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1 Introduction
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2 Preliminaries

In this section, we collect some basic notations and concepts.

2.1 Notations

Let (Ω,F , P ) be a probability space with a filtration F = (Ft)t≥0 satisfying the usual

conditions of right-continuity and completeness. We set F∞ :=
∨

t≥0Ft = σ(
⋃

t≥0Ft) and

denote by P the predictable σ-field on Ω̄ := Ω× (0,∞). Standard terminology and results

from stochastic calculus can be found in Dellacherie/Meyer [9, Chapters VI–VIII] and

Jacod/Shiryaev [16, Chapter I]. Identifying as usual processes that are indistinguishable, we

define R0 := {all real-valued adapted RCLL processes Z = (Zt)t≥0}. For any Z ∈ R0, we

set Z∗
t := sup0≤s≤t |Zs| and Z∗

t− := sup0≤s<t |Zs| for t ≥ 0, with Z∗
∞ = Z∗

∞− := supt≥0 |Zt|.

Note that Z∗ = (Z∗
t )t≥0 is in R0, but Z∗

∞ may take the value +∞. We equip R0 with the

topology of ucp-convergence (i.e., Zn → Z if (Zn−Z)∗t → 0 in probability for every t ≥ 0).

We also need the Banach space R2 := {Z ∈ R0 : ∥Z∥R2 := ∥Z∗
∞∥L2 <∞}.

For any nonnegative increasing process A in R0 and any (possibly multidimensional)

product-measurable H = (Ht)t>0 on Ω̄, we define the process D(H;A) by

Dt(H;A) :=

∫ t

0

|Hr|2 dAr :=

∫
(0,t]

|Hr|2 dAr ∈ [0,∞] for all t ≥ 0.

Note that D(H;A) is always increasing, null at 0 and may take the value +∞; it is in

addition adapted if H is progressively measurable (and in particular if H is predictable).

For any stopping time τ , we define the measure µτ,A on the product σ-field of Ω̄ by

µτ,A(C) := E[Aτ−Dτ−(IC ;A)] = E

[
Aτ−(ω)

∫ τ−(ω)

0

IC(ω, r) dAr(ω)

]
so that

∥H∥2L2(µτ,A) = E

[
Aτ−

∫ τ−

0

|Hr|2 dAr

]
= E[Aτ−Dτ−(H;A)].
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Note that both A and D(1;A) = A − A0 are in R0. Therefore the product AD(1;A) is

prelocally bounded, and we can find a localising sequence (τM)M∈N of stopping times such

that µτM ,A is a finite measure for each M ∈ N. Note that if H is bounded by a constant C,

say, then D(H;A) ≤ C2A so that any bounded process is in L2(µτ,A) as soon as Aτ− ∈ L2.

2.2 Semimartingales and stochastic integrals

For semimartingales and stochastic integration, we use the approach due to Métivier and

Pellaumail as presented in the textbook by Métivier [21]. First, an Rd-valued simple

predictable process is of the form

(2.1) H =
L−1∑
ℓ=0

hℓIAℓ×(tℓ,tℓ+1],

where L ∈ N, 0 ≤ t0 < t1 < · · · < tL < ∞, Aℓ ∈ Ftℓ and hℓ is Rd-valued, bounded and

Ftℓ-measurable. If the hℓ are nonrandom, we call H very simple and denote by H the

family of all very simple predictable processes. For any Rd-valued adapted RCLL process

S = (St)t≥0 and H as in (2.1), we define the stochastic integral process H .S =
∫
H dS by

H .St := (H .S)t :=
L−1∑
ℓ=0

IAℓ
h⊤ℓ (Stℓ+1∧t − Stℓ∧t) =

L−1∑
ℓ=0

IAℓ
h⊤ℓ (S

t
tℓ+1

− St
tℓ
), t ≥ 0.

It is clear that H .S is in R0 and null at 0. A control process is a nonnegative increasing

process V = (Vt)t≥0 in R0 such that for any stopping time τ ,

(2.2) E

[
sup
0≤t<τ

∣∣∣∣ ∫ t

0

Hr dSr

∣∣∣∣2] ≤ E

[
Vτ−

∫ τ−

0

|Hr|2 dVr
]

for any H ∈ H.

We denote by V(S) the family of all control processes for S. By Métivier [21, Theo-

rem 23.14], S is a semimartingale if and only if it admits a control process, i.e., V(S) ̸= ∅.

Indeed, with H = Rd, the “if” part follows from part (2◦) of that theorem, and the “only

if” part follows from part (1◦) with G = Rd, noting that one can easily extend (2.2) from

very simple to simple predictable processes.
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Now suppose S is an Rd-valued semimartingale. Using the notations from Section 2.1

and choosing V ∈ V(S) ̸= ∅, we can rewrite (2.2) compactly, for any stopping time τ , as

(2.3) ∥H .Sτ−∥R2 = ∥(H .S)τ−∥R2 ≤ ∥H∥L2(µτ,V ) for any H ∈ H.

If τ is such that Vτ− ∈ L2 (or, equivalently, µτ,V is a finite measure), then by [21, Sec-

tions 24.1 and 26.1], any Rd-valued predictable process H with ∥H∥L2(µτ,V ) < ∞ is in-

tegrable with respect to S on J0, τJ so that (H .S)τ− is well defined and a real-valued

semimartingale. As S = Sτ− on J0, τJ, we can also write (H .S)τ− = H .Sτ− and view this

equivalently either as the stochastic integral of H with respect to S on J0, τJ, or as the

stochastic integral of H with respect to Sτ− on J0,∞K = [0,∞)×Ω. From the construction

in [21], we also have, extending (2.3), that (again for Vτ− ∈ L2)

(2.4) ∥H .Sτ−∥R2 ≤ ∥H∥L2(µτ,V ) for any Rd-valued predictable H ∈ L2(µτ,V ).

To get rid of the stopping time τ , fix a control process V ∈ V(S). Take any Rd-valued

predictable process H such that D(H;V ) =
∫
|Hr|2 dVr is finite-valued (i.e., in R0) and

note that both V and D(H;V ) are inR0 and hence prelocally bounded. Choose a localising

sequence (τM)M∈N with VτM− ∈ L2 and H ∈ L2(µτM ,V ), for each M ∈ N. This allows us

to define the stochastic integral H .S =
∫
H dS on every stochastic interval J0, τMJ and

hence on J0,∞K = [0,∞) × Ω by pasting together. It is shown in [21, Section 24.1] that

this stochastic integral does not depend on the choice of localising sequence, nor on the

choice of the control process V ∈ V(S).

2.3 Measure-valued processes

Fix a compact metric space K equipped with its Borel σ-field B(K), denote by M := M(K)

the space of signed and finite measures m on B(K) and recall that each m ∈ M can be

written asm = m+−m− for two unique finite measuresm± on B(K) with disjoint supports.

The total variation measure of m is |m| = m++m−. Write C(K) := C(K;R) for the space

of continuous functions f : K → R with the sup-norm ∥f∥∞ and denote the closed unit

ball in C(K) by U1 := {f ∈ C(K) : ∥f∥∞ ≤ 1}. The integral of f with respect to m is

m(f) :=

∫
f dm :=

∫
K
f(z)m(dz) for f ∈ C(K) and m ∈ M.
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The variation norm of m ∈ M (not to be confused with |m|) is then given by

∥m∥var := sup{m(f) : f ∈ U1} = |m|(K).

We take on M the σ-field M generated by the weak∗ topology, i.e. by all the mappings

m 7→ m(f) with f ∈ C(K). For d ∈ N and m = (mi)i=1,...,d ∈ Md, we set

∥m∥var := (∥mi∥var)i=1,...,d, m(f) :=
(
mi(f)

)
i=1,...,d

.

Finally, we denote by bB1(K) the space of all bounded g : K → R of Baire class 1.

Recall that g ∈ bB1(K) if and only if g is a pointwise limit of continuous functions; see

e.g. Kuratowski [19, Theorems II.VIII.1 and II.VIII.7].

For ease of reference, we list here some properties used later and give the corresponding

references to the textbook by Aliprantis/Border [2]. Because K is compact and metric, it is

Hausdorff and Polish by [2, Theorem 3.28 and Lemma 3.26], and C(K) is separable for the

sup-norm by [2, Lemma 3.99]. In turn, separability of C(K) implies that the closed unit ball

of its dual space M(K) = M is metrisable for the weak∗ topology by [2, Theorem 6.30], and

the same also holds for Md = ((C(K))d)∗. Because K is Polish, every finite (nonnegative)

measure µ on B(K) is regular by [2, Theorem 12.7], and therefore C(K) is dense in Lp(µ)

for every p ∈ [1,∞), but not for p = ∞; see [2, Theorem 13.9].

We want to use (signed) measure-valued processes as integrands for a stochastic integral.

A process φ = (φt)t≥0 on (Ω,F , P ) with values in Md is weak∗ predictable if the Rd-valued

process φ(f) = (φt(f))t≥0 is predictable for each f ∈ C(K). In view of the definition of

the σ-field M, this is equivalent to saying that φ : Ω̄ → Md is P-Md-measurable. We

remark for later use that the Rd-valued process ∥φ∥var = (∥φt∥var)t≥0 is then predictable.

Indeed, by separability of C(K), we can take a countable dense subset u = (uk)k∈N of

U1 and obtain supf∈U1
G(f) = supk∈NG(uk) for any continuous function G : C(K) → R.

Taking G(f) = φi
t(f)(ω) for i = 1, . . . , d thus yields for each (ω, t) ∈ Ω̄ that

∥φi∥var(ω, t) = ∥φi
t∥var(ω) = sup

f∈U1

(
φi
t(f)

)
(ω) = sup

k∈N

(
φi(uk)

)
(ω, t).

