at 1 have the form E(ξ1 B1 + ξ2 B2), and as all coefficients of S are
constant, it should be enough to consider only constant processes ξ1, ξ2. So we define

C := {D ∈ S++ : Si/D = E(αiB1 + βiB
2) with constants αi, βi, i = 1, 2}.

Throughout this section, we consider the setting of Example 1.1. Note that
S0 = (1, 1) implies the normalisation D0 = 1 for any D ∈ C.
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Proposition 6.1. We always have C 6= ∅, and each D ∈ C corresponds to a tuple
(α1, β1, α2, β2) ∈ R4 with one free parameter. More precisely, we have the three relations

α2 = α1 − σ1

√
1− %2,(6.1)

β2 = β1 − (%σ1 − σ2),(6.2)

α1σ1

√
1− %2 + β1(%σ1 − σ2) = m2 −m1 + σ2

1 − %σ1σ2.(6.3)

In particular, α2 and β2 are always determined from α1 and β1, respectively. Moreover:
1) If σ1 = 0, we must take α1 = 0 and β1 = −m2−m1

σ2
. This yields

D−1
t = E

(
− m2 −m1

σ2
B2
)
t
e−m1t, t ≥ 0,

which is the well-known state price density for the Black–Scholes model.
2) If σ1 > 0, β1 can be chosen freely and α1 is then determined via (6.3).

Proof. Because Si/D = E(αiB1 + βiB
2) for i = 1, 2 and D is one-dimensional, we have

S1/E(α1B
1 + β1B

2) = D = S2/E(α2B
1 + β2B

2). Plug in (1.1) for S1, S2, express W 1,W 2

via B1, B2, write out the results and equate the two sides. The coefficients of B1, B2, t in
the exponents must then coincide, and the resulting three equations yield the claims after
straightforward algebra. Note that in case 1), D is not adapted to F unless α1 = 0.

Each D ∈ C is a local martingale discounter for S in the filtration F. The next result
exhibits a particularly useful choice among these.

Proposition 6.2. There exists a unique S-tradable D̄ ∈ C. In terms of the corresponding
parameter tuple from Proposition 6.1, it is given as follows:

1) If σ1 = 0, then ᾱ1 = 0 = ᾱ2 and

(6.4) β̄1 = −m2 −m1

σ2
, β̄2 = −m2 −m1 − σ2

2
σ2

.

2) If σ1 > 0, then

ᾱ1

(
σ1

√
1− %2 + (%σ1 − σ2)2

√
1− %2

)
= m2 −m1 + σ2

1 − %σ1σ2,(6.5)

β̄1 = ᾱ1
%σ1 − σ2√

1− %2 ,(6.6)

ᾱ2

(
σ1

√
1− %2 + (%σ1 − σ2)2

√
1− %2

)
= m2 −m1 − σ2

2 + %σ1σ2,(6.7)

β̄2 = ᾱ2
%σ1 − σ2√

1− %2 .(6.8)

Proof. For D̄ to be S-tradable, we must have D̄ = V(ϑ̄) for some ϑ̄ ∈ Θsf . Setting
S̄ := S/D̄, this is equivalent to 1 ≡ V(ϑ̄)/D̄ = V(ϑ̄, S)/D̄ = V(ϑ̄, S̄) or

(6.9) ϑ̄1
t S̄

1
t + ϑ̄2

t S̄
2
t = 1, t ≥ 0.
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Moreover, the self-financing condition yields also 0 = dVt(ϑ̄, S̄) = ϑ̄1
t dS̄1

t + ϑ̄2
t dS̄2

t . But
S̄i = E(ᾱiB1+β̄iB2) yields dS̄it = S̄it(ᾱi dB1

t +β̄i dB2
t ). Plugging this into the self-financing

condition and using that B1, B2 are independent implies by comparing coefficients that

0 = ϑ̄1
t S̄

1
t ᾱ1 + ϑ̄2

t S̄
2
t ᾱ2,(6.10)

0 = ϑ̄1
t S̄

1
t β̄1 + ϑ̄2

t S̄
2
t β̄2.(6.11)

Now use (6.9) to get ϑ̄1S̄1 = 1− ϑ̄2S̄2, plug this into (6.10) and (6.11), and use (6.1) and
(6.2) to eliminate ᾱ2 and β̄2 and obtain (after simple calculations)

ᾱ1 = ϑ̄2S̄2σ1

√
1− %2,(6.12)

β̄1 = ϑ̄2S̄2(%σ1 − σ2).(6.13)

Because only one of ᾱ1, β̄1 can be chosen freely by Proposition 6.1, there is at most one
choice of D̄ ∈ C which is S-tradable. For existence of D̄, we consider two cases.