As each φ(uk) is predictable, so is then ∥φ∥var as a countable supremum.
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3 Stochastic integrals

In this section, ***overview to be added

3.1 Simple integrands and integrals

To start our integration theory, let E be the family of Md-valued processes φ of the form

(3.1) φ =
L−1∑
ℓ=0

mℓIAℓ×(tℓ,tℓ+1] =:
L−1∑
ℓ=0

mℓIDℓ

with L ∈ N, 0 ≤ t0 < t1 < · · · < tL <∞, each mℓ ∈ Md and each Aℓ ∈ Ftℓ so that Dℓ ∈ P .

Note that the coefficients mℓ do not depend on ω. For every f ∈ C(K), the process

φ(f) =
L−1∑
ℓ=0

mℓ(f)IDℓ
=

L−1∑
ℓ=0

mℓ(f)IAℓ×(tℓ,tℓ+1]

is then an Rd-valued very simple predictable process (i.e., in H), which justifies calling

φ ∈ E a very simple Md-valued weak∗ predictable process. Similarly, we call a process

N = (Nt)t≥0 a weak∗ semimartingale, or a weak∗ process in R2, if the real-valued process

N(f) = (Nt(f))t≥0 is a semimartingale, respectively in R2, for each f ∈ C(K). Here,

each Nt(ω) is assumed to be a linear (but not necessarily continuous) functional on C(K),

hence can be viewed as a (signed and finite) finitely additive measure on B(K), and then

Nt(f) :=
∫
K f(z)Nt(dz). Such functionals are sometimes also called finite charges, and we

sometimes call such a process N a charge-valued process.

In order to define a stochastic integral φ • S for a fixed Rd-valued semimartingale and

suitably general Md-valued φ, we start with φ ∈ E and then extend to a larger class of

integrands. Note that while both φ and S are d-dimensional, the resulting integral φ • S

is one-dimensional, in analogy to the classic vector stochastic integral.

Because the description (2.2) of the semimartingale property is in prelocal form (i.e.,

on a right-open stochastic interval J0, τJ), we also construct the stochastic integral φ • S

on J0, τJ and only piece things together globally at the end.
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Lemma 3.1. Fix an Rd-valued semimartingale S, a control process V for S and a stopping

time τ with Vτ− ∈ L2. For each φ ∈ E, there exists a process φ • Sτ− = (φ • Sτ−
t )t≥0 with

values in M which is a weak∗ semimartingale in R2. This process has the regular weak∗

Fubini property

(3.2) (φ • Sτ−
t )(f) = φ(f).Sτ−

t for t ≥ 0 and f ∈ C(K).

More precisely, (3.2) states that for each f ∈ C(K), the two processes (φ • Sτ−)(f) and

φ(f).Sτ− are indistinguishable. Written out in terms of integrals, (3.2) takes the form∫
K
f(z)

(∫ t

0

φr dS
τ−
r

)
(dz) =

∫ t

0

(∫
K
f(z)φr(dz)

)
dSτ−

r for t ≥ 0 and f ∈ C(K),

which explains the terminology. In particular, we have for φ ∈ E the inequality

(3.3) ∥(φ • Sτ−)(f)∥R2 ≤ ∥φ(f)∥L2(µτ,V ) for f ∈ C(K).

Moreover, φ • Sτ− also has the general weak∗ Fubini property

(3.4) (φ • Sτ−
t )(g) = φ(g).Sτ−

t for t ≥ 0 and g bounded and B(K)-measurable.

Finally, (3.3) also holds with f ∈ C(K) replaced by g bounded and B(K)-measurable.

Proof. For φ =
∑L−1

ℓ=0 mℓIDℓ
=

∑L−1
ℓ=0 mℓIAℓ×(tℓ,tℓ+1], it is clear that we set

φ • Sτ−
t :=

L−1∑
ℓ=0

IAℓ
(Sτ−

tℓ+1∧t − Sτ−
tℓ∧t)

⊤mℓ for t ≥ 0,

which clearly takes values in M. Then we get for each f ∈ C(K) that

(3.5) (φ • Sτ−
t )(f) =

L−1∑
ℓ=0

IAℓ
mℓ(f)

⊤(Sτ−
tℓ+1∧t − Sτ−

tℓ∧t) =

∫ t

0

Hr dS
τ−
r

with the process

Hr(ω) :=
L−1∑
ℓ=0

mℓ(f)IDℓ
(ω, r) =

L−1∑
ℓ=0

∫
K
IAℓ×(tℓ,tℓ+1](ω, r)f(z)mℓ(dz)(3.6)

=

(∫
K
f(z)φr(dz)

)
(ω) = φr(f)(ω).
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Combining (3.5) with (3.6) gives (3.2). Moreover, the predictable process H = φ(f) is

bounded uniformly in (ω, r) by C := max{∥mi
ℓ∥var ∥f∥∞ : i = 1, . . . , d, ℓ = 0, . . . , L−1} and

hence in L2(µτ,V ) as Vτ− ∈ L2. Therefore (φ • Sτ−)(f) is well defined as a semimartingale

and in R2 by (2.4), which also directly gives (3.3). Finally, all operations in the above

argument only involve finite sums, and so we can replace f ∈ C(K) by any bounded

B(K)-measurable g and obtain the same results. This completes the proof.

Remark 3.2. 1) For elementary integrands φ ∈ E , the regular weak∗ Fubini property

(3.2) and the general one in (3.4) are equally easy to obtain. But for an extension to a

larger class of integrands, it is simpler to start with (3.2) because the class C(K) of test

functions is separable, whereas the class of bounded B(K)-measurable functions is not.

2) As mentioned in the introduction (***), the above construction and setup as well as

the subsequent extension to more general φ are strongly inspired by the work of Björk et

al. [8]. However, there is an important difference. In [8], the goal is to develop stochastic

integration with respect to an integrator (S̄, say) taking values in C([0, T ]); the natural

integrands (φ̄, say) then take values in the dual space C([0, T ])∗ = M([0, T ]), and the

resulting integral
∫
φ̄ dS̄ has values in R. (In the application in [8], S̄t is the bond price

curve at time t of a term structure model, φ̄t is a portfolio of bonds held at time t,

and
∫
φ̄ dS̄ describes the cumulative gains/losses from trading over time via the dynamic

strategy φ̄ = (φ̄t).) In contrast, our integrator S is Rd-valued, and so using the analogous

elementary Md-valued integrands φ leads to an integral process φ • S which (at least for

elementary φ) is again measure-valued (and charge-valued in general). As a consequence,

the resulting space of integral processes has a more complicated structure, and in particular

completeness, for a natural seminorm, is no longer clear.

3.2 Approximation of general integrands

To extend both φ 7→ φ • S and the regular weak∗ Fubini property (3.2) from φ ∈ E to

more general integrands, we use approximations and hence need appropriate seminorms

on φ and on real-valued weak∗ semimartingales N in R2 like φ •Sτ−. We start on the side

of the integrands. Throughout this section, we fix an Rd-valued semimartingale S, a

control process V for S and a stopping time τ with Vτ− ∈ L2, and denote by u = (uk)k∈N
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a countable dense subset of the unit ball U1 of C(K) and by γ = (γk)k∈N a sequence in

(0,∞) with
∑∞

k=1 γk = 1.

Definition 3.3. For any Md-valued weak∗ predictable process φ = (φt)t≥0, we define

qγ,u ;τ,V (φ) :=

( ∞∑
k=1

γk∥φ(uk)∥2L2(µτ,V )

)1/2

and call L2(γ, u ; τ, V ) the space of all Md-valued weak∗ predictable φ with qγ,u ;τ,V (φ) <∞.

We denote by Φ(τ, V ) the class of all Md-valued weak∗ predictable φ satisfying

(3.7) Cφ := sup
f∈U1\{0}

∥φ(f)∥L2(µτ,V )

∥f∥∞
<∞.

For any c > 0 and with 1 = (1, . . . , 1) ∈ Rd, we also define the set Ud
c ⊆ Md by

Ud
c := {m ∈ Md : ∥m∥var ≤ c1}.

Remark 3.4. 1) Any φ ∈ E has values in Ud
c with c ≤ maxi=1,...,d,ℓ=0,1,...,L−1 ∥mi

ℓ∥var.

Next, if a weak∗ predictable φ has values in
⋃

c>0 Ud
c , the process H := φ(f) is predictable

and Rd-valued for any f ∈ C(K) and satisfies |H i
t | = |φi

t(f)| ≤ ∥φi
t∥var∥f∥∞ ≤ c∥f∥∞,

i = 1, . . . , d, for some c > 0. This yields

(3.8) ∥φ(f)∥L2(µτ,V ) = ∥H∥L2(µτ,V ) ≤ c∥f∥∞ µτ,V (Ω̄) = c∥Vτ−∥L2∥f∥∞

so that φ ∈ Φ(τ, V ), with Cφ ≤ c∥Vτ−∥L2 . Finally, any φ ∈ Φ(τ, V ) is clearly in

L2(γ, u ; τ, V ) with qγ,u ;τ,V (φ) ≤ Cφ. So we have

(3.9) E ⊆ {(
⋃

c>0 Ud
c )-valued weak∗ predictable φ} ⊆ Φ(τ, V ) ⊆ L2(γ, u ; τ, V ).

2) From (3.7), we see that an Md-valued weak∗ predictable process φ is in Φ(τ, V ) if

and only if φ as a (clearly linear) mapping from C(K) to the space of Rd-valued predictable

processes is continuous for ∥ · ∥L2(µτ,V ), meaning that we have ∥φ(f)∥L2(µτ,V ) ≤ c∥f∥∞ for

all f ∈ C(K), for some c > 0 which can depend on φ. Clearly, we can take c = Cφ.

3) The space L2(γ, u ; τ, V ) as well as qγ,u ;τ,V obviously depend on γ and u as well as

on V and τ . But the above relations in 1) and 2) hold for any fixed choice of γ, u and V, τ .
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Lemma 3.5. Under our standing assumptions in this subsection, we have:

1) qγ,u ;τ,V is a seminorm on L2(γ, u ; τ, V ).

2) For each c > 0, the functional qγ,u ;τ,V is sequentially continuous with respect to the

weak∗ topology on the space of all weak∗ predictable φ with values in Ud
c : If a sequence

(φn)n∈N of such processes converges µτ,V -a.e. for the weak∗ topology to some Md-valued

weak∗ predictable φ, then also φ takes values in Ud
c and limn→∞ qγ,u ;τ,V (φ

n − φ) = 0.

Proof. 1) Clearly qγ,u ;τ,V is positively homogeneous. For the triangle inequality, we write

qγ,u ;τ,V (φ) =

( ∞∑
k=1

γk∥φ(uk)∥2L2(µτ,V )

)1/2

=

( ∞∑
k=1

γkx
2
k

)1/2

= ∥x∥ℓ2(γ)

with xk := ∥φ(uk)∥L2(µτ,V ), and analogously for φ′ with x′. So qγ,u ;τ,V (φ) is just the ℓ
2-norm

of the sequence x = (xk)k∈N for the probability measure on N having weights γk for k ∈ N.

But yk := ∥φ(uk) +φ′(uk)∥L2(µτ,V ) ≤ xk + x′k by the triangle inequality in L2(µτ,V ), and so

qγ,u ;τ,V (φ+ φ′) = ∥y∥ℓ2(γ) ≤
( ∞∑

k=1

γk(xk + x′k)
2

)1/2

= ∥x+ x′∥ℓ2(γ)

≤ ∥x∥ℓ2(γ) + ∥x′∥ℓ2(γ) = qγ,u ;τ,V (φ) + qγ,u ;τ,V (φ
′).

This proves the triangle inequality for qγ,u ;τ,V on L2(γ, u ; τ, V ).

2) Take a sequence (φn)n∈N of Md-valued weak∗ predictable processes with ∥φn∥var ≤ c1

for all n and suppose that (φn)n∈N converges µτ,V -a.e. to some φ for the weak∗ topology.

Then φn(f) → φ(f) µτ,V -a.e. for every f ∈ C(K), and thus for i = 1, . . . , d,

(3.10) |φi
t(f)| = lim

n→∞
|φn;i

t (f)| ≤ lim sup
n→∞

∥φn;i
t ∥var ∥f∥∞ ≤ c∥f∥∞ µτ,V -a.e.

Hence φ also has values in Ud
c and is thus in L2(γ, u ; τ, V ) by (3.9). Replacing φn by

φn − φ and c by 2c, we can and do assume without loss of generality that φ ≡ 0. Then

limn→∞ φn(uk) = 0 µτ,V -a.e. for all k ∈ N, and using ∥φn∥var ≤ 2c1 for all n ∈ N yields as in

(3.10) that supn∈N |φn(uk)| ≤ supn∈N |∥φn∥var|∥uk∥∞ ≤ 2c|1| ∈ L2(µτ,V ) due to Vτ− ∈ L2.

So dominated convergence gives limn→∞ φn(uk) = 0 in L2(µτ,V ), for each k ∈ N. Finally,

(3.8) for φn and uk ∈ U1 with c replaced by 2c yields ∥φn(uk)∥2L2(µτ,V ) ≤ 4c2E[V 2
τ−]. Now
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first take K0 large enough to obtain 4c2E[V 2
τ−]

∑∞
k=K0+1 γk ≤ ε2 and then use φn(uk) → 0

in L2(µτ,V ) as n→ ∞, for each k, to take n large enough to get γk∥φn(uk)∥2L2(µτ,V ) ≤ ε2/K0

for k = 1, . . . , K0. Then the definition of qγ,u ;τ,V and the above estimates imply that

(
qγ,u ;τ,V (φ

n)
)2

=
∞∑
k=1

γk∥φn(uk)∥2L2(µτ,V ) ≤ 2ε2.

This proves the assertion.

The next approximation result is crucial for our construction of stochastic integrals of

measure-valued processes.

Lemma 3.6. Under our standing assumptions in this subsection, the set E is dense in

L2(γ, u ; τ, V ) with respect to the seminorm qγ,u ;τ,V .

Proof. This is similar to the very concisely written result in Björk et al. [8, Lemma 2.3], but

for completeness and readability, we give the proof in detail. First of all, E ⊆ L2(γ, u ; τ, V )

as seen in (3.9). If we consider very simple P-measurable φ as in (3.1) where we only have

sets Dℓ ∈ P instead of predictable rectangles Dℓ = Aℓ × (tℓ, tℓ+1], these φ are still in

L2(γ, u ; τ, V ) if they are valued in Ud
c for some c > 0, again by (3.9).

To prove denseness, we start with φ ∈ L2(γ, u ; τ, V ). Then γ ⊆ (0,∞) and

qγ,u ;τ,V (φ) =

( ∞∑
k=1

γk∥φ(uk)∥2L2(µτ,V )

)1/2

<∞

implies that φ(uk) ∈ L2(µτ,V ) for all k ∈ N. For an arbitrary c > 0, the process

φ(c) := φI{∥φ∥var≤c1} (defined coordinatewise)

is weak∗ predictable like φ because ∥φ∥var is predictable, and φ − φ(c) = φI{∥φ∥var>c1}

(again coordinatewise). This implies that limc→∞(φ − φ(c))(f) = 0 µτ,V -a.e. for every

f ∈ C(K) because φ takes values in Md, and |(φ − φ(c))(uk)| ≤ |φ(uk)| ∈ L2(µτ,V ) for

each k. Dominated convergence hence gives (φ − φ(c))(uk) → 0 in L2(µτ,V ) as c → ∞,

for each k. Next, qγ,u ;τ,V (φ) < ∞ allows us to again use dominated convergence, for the

measure on N with weights (γk)k∈N, and obtain qγ,u ;τ,V (φ−φ(c)) → 0 as c→ ∞. Each φ(c)
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takes values in Ud
c = {m ∈ Md : ∥m∥var ≤ c1}, and so it is enough to show that E is dense

with respect to qγ,u ;τ,V in the set of all weak∗ predictable processes φ valued in Ud
c .

Now by the Banach–Alaoglu theorem, each ball Ud
c is compact in the weak∗ topology on

Md = ((C(K))d)∗, and metrisable because C(K) is separable; see Section 2.3. Hence Ud
c is

separable for the weak∗ topology and we can choose a countable weak∗ dense subset (mj)j∈N

in Ud
c . Define Mn := {m1,m2, . . . ,mn} for all n ∈ N and note that because u = (uk)k∈N

is dense in U1, the metric δ(m,m′) :=
∑∞

k=1 2
−k|m(uk)−m′(uk)| on Ud

c induces the weak∗

topology on any Ud
c . If φ is a weak∗ predictable process valued in Ud

c , δ(φ,m) is predictable

for every fixed m ∈ Ud
c , and so is then the process δ(φ,Mn) = mini=1,...,n δ(φ,mi). As

(mj)j∈N is weak∗ dense in Ud
c , we know that δ(φ,Mn) ↘ 0 µτ,V -a.e. as n → ∞, and the

pairwise disjoint sets

Cn
j := {δ(φ,Mn) = δ(φ,mj) and δ(φ,mi) > δ(φ,mj) for i < j} ⊆ Ω̄

where the distance of φ to Mn is realised for the first time in mj ∈ Mn are in P . The

process Ψn :=
∑n

j=1mjICn
j
is thus a very simple P-measurable Ud

c -valued process, and

δ(φ,Ψn) =
n∑

j=1

ICn
j
δ(φ,mj) = δ(φ,Mn) −→ 0 µτ,V -a.e.

shows that Ψn → φ in the weak∗ topology which is metrised by δ. This proves that because

the weak∗ predictable process φ takes values in Ud
c , it is actually strongly P-measurable

in the sense (usual for Banach-valued random processes) that it is an a.e. pointwise limit

of elementary P-measurable processes. As a consequence, Lemma 3.5, 2) implies that

(Ψn)n∈N converges to φ with respect to qγ,u ;τ,V .

The above sequence (Ψn) is not yet in E because the sets Cn
j are in P , but not necessarily

predictable rectangles of the form As × (s, t] with s ≤ t and As ∈ Fs. But each Ψn has the

form Ψn =
∑J(n)

j=1 mjICn
j
with mj ∈ Ud

c and Cn
j ∈ P pairwise disjoint. This is a finite linear

combination, and so it is enough to consider Ψ = mIC with m ∈ Ud
c , C ∈ P and show that

this can be approximated with respect to qγ,u ;τ,V by a sequence (φi)i∈N in E . For this, note

that the predictable σ-field P is generated by the sets of the form Dℓ = Aℓ × (tℓ, tℓ+1] with

Aℓ ∈ Ftℓ , so that the real-valued predictable processes of the form H =
∑L−1

ℓ=0 cℓIAℓ×(tℓ,tℓ+1]
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with L ∈ N and cℓ ∈ R are dense in L2(µτ,V ). (This uses that the measure µτ,V is finite

as Vτ− ∈ L2.) So we can choose a sequence (H i)i∈N of such processes with H i → IC in

L2(µτ,V ), and by passing to a subsequence, still called (H i), we can achieve that H i → IC

µτ,V -a.e. Moreover, as the limit IC is bounded by 1, we can even modify the H i so that

they are bounded by 1 + ε, uniformly in ω, t, i. If we now set φi := mH i, each φi takes

values in Ud
c(1+ε) because m ∈ Ud

c , and recalling that Ψ = mIC , we get µτ,V -a.e. that

|φi(uk)−Ψ(uk)| = |m(uk)| |H i − IC | ≤
∣∣∥m∥var

∣∣∥uk∥∞|H i − IC | −→ 0

simultaneously for all and uniformly in k ∈ N; note that ∥uk∥∞ ≤ 1. Therefore

δ(φi,mIC) =
∞∑
k=1

2−k|φi(uk)−Ψ(uk)| ≤
∣∣∥m∥var

∣∣|H i − IC | −→ 0 µτ,V -a.e.,

and we have already seen above that δ metrises the weak∗ topology on Ud
c(1+ε). So we get

φi → mIC µτ,V -a.e. for the weak∗ topology as i→ ∞, and Lemma 3.5, 2) then yields that

qγ,u ;τ,V (φ
i −mIC) → 0 as i→ ∞.