1) If σ1 = 0, (6.12) forces ᾱ1 = 0, hence ᾱ2 = 0 by (6.1), and Proposition 6.1 and (6.2)
yield (6.4). Moreover, (6.13) yields for ϑ̄ the explicit formulas

(6.14) ϑ̄2S̄2 ≡ − β̄1

σ2
= m2 −m1

σ2
2

, ϑ̄1S̄1 = 1− ϑ̄2S̄2 ≡ −m2 −m1 − σ2
2

σ2
2

.

2) If σ1 > 0, solve (6.12) for ϑ̄2S̄2 and plug into (6.13) to get (6.6). Insert this into (6.3)
to obtain (6.5). Finally, combine (6.5), (6.1) for (6.7), and (6.2), (6.6), (6.1) for (6.8).

Remark 6.3. In the BS model with parameters m, r, σ, the proportion of wealth in the
stock S̄2 for the strategy ϑ̄ is given by π̄2 = ϑ̄2S̄2/V(ϑ̄, S̄) = ϑ̄2S̄2 = m−r

σ2 . This is exactly
the strategy which solves the problem of maximising expected logarithmic utility from
final wealth. We therefore call ϑ̄ from (6.14) the Merton strategy.

Our main result about Example 1.1 is now

Theorem 6.4. 1) If σ1 = 0, S satisfies DSV for 1 if and only if

(6.15) m2 −m1 ∈ {0, σ2
2}.

In particular, the BS model with parameters m, r, σ satisfies DSV for 1 if and only if

m− r
σ2 ∈ {0, 1}.

2) If σ1 > 0, the general GBM model satisfies DSV for 1 if and only if

(6.16) mi − σ2
i + %σ1σ2 = m3−i for i = 1 or i = 2.

3) S satisfies DSV for 1 if and only if one of the two processes S/S1 = (1, X) or
S/S2 = (1/X, 1) is a martingale.

4) S never satisfies DSE for 1.
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Proof. Because DSV and DSE are discounting-invariant, we can work with S̄ = S/D̄ from
Proposition 6.2 instead of S. Then S̄i = E(ᾱiB1 + β̄iB

2) = E(ᾱiB1)E(β̄iB2) and we first
look at the two cases for σ1.

1) If σ1 = 0, then ᾱ1 = 0 = ᾱ2 and S̄1 = E(β̄1B
1) and S̄2 = E((β̄1 + σ2)B2) by (6.2).

If either β̄1 = 0 or β̄1 + σ2 = 0, then 1 · S̄ ≥ 1 so that S̄ is a (non-UI) martingale with
inft≥0(1 · S̄t) > 0 P -a.s.; so S satisfies DSV for 1 by Theorem 2.14 with η ≡ 1. If β̄1 6= 0
and β̄1 + σ2 6= 0, then 1 · S̄t → 0 P -a.s. as t → ∞; so S̄ ≥ 0 has V(ϑ̄, S̄) ≡ 1 ∈ Sunif

++

by Proposition 6.2, but inft≥0(1 · S̄t) = 0 P -a.s., and hence does not satisfy DSV for 1
by Lemma A.3. In summary, S satisfies DSV for 1 if and only if β̄1 ∈ {0,−σ2}, which is
equivalent to (6.15) in view of (6.4).

2) If σ1 > 0, (6.1) shows that ᾱ1 and ᾱ2 cannot both be 0, and (6.6), (6.8) imply
β̄i = 0 if ᾱi = 0. So if ᾱi = 0, we get S̄i ≡ 1 and hence again 1 · S̄ ≥ 1, so that S satisfies
DSV for 1 by the same argument as in 1). If ᾱ1 6= 0 and ᾱ2 6= 0, then 1 · S̄t → 0 P -a.s.
as t→∞; so S̄ does not satisfy DSV for 1, again as in 1). Thus S satisfies DSV for 1 if
and only if ᾱi = 0 for i = 1 or i = 2, and this translates into (6.16) in view of (6.5), (6.7).