Combining all the above results implies the assertion and completes the proof.

By Remark 3.4, 2), a weak∗ predictable process φ is in Φ(τ, V ) ⊆ L2(γ, u ; τ, V ) if and

only if it is continuous as a mapping from C(K) to L2(µτ,V ). The next result sharpens the

approximation obtained in Lemma 3.6 — it shows that for φ ∈ Φ(τ, V ), one can find an

approximating sequence (φn)n∈N with the same type of continuity as φ, uniformly in n.

Corollary 3.7. Under our standing assumptions in this subsection, for every φ ∈ Φ(τ, V ),

there exists a sequence (φn)n∈N ⊆ E with limn→∞ qγ,u ;τ,V (φ
n − φ) = 0 and

(3.11) sup
n∈N

∥φn(f)∥L2(µτ,V ) ≤ c∥f∥∞ for all f ∈ C(K),

with some constant c ∈ (0,∞).

Proof. We go back to the proof of Lemma 3.6 and examine in more detail how the approx-

imating sequence is constructed there. Start with φ ∈ Φ(τ, V ), fix b > 1, take c := b − 1

and set φ(c) := φI{∥φ∥var≤c1}. Approximate, with respect to qγ,u ;τ,V , first φ
(c) by a sequence
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(Ψn)n∈N of the form Ψn =
∑J(n)

j=1 mjICn
j
, and then each Ψn by some φn ∈ E . Note (from the

proof of Lemma 3.6) that Ψn takes values in Ud
c and φn hence in Ud

c(1+ε) ⊆ Ud
b for ε ≤ 1

b−1

because then c(1 + ε) ≤ b. This gives limn→∞ qγ,u ;τ,V (φ
n − φ) = 0, and for any f ∈ C(K),

|φn(f)| ≤ |φn(f)−Ψn(f)|+ |Ψn(f)− φ(c)(f)|+ |φ(c)(f)− φ(f)|+ |φ(f)|.

Because φn has values in Ud
b and Ψn in Ud

c ⊆ Ud
b , we get |φn(f)−Ψn(f)| ≤ |b1|∥f∥∞, and

in the same way, |Ψn(f)−φ(c)(f)| ≤ |c1|∥f∥∞ ≤ |b1|∥f∥∞. Moreover, by the definition of

φ(c), we have |φ(c)(f)− φ(f)| ≤ |φ(f)|, and so we obtain from (3.8) and φ ∈ Φ(τ, V ) that

∥φn(f)∥L2(µτ,V ) ≤ 2b∥Vτ−∥L2∥f∥∞ + 2∥φ(f)∥L2(µτ,V ) ≤ (2b∥Vτ−∥L2 + 2Cφ)∥f∥∞.

As the constant on the right-hand side does not depend on n, this completes the proof.

3.3 Limits of measure-valued semimartingales

In the last section, we have constructed a stochastic integral process φ • Sτ− for measure-

valued integrands φ ∈ E . This yields a measure-valued weak∗ semimartingale inR2, and we

have also seen that any φ ∈ L2(γ, u ; τ, V ) can be approximated by a sequence (φn)n∈N ⊆ E .

It seems natural to try and define φ • Sτ− for more general φ than in E as a limit, in a

suitable sense, of (φn • Sτ−)n∈N, and so we first need a concept of convergence.

As in Section 3.2, throughout this subsection, we fix an Rd-valued semimartingale

S, a control process V for S and a stopping time τ with Vτ− ∈ L2, and we denote by

u = (uk)k∈N a countable dense subset of the unit ball U1 of C(K) and by γ = (γk)k∈N a

sequence in (0,∞) with
∑∞

k=1 γk = 1.

Definition 3.8. For a weak∗ process N = (Nt)t≥0 in R2, we define

rγ,u(N) :=

( ∞∑
k=1

γk∥N(uk)∥2R2

)1/2

and call N 2(γ, u) the space of all weak∗ processes N in R2 with rγ,u(N) <∞.

Lemma 3.9. Under our standing assumptions in this subsection, we have:

1) rγ,u is a seminorm on N 2(γ, u).
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2) For any φ ∈ E, we have the inequality

(3.12) rγ,u(φ • Sτ−) ≤ qγ,u ;τ,V (φ).

Proof. 1) This is completely analogous to the proof of 1) in Lemma 3.5, just replacing

xk = ∥φ(uk)∥L2(µτ,V ) by xk := ∥N(uk)∥R2 .

2) The inequality (3.3) in Lemma 3.1 gives ∥(φ•Sτ−)(uk)∥R2 ≤ ∥φ(uk)∥L2(µτ,V ) for each

φ ∈ E and all k ∈ N. So (3.12) follows from the definitions of rγ,u and qγ,u ;τ,V .

The next result is crucial for taking limits in N 2(γ, u).

Lemma 3.10. Under our standing assumptions in this subsection, suppose that the se-

quence (Nn)n∈N ⊆ N 2(γ, u) is a Cauchy sequence for rγ,u. If it also satisfies

(3.13) sup
n∈N

∥Nn(f)∥R2 ≤ c∥f∥∞ for all f ∈ C(K)

with a constant c ∈ (0,∞) (that can depend on the sequence), then (Nn)n∈N converges with

respect to rγ,u to some N∞ ∈ N 2(γ, u) which also satisfies

(3.14) ∥N∞(f)∥R2 ≤ c∥f∥∞ for all f ∈ C(K).

Proof. From γ ⊆ (0,∞) and the definition of rγ,u, we see that the Cauchy property of

(Nn)n∈N for rγ,u implies for each k ∈ N that (Nn(uk))n∈N is a Cauchy sequence in R2 and

therefore has a limit N∞,k in R2. We define N∞ on u ⊆ C(K) by

N∞
t (uk) := N∞,k

t for all t ≥ 0 and k ∈ N

and get that N∞(uk) = N∞,k is in R2 for each k ∈ N. We now claim that the definition of

N∞ can be extended from u to all of C(K) in a linear way. To see this, take any f ∈ U1

(which is enough by using linearity) and set

(3.15) N∞(f) := lim
ℓ→∞

N∞(u′ℓ) in R2

for any sequence (u′ℓ)ℓ∈N ⊆ u which converges to f in C(K). Such a sequence exists because

u is dense in U1, and so it remains to show that the limit in (3.15) exists and does not

depend on the approximating sequence (u′ℓ)ℓ∈N.
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Because u′ℓ → f in C(K), (u′ℓ)ℓ∈N is Cauchy in C(K). Now write

(3.16) N∞(u′ℓ)−N∞(u′j) =
(
N∞(u′ℓ)−Nn(u′ℓ)

)
+
(
Nn(u′ℓ)−Nn(u′j)

)
+
(
Nn(u′j)−N∞(u′j)

)
and note that the first and third differences converge to 0 in R2 as n → ∞ by the con-

struction of N∞. The second difference can be estimated in R2 by

sup
n∈N

∥Nn(u′ℓ)−Nn(u′j)∥R2 = sup
n∈N

∥Nn(u′ℓ − u′j)∥R2 ≤ c∥u′ℓ − u′j∥∞

thanks to the linearity of each Nn and (3.13), and so (N∞(u′ℓ))ℓ∈N is a Cauchy sequence

in R2 and hence convergent in R2. Thus the limit in (3.15) exists, and we claim that it

does not depend on the chosen approximating sequence (u′ℓ)ℓ∈N for f . Indeed, if (ũℓ)ℓ∈N is

another approximating sequence for f with limit Ñ∞(f) := limℓ→∞N∞(ũℓ), we can write

Ñ∞(f)−N∞(f) =
(
Ñ∞(f)−N∞(ũℓ)

)
+
(
N∞(ũℓ)−N∞(u′ℓ)

)
+
(
N∞(u′ℓ)−N∞(f)

)
.

Then the first and third differences converge to 0 in R2 as ℓ→ ∞ by the definitions of Ñ∞

and N∞, respectively, and the second difference converges to 0 in R2 as ℓ → ∞ by the

same argument as for the Cauchy property in (3.16); note that ∥ũℓ − u′ℓ∥∞ → 0 as ℓ→ ∞

because both (ũℓ)ℓ∈N and (u′ℓ)ℓ∈N converge to f in C(K). So we obtain Ñ∞(f) = N∞(f).

By the preceding arguments, N∞ is well defined on all of C(K), and linear and a weak∗

process in R2, both by construction. To show that the sequence (Nn)n∈N converges to N∞

for rγ,u, we first note that Nn(uk) → N∞(uk) in R2 as n → ∞, for each k ∈ N. For fixed

ε > 0 and each finite K, we thus obtain for large n that

K∑
k=1

γk∥Nn(uk)−N∞(uk)∥2R2 = lim
m→∞

K∑
k=1

γk∥Nn(uk)−Nm(uk)∥2R2

≤ lim sup
m→∞

∞∑
k=1

γk∥Nn(uk)−Nm(uk)∥2R2

= lim sup
m→∞

(
rγ,u(N

n −Nm)
)2 ≤ ε2,

independently of K, by the Cauchy property of (Nn)n∈N for rγ,u. This shows by letting

K → ∞ that rγ,u(N
n − N∞) ≤ ε for n large enough. So (Nn)n∈N converges to N∞ with

respect to rγ,u and N∞ lies in N 2(γ, u).
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Finally, to prove (3.14), we fix f ∈ C(K) and take a sequence (u′ℓ)ℓ∈N ⊆ u converging

to f in C(K). Then

∥N∞(f)∥R2 ≤ ∥N∞(f)−N∞(u′ℓ)∥R2 + ∥N∞(u′ℓ)−Nn(u′ℓ)∥R2

+ sup
n∈N

∥Nn(u′ℓ)−Nn(f)∥R2 + sup
n∈N

∥Nn(f)∥R2 ,

and the fourth summand is at most c∥f∥∞ by (3.13). The other summands all converge

to 0 as ℓ→ ∞ and n→ ∞ — the first by the definition (3.15) of N∞(f), the second as in

(3.16) by the construction of N∞, and the third by (3.13) because u′ℓ → f in C(K). This

shows (3.14) and completes the proof.