3) The characterisation of DSV for 1 in terms of martingale properties follows directly
by combining the explicit expression for X in (1.2) with 1) and 2), respectively.

4) Because DSE implies DSV, we can by 3) only have DSE for 1 if either X = S2/S1

or 1/X is a martingale. This martingale is by (1.2) always of the form exp(γW̄t − 1
2γ

2t)
for some γ 6= 0 and some Brownian motion W̄ , and hence converges to 0 P -a.s. as t→∞.
So if S̃ := S/S1 = (1, X), say, is a martingale, we have V0(e1, S̃) = 1 = V0(e2, S̃), but
limt→∞ Vt(e1 − e2, S̃) = limt→∞(1 − Xt) = 1 ∈ L0

+ \ {0} so that e2 is not svm for S̃.
But S̃ ≥ 0 satisfies 1 · S̃ ∈ Sunif

++ because 1 · S̃ ≥ 1 and X is convergent, hence bounded
uniformly in t ≥ 0, P -a.s. By Theorem 3.4, 1) for S̃ and ξ ≡ 1, the 1-buy-and-hold
strategy e2 is then also not ssm for 1, and so S̃ does not satisfy DSE for 1. If 1/X is a
martingale, we just interchange e1 and e2 in the argument.

Remark 6.5. The strategy ϑ̄2 in (6.14) matches intuition quite well. In addition to its
buy-low-sell-high property, it goes long S1 and short S2 if m1 is much higher than m2,
short S1 and long S2 if m1 is much lower than m2, and holds proportional long positions
in both assets if the relation between m1 and m2 is not extreme.

6.2 Explicit examples I

This section gives explicit counterexamples for several wrong statements or implications.
All these are based on the general GBM setup from Section 6.1, and for concreteness and
simplicity, we work with the BS model. So let S1

t = ert and S2
t = exp(σWt + (m− 1

2σ
2)t)

with m, r ∈ R and σ > 0. We also need X = S2/S1 because S/S1 = (1, X).

Example 6.6. DSV for 1 does not imply DSE for 1. If we takem−r ∈ {0, σ2}, S satisfies
DSV for 1 by Theorem 6.4, 1). But S never satisfies DSE for 1, by Theorem 6.4, 4).
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Example 6.7. NFLVR for (1, X) does not imply DSE for 1. Take m = r so that X is a
martingale; then clearly S/S1 = (1, X) satisfies NFLVR∞. But again by Theorem 6.4, 4),
S never satisfies DSE for 1, and hence neither does S/S1 because D := S1 ∈ S++ and
DSE is discounting-invariant.

Example 6.8. DSV for 1 does not imply NUPBR for (1, X). Now take m − r = σ2 so
that X ′ = 1/X = S1/S2 is a martingale. Then (1, X) = S/S1 satisfies DSV for 1 by
Theorem 6.4, 1) because S does. However, X ′t = exp(−σWt− 1

2σ
2t) converges to 0 P -a.s.

as t→∞; so limt→∞Xt = +∞ P -a.s. and (1, X) does not satisfy NUPBR∞.

Example 6.9. If two reference strategies do not satisfy the ratio condition (5.1), then
DSV can fail for only one or for both of them. Take r = 0, m = 1

2 , σ = 1. Then η ≡ 1

is a reference strategy and S does not satisfy DSV for η by Theorem 6.4, 1). Now take
the Merton strategy ϑ̄ from (6.14) and set η′ = ϑ̄. Then Sη′ = S/V(ϑ̄) = S/D̄ is a local
martingale because D̄ ∈ C, and hence it satisfies NUPBR due to [17, Theorem 4.12]. It
follows from Theorem 2.14 that S satisfies DSV for η′. In particular, by Corollary 5.2, 1),
the ratio condition (5.1) does not hold between η and η′.

Now define η′′ = IJ0,1Kη+IK1,∞K(IAη+IAc(V1(η)/V1(η′))η′), where A := {W1 > 0} ∈ F1

has P [A] = 1
2 . Then η′′ is a reference strategy which satisfies the ratio condition (5.1)

neither with η nor with η′, because η and η′ do not satisfy (5.1). From Corollary 5.5 for η′

and η′′, we obtain that S does not satisfy DSV for η′′, and so DSV fails for both η and η′′.

6.3 Explicit examples II

Some of our examples need models S which satisfy DSE, or UI martingales, and both
these requirements cannot be satisfied in the setup of Section 6.1. Theorem 6.4 shows
that the GBM model never satisfies DSE for 1, and the appearing martingales are always
stochastic exponentials E(γB) of some constant multiple of some Brownian motion B.
Except for γ = 0 where E(γB) ≡ 1, such a martingale is never UI because it converges to
0 P -a.s. So we need to construct our examples in a different way.

For ease of exposition, we work in this section in (infinite) discrete time. Via piecewise
constant interpolations of processes (LCRL for predictable, RCLL for optional) and piece-
wise constant filtrations, our models can be embedded in a continuous-time framework.
We use (only in this subsection) the notation ∆Yn := Yn − Yn−1 for the jump at time n
of the discrete-time process Y = (Yn)n∈N0 . Our examples have two building blocks.

A first basic ingredient is a martingale Y whose increments (or successor values) in each
step only take two (different) values. The martingale condition then uniquely determines
all one-step transition probabilities as a function of the Y -values, and so we can talk
about “the” corresponding martingale. By choosing the increments or values in a suitable
way, we can moreover ensure that Y is nonnegative and bounded, hence UI and P -a.s.
convergent to some Y∞ which closes Y on the right as a martingale (i.e., Y = (Yn)n∈N0∪{∞}
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is a martingale). Finally, one can also ensure that Y∞ only takes two values one of which
is 0, and thus we obtain a UI martingale which converges to 0 with positive probability.

The second idea is more subtle. We want to work with a two-asset model and trade
in such a way that our strategy involves the asymptotic behaviour of both assets in a
specific nontrivial way. To this end, we construct S = (S1, S2) such that in each step,
exactly one of the assets has a price move, and these moves always alternate. This allows
to predict which asset coordinate will move in the next step, which can be exploited to
construct (switching) strategies with a desired behaviour; and as both coordinates move
alternatingly, the resulting wealth process is influenced by each coordinate in turn.

Example 6.10. DSV for η is not equivalent to the existence of a σ-martingale discounter
D for S; the condition inft≥0(ηt · (St/Dt)) > 0 P -a.s. in Theorem 2.11 is indispensable.
To show this, we construct a bounded martingale S ≥ 0 satisfying P [limt→∞ St = 0] > 0.
Then P [inft≥0(ηt ·(St/Dt)) = 0] ≥ P [limt→∞(1 ·St) = 0] > 0 and D ≡ 1 is a UI martingale
discounter for S. We then show that S does not satisfy DSV for η ≡ 1.

To start with the construction, let Y = (Yn)n∈N0 be the (unique) martingale which
starts at Y0 = 1 and at any time n ∈ N only takes the two values un = 2−2−n or dn = 2−n.
Then Y is P -a.s. strictly positive (but not bounded away from 0 uniformly in n) and
bounded by 2. So (Yn) converges to Y∞ P -a.s., and clearly P [Y∞ = 2] = 1

2 = P [Y∞ = 0].
Now let Y 1, Y 2 be independent copies of Y and define S = (S1, S2) by S1

0 = 1 and

S1
2n−1 = S1

2n = Y 1
n for n ∈ N, S2

2n = S2
2n+1 = Y 2

n for n ∈ N0.

This gives for n ∈ N that ∆S1
2n−1 = ∆Y 1

n , ∆S1
2n = 0 and ∆S2

2n−1 = 0, ∆S2
2n = ∆Y 2

n and
in particular yields that the coordinates of S jump alternatingly because

(6.17) ∆S2
nI{∆S1

n−1=0} = 0 = ∆S1
nI{∆S2

n−1=0}.