Remark 3.11. 1) By the construction in the proof of Lemma 3.10, N∞ : C(K) → R2

is continuous, meaning that fn → f in C(K) implies that N∞(fn) → N∞(f) in R2.

However, this is different from continuity of N∞
t (ω) : C(K) → R. In other words, the

proof of Lemma 3.10 does not show (and it is not true in general) that the limit process

N∞ takes values in M. This is the reason why the stochastic integral φ • S we construct

below is not always a measure-valued process, but only charge-valued in general. We give

a counterexample later in Section 7.

2) Because we construct it pointwise on C(K) as a limit in R2, the process N∞ need

not be a weak∗ semimartingale in general even if the sequence (Nn)n∈N consists of weak∗

semimartingales. This is because the subspace of semimartingales is not closed in R2. But

see ***[check what can be said here] below for some positive results.

3) As in Remark 3.4, 3), the space N 2(γ, u) as well as rγ,u depend on γ and u. But

the above results again hold for any fixed choice of γ and u.

4 Two new stochastic Fubini theorems

In this section, we combine the preceding results to construct a stochastic integral process

φ•S for fairly general measure-valued integrands φ, and we use this to prove new stochastic

Fubini theorems. The idea to get φ • S is simple. We first prelocalise, approximate φ on

a stochastic interval J0, τJ by a sequence (φn)n∈N of elementary integrands in E and define

φ • Sτ− to be the limit of the sequence (φn • Sτ−)n∈N. While the approximation in E can

16



be done for any φ ∈ L2(γ, u ; τ, V ), the existence of the limit of (φn • Sτ−)n∈N needs the

stronger assumption that φ ∈ Φ(τ, V ). In the end, we paste things together.

Let S = (St)t≥0 be a fixed Rd-valued semimartingale and recall from Section 2.2 the

family V(S) of control processes V for S.

Definition 4.1. We denote by Φ the family of all Md-valued weak∗ predictable processes

φ such that for some control process V ∈ V(S),

(4.1) D(∥φ∥var;V ) =

∫ ∣∣∥φr∥var
∣∣2 dVr is a finite-valued process (i.e., in R0).

Remark 4.2. As seen at the end of Section 2.2, (4.1) is equivalent to saying that the

predictable Rd-valued process ∥φ∥var = (∥φt∥var)t≥0 is integrable with respect to S.

For any φ ∈ Φ, the processes V and D(∥φ∥var;V ) are both in R0. So they are prelocally

bounded and we can find a localising sequence (τM)M∈N of stopping times with VτM− ∈ L2

and DτM−(∥φ∥var;V ) ∈ L2 for each M ∈ N. Thus µτM ,V is a finite measure and we have

E

[
VτM−

∫ τM−

0

∣∣∥φr∥var
∣∣2 dVr] <∞,

which means that ∥φ∥var ∈ L2(µτM ,V ). The estimate |φr(f)| ≤ ∥f∥∞|∥φr∥var| for any

f ∈ C(K) then implies that

sup
f∈U1\{0}

∥φ(f)∥L2(µτM ,V )

∥f∥∞
≤

∥∥∥φ∥var∥∥L2(µτM ,V )
<∞

so that φ ∈ Φ(τM , V ) for everyM ∈ N; see Definition 3.3. In summary, any µτM ,V is a finite

measure and any φ ∈ Φ is in each Φ(τM , V ), for a suitable localising sequence (τM)M∈N.

With these preparations, we are now ready for our first main result. Our first new

stochastic Fubini theorem is called regular because its test functions f are continuous.

Theorem 4.3. Let S = (St)t≥0 be an Rd-valued semimartingale. For every measure-valued

integrand φ ∈ Φ, there exists a stochastic integral process φ • S = (φ • St)t≥0 which is a

weak∗ process in R0 (and hence prelocally in R2). It is a linear and continuous mapping

from C(K) to R0 and satisfies the regular weak∗ Fubini property that for all f ∈ C(K),

(4.2) (φ • S)(f) = φ(f).S up to indistinguishability on Ω̄ = Ω× (0,∞).
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Written in integral form, this means that

(4.3)

∫
K
f(z)

(∫ t

0

φr dSr

)
(dz) =

∫ t

0

(∫
K
f(z)φr(dz)

)
dSr for all t ≥ 0, P -a.s.

The process φ • S is uniquely determined on C(K) by (4.2).

Proof. Fix a countable dense subset u = (uk)k∈N of the unit ball U1 in C(K) and a sequence

γ = (γk)k∈N in (0,∞) with
∑∞

k=1 γk = 1. Take a control process V ∈ V(S) for S and a

localising sequence (τM)M∈N of stopping times with VτM− ∈ L2 and DτM−(∥φ∥var;V ) ∈ L2

for each M ∈ N. Fix M ∈ N and write τ := τM for brevity. Then φ ∈ Φ is in Φ(τ, V )

and there exists by Lemma 3.6 a sequence (φn)n∈N ⊆ E converging to φ for qγ,u ;τ,V . For

any n ∈ N, the measure-valued stochastic integral φn • Sτ− is therefore by Lemma 3.1

well defined, a (measure-valued) weak∗ semimartingale in R2, and in N 2(γ, u) because

rγ,u(φ
n • Sτ−) ≤ qγ,u ;τ,V (φ

n) by (3.12) in Lemma 3.9. The same inequality shows that

the sequence (Nn)n∈N := (φn • Sτ−)n∈N is Cauchy for rγ,u because (φn)n∈N is Cauchy for

qγ,u ;τ,V as it converges (to φ). Moreover, (3.3) in Lemma 3.1 gives the inequality

(4.4) ∥(φn • Sτ−)(f)∥R2 ≤ ∥φn(f)∥L2(µτ,V ) for all f ∈ C(K).

Because φ ∈ Φ(τ, V ), Corollary 3.7 allows us to choose the sequence (φn)n∈N in such a way

that it satisfies (3.11), i.e., supn∈N ∥φn(f)∥L2(µτ,V ) ≤ c∥f∥∞ for all f ∈ C(K) with some

constant c ∈ (0,∞). Combining this with (4.4) gives

sup
n∈N

∥Nn(f)∥R2 ≤ sup
n∈N

∥φn(f)∥L2(µτ,V ) ≤ c∥f∥∞ for all f ∈ C(K),

which allows us to apply Lemma 3.10 and conclude that (Nn)n∈N converges with respect

to rγ,u to some N∞ ∈ N 2(γ, u). We set φ • Sτ− := N∞ and note that this is linear and

continuous as a map from C(K) to R2 by construction; see Remark 3.11, 1). Moreover,

due to (3.14) in Lemma 3.10, we also have

(4.5) ∥(φ • Sτ−)(f)∥R2 ≤ c∥f∥∞ for all f ∈ C(K).

To prove the regular weak∗ Fubini property (4.2), we first note that this holds for each

φn ∈ E due to (3.2) in Lemma 3.1. By linearity, it is enough to consider f ∈ U1, and then
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we can take a sequence (u′ℓ)ℓ∈N ⊆ u with limℓ→∞ u′ℓ = f in C(K). Now we write

(φ • Sτ−)(f)− φ(f).Sτ−

=
(
(φ • Sτ−)(f)− (φ • Sτ−)(u′ℓ)

)
+
(
(φ • Sτ−)(u′ℓ)− (φn • Sτ−)(u′ℓ)

)
+
(
(φn • Sτ−)(u′ℓ)− φn(u′ℓ).S

τ−)
+
(
φn(u′ℓ).S

τ− − φ(u′ℓ).S
τ−)+ (

φ(u′ℓ).S
τ− − φ(f).Sτ−)

and consider the five differences on the right-hand side one by one. The third vanishes by

the regular weak∗ Fubini property (3.2) for φn ∈ E . Next, φn → φ for qγ,u ;τ,V implies by the

definition of qγ,u ;τ,V that φn(uk) → φ(uk) in L
2(µτ,V ) for each uk ∈ u. So φn(u′ℓ) → φ(u′ℓ)

in L2(µτ,V ) as n→ ∞ and thus the fourth difference tends to 0 in R2 as n→ ∞ by (2.4),

for each ℓ ∈ N. Next, φ ∈ Φ(τ, V ) gives ∥φ(u′ℓ) − φ(f)∥L2(µτ,V ) ≤ Cφ∥u′ℓ − f∥∞ (see

Definition 3.3), and u′ℓ → f in C(K) by construction. So φ(u′ℓ) → φ(f) in L2(µτ,V ), and

the same argument as just above implies that the fifth difference tends to 0 inR2 as ℓ→ ∞.

Now by construction, φ•Sτ− is the limit of the sequence (φn •Sτ−)n∈N for rγ,u, and we

have (φ • Sτ−)(f) = limℓ→∞(φ • Sτ−)(u′ℓ) in R2 by the definition (3.15) of φ • Sτ− = N∞

from Lemma 3.10. In consequence, the first difference tends to 0 in R2 as ℓ→ ∞. Finally,

the definition of rγ,u yields (φn•Sτ−)(uk) → (φ•Sτ−)(uk) in R2 as n→ ∞ for each uk ∈ u,

and so also the second difference tends to 0 in R2 as n → ∞, for each ℓ ∈ N. By taking

first ℓ large enough and then n large enough for fixed ℓ, this implies that (φ •Sτ−)(f) and

φ(f).Sτ− are indistinguishable, for each f ∈ C(K), and proves (4.2).

It is clear that φ • Sτ− is uniquely determined on C(K) by (4.2) when restricting this

to J0, τJ, and like the right-hand side of (4.2), φ • Sτ− does not depend on the choice

of the control process V ∈ V(S). Moreover, it is also independent of the choice of u

and γ. To see this, take another countable dense subset u′ of U1 and another sequence γ′

in (0,∞) summing to 1. Denote by u ∪ u′ and γ ∪ γ′ the set and sequence resulting from

interlacing u, u′ and γ, γ′, respectively, by putting the primed quantities at even and the

unprimed ones at odd indices. Then obviously (rγ∪γ′,u∪u′( · ))2 = (rγ,u( · ))2 + (rγ′,u′( · ))2

and (qγ∪γ′,u∪u′;V ( · ))2 = (qγ,u ;τ,V ( · ))2+(qγ′,u′;V ( · ))2, and so an approximation with respect

to qγ∪γ′,u∪u′;V automatically implies one with respect to both qγ,u ;τ,V and qγ′,u′;V . By

uniqueness, the process φ • Sτ− constructed in N 2(γ ∪ γ′, u ∪ u′) therefore coincides with
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both the processes constructed in N 2(γ, u) and N 2(γ′, u′).

Now recall that τ is shorthand for τM with a fixed M ∈ N. So φ • SτM− is defined

and unique for each M ∈ N, which gives a consistent definition of φ • S on each J0, τMJ.

As τM ↗ ∞, the process φ • S is therefore well defined and has the stochastic Fubini

property on all of Ω̄. Moreover, φ • S is a continuous mapping on each J0, τMJ from C(K)

to R2 ⊆ R0 and hence maps C(K) into R0. For fixed t ≥ 0 and f ∈ C(K), combining

((φ • S)(f))∗t ≤ ((φ • SτM−)(f))∗∞I{t<τM} + ((φ • S)(f))∗t I{t≥τM} with Markov’s inequality

and (4.5) gives

P
[(
(φ • S)(f)

)∗
t
> 2ε

]
≤ P

[(
(φ • SτM−)(f)

)∗
∞ > ε

]
+ P [τM ≤ t]

≤ 1

ε2
∥(φ • SτM−)(f)∥2R2 + P [τM ≤ t]

≤ 1

ε2
c2∥f∥2∞ + P [τM ≤ t].

As M → ∞, the second summand goes to 0 because τM ↗ ∞, and so φ • S : C(K) → R0

is continuous for the ucp-topology. This completes the proof.

In some situations, one needs a stochastic Fubini theorem for less regular test functions

than f ∈ C(K). The next result goes in that direction.

Theorem 4.4. Let S = (St)t≥0 be an Rd-valued semimartingale. For every measure-valued

integrand φ ∈ Φ, the stochastic integral process φ • S = (φ • St)t≥0 from Theorem 4.3 also

satisfies the general weak∗ Fubini property that for all g ∈ bB1(K),

(4.6) (φ • S)(g) = φ(g).S up to indistinguishability on Ω̄ = Ω× (0,∞).

This implies in particular that (φ • S)(g) is in R0. Moreover, for every closed subset D of

K, we have (φ • S)(D) = φ(D).S, i.e.,

(4.7)

∫
D

(∫ t

0

φr dSr

)
(dz) =

∫ t

0

(∫
D

φr(dz)

)
dSr for all t ≥ 0, P -a.s.

Proof. Because K is compact and Hausdorff, Urysohn’s lemma implies that for every closed

D ⊆ K, we can write ID = limn→∞ fn pointwise for a sequence (fn)n∈N in U1 ⊆ C(K).
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Hence ID is in bB1(K) and (4.7) follows from (4.6). Moreover, the right-hand side of (4.6)

is in R0 if it is well defined, and so is then the left-hand side.

The proof of (4.6) is similar to the proof of Theorem 4.3 in that we first prelocalise

and argue on stochastic intervals J0, τJ. Fix φ ∈ Φ and a control process V for S, and let

(τM)M∈N be a localising sequence of stopping times such that for every M ∈ N,

(4.8) VτM− ∈ L2, DτM−(∥φ∥var;V ) ∈ L2.

Fix M ∈ N and write τ := τM for brevity. By the proof of Theorem 4.3, φ • Sτ− is well

defined and a linear mapping from C(K) to R2, and so each φ • Sτ−
t (ω) can be identified

with a finite charge on B(K). As a consequence, (φ • Sτ−)(g) is a well-defined process,

even for any Borel-measurable bounded function g on K.

Now fix g ∈ bB1(K) and write g = limn→∞ fn pointwise for a sequence (fn)n∈N ⊆ C(K).

As g is bounded by c, say, we may assume that ∥fn∥∞ ≤ 2c for all n, and so the sequence

hn := g − fn, n ∈ N, tends to 0 pointwise on K and is bounded by 4c. We first argue

that φ(g) is predictable and in L2(µτ,V ), so that φ(g).Sτ− is well defined and in R2 due

to (2.4). By (4.8), we have |∥φ∥var| < ∞ µτ,V -a.e., and so dominated convergence yields

φ(fn) → φ(g) µτ,V -a.e. as n → ∞. Fatou’s lemma for µτ,V together with φ ∈ Φ(τ, V )

yields via (3.7) that

∥φ(g)∥L2(µτ,V ) ≤ lim inf
n→∞

∥φ(fn)∥L2(µτ,V ) ≤ Cφ sup
n∈N

∥fn∥∞ <∞,

and so φ(g) satisfies the required integrability for being in L2(µτ,V ). To check predictability

(up to indistinguishability), we note that |φ(fn)| ≤ ∥fn∥∞|∥φ∥var| leads via (4.8) to

Dτ−
(
φ(fn);V

)
=

∫ τ−

0

|φr(fn)|2 dVr ≤ ∥fn∥2∞Dτ−(∥φ∥var;V ) <∞ P -a.s.

so that dominated convergence first gives Dτ−(φ(fn);V ) → Dτ−(φ(g);V ) P -a.s. Thanks to

(4.8), we can again use dominated convergence to obtain φ(g) = limn→∞ φ(fn) in L
2(µτ,V )

and hence also µτ,V -a.e. along a subsequence. As each φ(fn) is predictable, so is φ(g) (up to

indistinguishability). Thus φ(g).Sτ− is well defined and in R2, and so is then (φ •Sτ−)(g)

if we can prove (4.6) on J0, τJ.
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To achieve that last point, we write

(φ • Sτ−)(g)− φ(g).Sτ− =
(
(φ • Sτ−)(g)− (φ • Sτ−)(fn)

)
+
(
(φ • Sτ−)(fn)− φ(fn).S

τ−)
+
(
φ(fn).S

τ− − φ(g).Sτ−).
The second summand on the right-hand side is 0 by the regular Fubini property (4.2).

We have just seen that φ(fn) → φ(g) in L2(µτ,V ) so that the third summand converges

to 0 in R2 by (2.4). For the first summand, we have hn = g − fn → 0 pointwise and

|hn| ≤ 4c for all n. As each φ • Sτ−
t (ω) can be identified with a finite charge on B(K), we

get (φ • Sτ−)(fn) → (φ • Sτ−)(g) for µτ,V -almost all (ω, t) by dominated convergence; see

Bhaskara Rao/Bhaskara Rao [6, Theorem 4.6.14]. This completes the proof.

Remark 4.5. Apart from being more general then Theorem 4.3, Theorem 4.4 also has the

advantage that it allows us to replace φ by IDφ for a closed set D ⊆ K and hence obtain

(4.3) with an integral over D instead of over K. This cannot be done by simply replacing

f by IDf in Theorem 4.3 as IDf is no longer in C(K). That extra generality will be used

in Section 6 below.

5 An application to Volterra semimartingales

Let S = (St)t≥0 be an Rd-valued semimartingale. In this section, we study stochastic

processes X = (Xt)t≥0 of the form

(5.1) Xt =

∫ t

0

Ψt,s dSs, t ≥ 0,

for a two-parameter process Ψ = (Ψt,s)t≥0, 0≤s≤t with suitable measurability and integra-

bility properties (made precise later). We look for conditions on Ψ which ensure that X is

again a semimartingale, and we also want to say more about its decomposition in that case.

Processes of the form (5.1) are often called Volterra(-type) processes, and there is a large

and growing body of literature around them. Forward or backward stochastic Volterra inte-

gral equations look for a processX solving (in the forward case, say) an equation of the form

Xt = X0+
∫ t

0
a(t, s, (Xr)r≤s) ds+

∫ t

0
b(t, s, (Xr)r≤s) dWs; see e.g. Hernández [14] for a recent
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article with many more references. More specifically, stochastic Volterra equations take the

form Xt = x0(t) +
∫ t

0
Kµ(s, t)µ(s,Xs) ds +

∫ t

0
Kσ(s, t)σ(s,Xs) dWs, and one then studies

existence, uniqueness and properties of solutions; see for instance Prömel/Scheffels [27]. If

one specifies further to Xt = X0+
∫ t

0
K(t−s)µ(Xs) ds+

∫ t

0
K(t−s)σ(Xs) dWs with µ, σσ

⊤

affine, there is a large literature on such affine Volterra processes ; see e.g. Abi Jaber et

al. [1] for an important contribution.

In a different direction, processes of the form Xt =
∫ t

0
K(t, s) dSs with S a semimartin-

gale, or S = L a Lévy process, or S = W a Brownian motion, have been studied for path

properties, stochastic calculus, support properties and other topics; see e.g. Neuman [26],

Bender et al. [5], Di Nunno et al. [11], Kalinin [17], Baudoin/Nualart [4], to name just a few

(diverse, but not necessarily representative) contributions. A key difference between the

above two directions is whether X is given endogenously as the solution of some equation

or exogenously from given quantities Ψ, S not depending on X.