Let F = (Fn)n∈N0 be the filtration generated by S. Then S is like Y a bounded martingale,
hence convergent to S∞ P -a.s., and P [limn→∞(1 · Sn) = 0] = P [S∞ = 0] = 1

4 > 0.
To show S does not satisfy DSV for 1, we argue indirectly via Lemma A.3. Because

(Sn)n∈N0 is strictly positive, η ≡ 1 is a reference strategy, and B := {limn→∞(1 ·Sn) = 0}
has P [B] > 0. If S satisfies DSV for 1, Lemma A.3 yields supn∈N0(ϑn · Sn)/(1 · Sn) <∞
P -a.s. for all ϑ ∈ Θsf

+, and (ϑn ·Sn)/(1 ·Sn) = Vn(ϑ)/(1 ·Sn). We exhibit below a strategy
ϑ̄ ∈ Θsf

+ with V(ϑ̄) ≡ ε > 0. Because then supn∈N0(ϑ̄n · Sn)/(1 · Sn) = +∞ on B, we
conclude that S cannot satisfy DSV for 1.

To construct ϑ̄, we fix ε > 0 and consider the strategy which invests the amount ε
at time 0 in asset 2 and subsequently reinvests at any time all its wealth into that asset
which will not jump in the next period. More formally, we set ϑ̄0 := ϑ̄1 := (0, ε) and

(6.18) ϑ̄n+1 := I{∆S1
n=0}

(
0, ε
S2
n

)
+ I{∆S2

n=0}

(
ε

S1
n

, 0
)
.
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This is well defined because S1, S2 are both strictly positive, and predictable because S
is adapted. Moreover, S2

0 = S2
1 = 1 yields V0(ϑ̄) = V1(ϑ̄) = ε, and

Vn+1(ϑ̄) = I{∆S1
n=0} ε

S2
n+1
S2
n

+ I{∆S2
n=0} ε

S1
n+1
S1
n

= ε

as S1, S2 always jump alternatingly. So V(ϑ̄) ≡ ε, and ϑ̄ is also self-financing because

∆Vn+1(ϑ̄)− ϑ̄n+1 ·∆Sn+1 = 0− ϑ̄1
n+1∆S1

n+1 − ϑ̄2
n+1∆S2

n+1 ≡ 0

due to (6.18) and (6.17). So ϑ̄ has all the claimed properties, and this ends the example.

Example 6.11. DSE for η need not imply NFLVR∞, not even for a classic model of
the form S = (1, X). Similarly as in Example 6.10, let Y = (Yn)n∈N0 be the (unique)
martingale valued in (0, 1) with Y0 = 1

2 and Yn ∈ {1
22−n, 1− 1

22−n}. This converges P -a.s.
to Y∞ which takes the values 0 and 1 each with probability 1

2 . Set Y
′ := 1−Y and define

S := (1, X) :=
(

1, Y
′

Y

)
=
(

1, 1− Y
Y

)
.

Then 1 ·S = 1
Y
and so S1 = (Y, 1−Y ) is a bounded P -martingale with 1 ·S1 ≡ 1 ∈ Sunif

++ .
So S satisfies (e5) in Theorem 2.14 with D = 1 · S and η ≡ 1, and this implies that S
satisfies DSE for 1. However, we clearly have X ≥ 0 and

lim
n→∞

Xn = lim
n→∞

1− Yn
Yn

= +∞ on {limn→∞ Yn = 0}.

As P [Y∞ = 0] = 1
2 > 0, S = (1, X) does not satisfy NUPBR∞ and thus also not NFLVR∞.

A Appendix

This section contains some technical proofs and auxiliary results.

Proof of Lemma 3.1. If ϑ is not svm for S/D, there are f ∈ L0
+ \ {0} and for any ε > 0

some ϑ̂ε ∈ Θsf
+ with V0(ϑ̂ε, S/D) ≤ V0(ϑ, S/D) + ε, hence V0(ϑ̂ε) ≤ V0(ϑ) + εD0, and

(A.1) lim inf
t→∞

Vt(ϑ̂ε − ϑ, S/D) ≥ f ≥ 0 P -a.s.