The question whether X in (5.1) is a semimartingale seems to have two main lines of

approach. If Xt =
∫ t

0
g(t − s) dLs, with a deterministic function g and a Lévy process

L, is a convolution-type integral or moving average process, Basse/Pedersen [3] have given

necessary and sufficient condition, on g and the Lévy triplet of L, for X to be a semimartin-

gale. An extension to Xϑ
t =

∫ t

0
Kϑ(t, s) dWs with a Brownian motion W and Kϑ(t, s) of

a particular form has recently been presented by El Omari [12]. At the other end of the

scale is the work by Protter [28] who assumes that for all s and ω,

(5.2) t 7→ Ψt,s(ω) = Ψ(t, s, ω) is in C1 with t 7→ ψ(t, s, ω) := ∂Ψ
∂t
(t, s, ω) locally Lipschitz.

He then writes X as

(5.3) Xt =

∫ t

0

Ψt,s dSs =

∫ t

0

Ψs,s dSs +

∫ t

0

(Ψt,s −Ψs,s) dSs,

uses (5.2) to get

(5.4) Ψt,s(ω)−Ψs,s(ω) =

∫ t

s

ψ(r, s, ω) dr

and handles the last term in (5.3) by writing

(5.5)

∫ t

0

(Ψt,s −Ψs,s) dSs =

∫ t

0

(∫ t

s

ψ(r, s, · ) dr
)
dSs =

∫ t

0

(∫ r

0

ψ(r, s, · ) dSs

)
dr.
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Note that (5.2) implies via (5.4) that all the t 7→ Ψt,s are absolutely continuous with

respect to one fixed (namely Lebesgue) measure, and so the last step in (5.5) follows by a

standard stochastic Fubini theorem. Thus the last term in (5.3) is absolutely continuous

with respect to Lebesgue measure and hence of finite variation and a semimartingale.

As we discuss later in Section 6, the assumption (5.2) or (5.4) means that we are in

the so-called dominated case. Let us now see what we can do if we relax this restrictive

condition. So let Ψ = (Ψt,s)t≥0, 0≤s≤t be an Rd-valued two-parameter process such that for

each t ≥ 0, the process (Ψt,s)0≤s≤t is predictable and S-integrable on [0, t], and such that

the diagonal (Ψs,s)s≥0 is also predictable and S-integrable. Then we can write, as in (5.3),

(5.6) Xt =

∫ t

0

Ψt,s dSs =

∫ t

0

Ψs,s dSs +

∫ t

0

(Ψt,s −Ψs,s) dSs =:

∫ t

0

Ψs,s dSs + Yt,

and the first dS-integral on the right-hand side is well defined and a semimartingale. Note

that if S =M is a local martingale, that integral need not be a local martingale unless we

know more about the diagonal (Ψs,s)s≥0; see the classic example due to Émery [13]. We

return to this point in Remark 5.2 below.

Now let us agree, as is natural in view of the problem, that Ψt,s := 0 for s > t, and also

assume that for each s ≥ 0, the process (Ψt,s)t≥0 is right-continuous and of finite variation.

This clearly generalises the assumption (5.2) or (5.4) in [28]. To apply our results from

Section 4, we need to work with signed measures on a compact metric space. For each

fixed T ∈ (0,∞), we therefore consider KT := [0, T ] and associate to Ψ for each s ≥ 0 a

“random signed Rd-valued distribution function” φ̄s on [0,∞) via

(5.7) t 7→ φ̄s(t)(ω) := I{t≥s}
(
Ψt,s(ω)−Ψs,s(ω)

)
for s ≥ 0 and t ≥ 0.

Restricted to t ∈ KT = [0, T ] (and hence also s ≤ T as s ≤ t), the process φ̄(T ) = (φ̄s)0≤s≤T

then induces an Md(KT )-valued process φ(T ) = (φ
(T )
s )0≤s≤T which is weak∗ predictable

because s 7→ Ψt,s is predictable. In fact,

(5.8) φ(T )
s ([0, t]) := φ̄(T )

s (t) = I{t≥s}(Ψt,s −Ψs,s) for 0 ≤ t ≤ T and 0 ≤ s ≤ t;

so we first get φ
(T )
s ({0}) = I{0≥s}(Ψ0,s −Ψs,s) = I{s=0}(Ψ0,0 −Ψ0,0) = 0 as s ≥ 0, and then

s 7→ φ
(T )
s ((0, t]) = φ

(T )
s ([0, t]) = I{t≥s}(Ψt,s − Ψs,s) is predictable by our assumptions. By
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measure-theoretic induction, φ(T )(g) is then predictable for g bounded and measurable on

KT and in particular for g = f ∈ C(KT ). Note that the variation norm of φ
(T )
s is given by

∥φ(T ),i
s ∥var = vart(Ψ

i
·,s|[0,T ]) =

∫ T

s

|Ψi
dt,s| for i = 1, . . . , d.

With these preparations, we obtain the following result.

Theorem 5.1. Suppose for each T ∈ (0,∞) and each s ∈ [0, T ] that the process t 7→ Ψt,s is

of finite variation on [0, T ] and its (Rd-valued, componentwise) total variation process

(5.9)
(
vart(Ψ·,s|[0,T ])

)
0≤s≤T

=

(∫ T

s

|Ψi
dt,s|

)i=1,...,d

0≤s≤T

is S-integrable on [0, T ].

Then the process X from (5.1) can be written as

Xt =

∫ t

0

Ψs,s dSs + Yt =

∫ t

0

Ψs,s dSs +

∫ t

0

(Ψt,s −Ψs,s) dSs(5.10)

=

∫ t

0

Ψs,s dSs + (φ(T ) • ST )([0, t]), 0 ≤ t ≤ T ,

for the Md(KT )-valued process φ(T ) associated to Ψ. If each process φ(T ) • S is measure-

valued (as opposed to only charge-valued), then X is a semimartingale and Y is predictable

and of finite variation.

Proof. For each T ∈ (0,∞), we prove (5.10) by working with the compact set KT := [0, T ].

Results on [0,∞) are then obtained by pasting together.

1) Fix T ∈ (0,∞) and consider φ(T ) as in (5.8). Using the definition of Y in (5.6) and

Ψt,s = 0 for s > t as well as (5.8), we can write, for 0 ≤ t ≤ T ,

Yt =

∫ t

0

I{t≥s}(Ψt,s −Ψs,s) dSs = φ(T )(I[0,t]).St(5.11)

=

∫ T

0

φ(T )
s ([0, t]) dSs = φ(T )(I[0,t]).ST .(5.12)

Thanks to the assumption (5.9), we can now invoke the weak∗ Fubini property (4.7) in

Theorem 4.4 to obtain with the closed set D := [0, t] ⊆ KT that

(5.13)
(
φ(T )(I[0,t])

)
.Ss = (φ(T ) • Ss)(I[0,t]) for all s ∈ [0, T ],
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giving for s = T via (5.12) that

(5.14) Yt = (φ(T ) • ST )(I[0,t]) for 0 ≤ t ≤ T .

This proves (5.10). If φ(T ) • S has values in M(KT ), then Y = (Yt)0≤t≤T is adapted by

(5.11), and by (5.14) RCLL and of finite variation with respect to t, and hence in particular

a semimartingale on [0, T ]. So is then X by (5.10) as (Ψs,s)s≥0 is S-integrable.

2) To show that Y is even predictable, we first note that (5.8) shows that we have

φ
(T )
s (I[0,t]) = φ̄

(T )
s (t) = φ

(T )
s (I[0,t])I{s<t} and therefore, by (5.11),

(5.15) Yt =

∫ t

0

φ(T )
s (I[0,t])I{s<t} dSs =

∫ t−

0

φ(T )
s (I[0,t]) dSs = φ(T )(I[0,t]).St−.

On the other hand, the process U(s, t) := (φ(T ) • St−)(I[0,s]) on KT × Ω̄ is well defined,

because t 7→ (φ(T ) •St)(I[0,s]) is by Theorem 4.4 in R0 and hence RCLL (with respect to t),

and U is B(KT )⊗P-measurable as it is right-continuous in s and left-continuous in t and

adapted to F. Note that right-continuity in s uses that φ(T ) • S is measure-valued. This

implies by a monotone class argument that the diagonal of U is predictable. Finally, (5.15)

and (5.13) also yield that

Yt = φ(T )(I[0,t]).St− = (φ(T ) • St−)(I[0,t]) = U(t, t);

so Y is the diagonal of U and therefore predictable. This completes the proof.

Remark 5.2. The decomposition Xt =
∫ t

0
Ψs,s dSs + Yt in (5.6) also allows us to say

more about the structure and decomposition of the semimartingale X, again under all

the assumptions of Theorem 5.1. We have just seen that Y is predictable and of finite

variation. The first summand in (5.6) is a stochastic integral, with respect to S, of the

predictable S-integrable process (Ψs,s)s≥0. Thus it is always a semimartingale, and we can

work out its characteristics from the behaviour of Ψ on the diagonal (Ψs,s)s≥0 and from

the characteristics of S itself. If S = M is a local martingale, we can also ask whether

the integral is even a local martingale. (In that case, Xt =
∫ t

0
Ψt,s dMs, t ≥ 0, is a special

semimartingale.) This depends on the interaction between the diagonal of Ψ and the jumps

of M ; we need to check whether the increasing process (
∑

0≤s≤·(Ψ
⊤
s,s∆Ms)

2)1/2 is locally

integrable. (Of course, this is trivially satisfied if M is continuous.) For more details, see

Jacod/Shiryaev [16, Remark III.6.28].
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6 Connections to the classic case

In this section, we relate our results to some of the classic versions of stochastic Fubini

theorems available in the literature. We do not aim for maximal generality, but rather

explain the main conceptual differences.