As D ∈ Sunif
++ has inft≥0Dt > 0 P -a.s., f ′ := f lim inft→∞Dt is in L0

+ \ {0}. Because
D ∈ Sunif

++ also has supt≥0Dt <∞ P -a.s., (A.1) implies by Lemma A.1 that P -a.s.,

lim inf
t→∞

Vt(ϑ̂ε − ϑ) = lim inf
t→∞

(
Vt(ϑ̂ε − ϑ, S/D)Dt

)
≥ lim inf

t→∞
Vt(ϑ̂ε − ϑ, S/D) lim inf

t→∞
Dt ≥ f ′.

This shows that ϑ is not svm for S either.
For the second part, if αϑ is not svm for S, we can find f ∈ L0

+\{0} and for every ε > 0
some ϑ̂ε ∈ Θsf

+ with V0(ϑ̂ε) ≤ V0(αϑ) + ε and lim inft→∞ Vt(ϑ̂ε− αϑ) ≥ f P -a.s. There are
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two cases. If α > 0, then ϑ̃ := ϑ̂ε/α ∈ Θsf
+ satisfies V0(ϑ̃) = V0(ϑ̂ε)/α ≤ V0(ϑ) + ε/α and

lim inft→∞ Vt(ϑ̃−ϑ) = lim inft→∞ Vt(ϑ̂ε−αϑ)/α ≥ f/α P -a.s. So ϑ is not svm for S as f/α
is in L0

+ \{0}. If α = 0, ϑ̃ := ϑ+ ϑ̂ε ∈ Θsf
+ has V0(ϑ̃) ≤ V0(ϑ) +V0(αϑ) + ε = V0(ϑ) + ε and

lim inft→∞ Vt(ϑ̃−ϑ) = lim inft→∞ Vt(ϑ̂ε−αϑ) ≥ f P -a.s.; so again ϑ is not svm for S.

Proof of Lemma 3.3. For brevity, we introduce the set Γ := {Vτ (ϑ1) < Vτ (ϑ2)} ∈ Fτ and
set ϕ := ϑ1 ?ξ

τ ϑ
2. We use V(ξ, Sξ) = ξ · Sξ ≡ 1, which also gives ξ Sξ ≡ 0. Then using

the definition of ϕ, the general fact that XIJ0,τK = Xτ −XτIKτ,∞K, the fact that ϑ1, ϑ2 are
self-financing and again the definition of ϕ yields

V(ϕ, Sξ)

= IJ0,τKV(ϑ1, Sξ) + IKτ,∞K

(
IΓV(ϑ1, Sξ) + IΓcV(ϑ2, Sξ) + IΓcVτ (ϑ1 − ϑ2, Sξ)

)
=
(
V(ϑ1, Sξ)

)τ
+ IKτ,∞K

(
IΓ
(
V(ϑ1, Sξ)− Vτ (ϑ1, Sξ)

)
+ IΓc

(
V(ϑ2, Sξ)− Vτ (ϑ2, Sξ)

))
= V0(ϑ1, Sξ) + (ϑ1IJ0,τK) Sξ +

(
IKτ,∞K

(
IΓϑ

1 + IΓcϑ2 + IΓcVτ (ϑ1 − ϑ2, Sξ)ξ
))

Sξ

= V0(ϕ, Sξ) + ϕ Sξ.

This shows that ϕ is self-financing. If both ϑ1, ϑ2 are in Θsf
+, the second line above is

nonnegative so that also ϕ is in Θsf
+.

For any function z : [0,∞)→ RN , set z(∞) := lim inft→∞ z(t), with the lim inf taken
coordinatewise. If the limit exists, again coordinatewise, we write z(∞) := limt→∞ z(t).
In R+, the product of ∞ and 0 is 0.

Lemma A.1. Suppose the functions x, y : [0,∞)→ RN satisfy

(a) y ≥ 0 is bounded (uniformly in t ≥ 0) by some C <∞.

(b) xi(∞) ≥ 0 for i = 1, . . . , N .

Then

(A.2) (x · y)(∞) ≥ x(∞) · y(∞).

Proof. Fix ε > 0. Decompose {1, . . . , N} into indices ` with x`(∞) = ∞ and indices m
with xm(∞) < ∞. For any ` and t ≥ T = T (`), we have x`(t) ≥ 0 and y`(t) ≥ 1

2y
`(∞),

and for any m, we get xm(t) ≥ xm(∞)− ε for t ≥ T = T (m, ε) and 0 ≤ ym(t) ≤ C for all
t. This implies xm(t)ym(t) ≥ (xm(∞)− ε)ym(t) ≥ xm(∞)ym(t)− εC and therefore

(x · y)(t) =
∑
`

x`(t)y`(t) +
∑
m

xm(t)ym(t) ≥ 1
2
∑
`

x`(t)y`(∞) +
∑
m

(
xm(∞)ym(t)− εC

)
.

Let t → ∞ and use on the right-hand side the superadditivity of lim inf, y ≥ 0 and the
fact that xm(∞) ∈ [0,∞) for all m, to obtain

(x · y)(∞) ≥ 1
2
∑
`

x`(∞)y`(∞) +
∑
m

xm(∞)ym(∞)−NεC.
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If there is an ` with y`(∞) > 0, the right-hand side is +∞ and (A.2) holds trivially. So
we can assume for the rest of the proof that y`(∞) = 0 for all `; then x`(∞)y`(∞) = 0
for all ` by our convention, and we end up with

(x · y)(∞) ≥
∑
m

xm(∞)ym(∞)−NεC =
N∑
i=1

xi(∞)yi(∞)−NεC.

Letting ε↘ 0 then again gives (A.2) and completes the proof.

The next auxiliary result is extracted from the proof of [18, Proposition 1].

Lemma A.2. A convex set C ⊆ L0
+ is bounded in L0 if and only if C contains no sequence

(V n)n∈N satisfying V n ≥ nξ P -a.s. for all n ∈ N and for some ξ ∈ L0
+ \ {0}.

Proof. The “only if” part is clear. For the “if” part, suppose C is not bounded in L0

and let Ωu ∈ F be as in [2, Lemma 2.3]. (In the terminology of [2], C is hereditarily
unbounded in probability on Ωu.) Note that P [Ωu] > 0 because P [Ωu] = 0 would imply
that C is bounded in L0. Then [2, Lemma 2.3, part 4)] implies with ε := 2−n that for
each n ∈ N, there is some V n ∈ C such that

P [{V n ≤ n} ∩ Ωu] ≤ P [{V n ≤ 2n} ∩ Ωu] ≤ 2−n.

Take N ∈ N with ∑∞n=N 2−n ≤ P [Ωu]/2. For n ≥ N , set An := {V n > n} ∩ Ωu ∈ F and
define A := ⋂

n≥N An ∈ F so that V n ≥ nIAn ≥ nIA due to V n ∈ C ⊆ L0
+. Then

P [A] ≥ P [Ωu]−
∞∑
n=N

P [Acn ∩ Ωu] ≥ P [Ωu]/2 > 0

shows that ξ := IA ∈ L0
+ \ {0}, and we have V n ≥ nξ P -a.s. for all n ∈ N. But this

contradicts the assumption for the “if” part, and so we are done.

Lemma A.3. Suppose S ≥ 0 and there exists a ξ ∈ Θsf
++ with V(ξ) = ξ · S ∈ Sunif

++ and
ξ ≥ 0. If S satisfies DSV for 1, it also satisfies inft≥0(1 · St) > 0 P -a.s.

Proof. Suppose to the contrary that lim inft→∞(1·St) = 0 on some A ∈ F∞ with P [A] > 0.
For each n ∈ N, τn := inf{t ≥ 0 : 1 · St ≤ 1/n} is a stopping time and τn < ∞ and
1 · Sτn ≤ 1/n on A, P -a.s. Take ξ as above and define ϑn := (ξ/n) ?1

τn 0. Then ϑn is in
Θsf

+ by Lemma 3.3, V0(ϑn, S1) = (ξ0 · S10 )/n, and we have on A that for t ≥ τn,

ϑnt · S1t = ϑnτn
· S1τn

= 1
n

ξτn · Sτn

1 · Sτn

≥ ξτn · Sτn P -a.s.

So ξ · S ∈ Sunif
++ implies lim inft→∞(ϑnt · S1t ) ≥ IA inft≥0(ξt · St) ∈ L0

+ \ {0}, and thus 0
is not svm for S1. By Theorem 3.4, 1) for S1 and because dynamic share viability is
discounting-invariant, 0 is then not ssm for 1 which contradicts DSV for 1.
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