We start again with an Rd-valued semimartingale S = (St)t≥0 on (Ω,F ,F, P ) and a

compact metric space K. We consider a fixed weak∗ predictable process φ = (φt)t≥0 taking

values in Md(K) and write it in the form

(6.1) φt(dz)(ω) = ψt(z)(ω) ρ(ω, t, dz)

for an Rd-valued process ψ on Ω× (0,∞)×K which is product-measurable and such that

ψ(z) is for each z ∈ K an Rd-valued predictable process on Ω̄. In (6.1), ρ(ω, t, dz) is a

transition kernel from (Ω̄,P) to (K,B(K)), i.e., ρ( · , · , D) is a predictable process for each

D ∈ B(K) and ρ(ω, t, · ) is a finite (nonnegative) measure on B(K) for each (ω, t) ∈ Ω̄. This

is not a restriction in generality for φ as we can always take ρ :=
∑d

i=1 |φi| and ψ := dφ
dρ
.

From (6.1) and using Cauchy–Schwarz, we obtain that ∥φ∥var has the coordinates

(6.2) ∥φi
t∥var =

∫
K
|ψi

t(z)| ρt(dz) ≤
(
ρt(K)

∫
K
|ψi

t(z)|2 ρt(dz)
)1/2

.

So ∥φ∥var is S-integrable if (and only if) for some control process V for S,

(6.3) the process

∫ d∑
i=1

(∫
K
|ψi

r(z)| ρr(dz)
)2

dVr is finite-valued,

which is implied by the stronger condition that

(6.4) the process

∫
ρr(K)

(∫
K
|ψr(z)|2 ρr(dz)

)
dVr is finite-valued.

A very special case of (6.1) arises if we assume that ρ(ω, t, dz) ≡ η(dz) for some finite

(nonnegative) measure η on B(K). This means that the (ω, t)-indexed family of measures

φt(dz)(ω) is dominated by one fixed measure and we have

(6.5) φt(dz)(ω) = ψt(z)(ω) η(dz),
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where ψ is a z-indexed family of predictable processes on Ω̄. Apart from slightly different

conditions on K and η, this is the framework in which classic stochastic Fubini theorems

are cast. More precisely, Protter [29, Section IV.6] and Veraar [31] both assume that (K,K)

is a measurable space and η is a measure on K, finite in [29] and σ-finite in [31]. Next,

S is in both [29, 31] a real-valued semimartingale, assumed continuous in [31], and ψ is

P ⊗K-measurable in [29] and Prog⊗K-measurable in [31], where Prog is the progressive

σ-field on Ω̄. The integrability condition on ψ in [29] is that

(6.6) the process

(∫
K
|ψt(z)|2 η(dz)

)1/2

t≥0

is S-integrable,

which by finiteness of η is equivalent to the sufficient condition (6.4) above. If S is contin-

uous with canonical decomposition S = S0 +M +A, a sufficient condition for our weaker

assumption (6.3) is by Shiryaev/Cherny [30, Definition 3.9 and part (ii) of the subsequent

remark] that

the processes

∫ (∫
K
|ψr(z)| η(dz)

)
dAr and

∫ (∫
K
|ψr(z)| η(dz)

)2

d[M ]r(6.7)

are both finite-valued.

The condition (6.7) is slightly different from the assumption in [31, Theorem 2.2, conditions

(2.1) and (2.2)] that

the processes

∫
K

(∫
|ψr(z)| dAr

)
η(dz) and

∫
K

(∫
|ψr(z)|2 d[M ]r

)1/2

η(dz)

are both finite-valued.

In the frameworks of either Protter [29, Section IV.6] or Veraar [31], the classic stochas-

tic Fubini theorem says that in the dominated case (6.5), we have P -a.s. for all t ≥ 0 that

(6.8)

∫ t

0

(∫
K
ψr(z) η(dz)

)
dSr =

∫
K

(∫ t

0

ψr(z) dSr

)
η(dz).

If we replace ψ by ψID for a measurable subset D of K, this can be rewritten as

(6.9)

∫ t

0

φr(D) dSr =

∫
D

(∫ t

0

ψr(z) dSr

)
η(dz).
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On the other hand, in our general setting and under (6.3), we obtain from Theorem 4.4

that for every closed D ⊆ K, we get P -a.s. for all t ≥ 0 that

(6.10)

∫ t

0

φr(D) dSr = (φ • St)(D).

As the left-hand sides of (6.9) and (6.10) agree, so must the right-hand sides, whenever

all the required assumptions are satisfied. Now by construction, the stochastic integral

φ • S is in general only a charge-valued process; so the right-hand side of (6.10) need not

be a measure in the argument D. On the other hand, the right-hand side of (6.9) can be

expected to be a measure in the argument D, provided that the inner (dS-)integral is an

η-integrable function of z. So we can exploit the connection between (6.9) and (6.10) to

get more information about φ • S. The next result makes these ideas precise. Note that

except for K, its assumptions are precisely those of Protter [29, Theorem IV.65].

Proposition 6.1. Suppose S = (St)t≥0 is a real-valued semimartingale and K is a compact

metric space with Borel σ-field B(K). Let φ = (φt)t≥0 be a charge-valued process which

satisfies the domination condition (6.5) so that φt(dz)(ω) = ψt(z)(ω) η(dz) for a finite

(nonnegative) measure η on B(K). Suppose that ψ is P ⊗ B(K)-measurable and satisfies

(6.6). Then the stochastic integral process φ • S is well defined and takes values in M. In

other words, our stochastic integral is then not only charge-valued, but measure-valued.

Proof. 1) We first argue that φ is M-valued, weak∗ predictable and in Φ. As in (6.2),

(6.11) ∥φt∥var = |φt|(K) =

∫
K
|ψt(z)| η(dz) ≤

(
η(K)

∫
K
|ψt(z)|2 η(dz)

)1/2

.

Thanks to (6.6), the right-hand side has a finite integral with respect to some control

process V for S, and if we choose (as we can) V strictly increasing, the left-hand side of

(6.11) must be finite P -a.s. for all t ≥ 0 like the right-hand side. So φ is M-valued, and

∥φ∥var is S-integrable again due to (6.6). For each z, the z-section ψ(z) is predictable

because ψ is P ⊗ B(K)-measurable, and for any f ∈ C(K),∫
|f(z)ψt(z)| η(dz) ≤ ∥f∥∞

∫
K
|ψt(z)| η(dz) <∞ P -a.s. for all t ≥ 0
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shows that φ(f) is well defined and hence a predictable process. So φ is also weak∗

predictable and therefore in Φ.

2) Thanks to 1), Theorem 4.4 tells us that φ•S is well defined and that for every closed

set D ⊆ K,

(6.12) (φ • S)(D) = φ(D).S =

∫
φr(D) dSr =

∫ (∫
D

ψr(z) η(dz)

)
dSr

On the other hand, the classic stochastic Fubini theorem in Protter [29, Theorem IV.65]

(applied to ψID) tells us that

(6.13)

∫ (∫
D

ψr(z) η(dz)

)
dSr =

∫
D

(∫
ψr(z) dSr

)
η(dz),

and that
∫
ψr(z) dSr can be chosen product-measurable on Ω̄×K so that z 7→

∫
ψr(z) dSr is

then B(K)-measurable. So the right-hand side of (6.13), and hence by (6.12) also (φ•S)(D),

is a finite signed measure as a function of D if we can show that

(6.14)

∫
K

∣∣∣∣ ∫ t

0

ψr(z) dSr

∣∣∣∣ η(dz) <∞ P -a.s. for each t ≥ 0.

3) By the assumption (6.6), the process U := (
∫
K |ψ(z)|2 η(dz))1/2 is S-integrable. By

Shiryaev/Cherny [30, Definition 3.9; see also Lemma 4.11], there exists a decomposition

S = S0 + M + A into a local martingale M and an adapted RCLL process A of finite

variation |A|, both null at 0, such that U is in both Lvar(A) and L
1
loc(M). By the definition

of Lvar(A) in [30], this implies via Fubini–Tonelli and Cauchy–Schwarz that∫
K

(∣∣∣∣ ∫ t

0

ψr(z) dAr

∣∣∣∣) η(dz) ≤ ∫
K

(∫ t

0

|ψr(z)| d|A|r
)
η(dz)(6.15)

=

∫ t

0

(∫
K
|ψr(z)| η(dz)

)
d|A|r

≤
∫ t

0

(
η(K)

)1/2
Ur d|A|r <∞ P -a.s.

Next, the property U ∈ L1
loc(M) means that (

∫
U2 d[M ])1/2 is locally integrable so that
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along a localising sequence (τn)n∈N of stopping times, we have by Fubini–Tonelli that

E

[(∫
K

(∫ τn

0

|ψr(z)|2 d[M ]r

)
η(dz)

)1/2]
= E

[(∫ τn

0

(∫
K
|ψr(z)|2 η(dz)

)
d[M ]r

)1/2]

= E

[(∫ τn

0

U2
r d[M ]r

)1/2]
<∞.

By Cauchy–Schwarz,

∫
K

(∫
|ψr(z)|2 d[M ]r

)1/2

η(dz) ≤
(
η(K)

)1/2(∫
K

(∫
|ψr(z)|2 d[M ]r

)
η(dz)

)1/2

,

and so using Fubini–Tonelli again yields that also

∫
K
E

[(∫ τn

0

|ψr(z)|2 d[M ]r

)1/2]
η(dz) = E

[ ∫
K

(∫ τn

0

|ψr(z)|2 d[M ]r

)1/2

η(dz)

]
<∞

for each n. By the Burkholder–Davis–Gundy inequality,

E

[(∫
ψ(z) dM

)∗

τn

]
≤ const.E

[(∫ τn

0

|ψr(z)|2 d[M ]r

)1/2]

for each z, where the constant does not depend on z, and so

E

[ ∫
K

∣∣∣∣ ∫ τn

0

ψr(z) dMr

∣∣∣∣ η(dz)] ≤ E

[ ∫
K

(∫
ψ(z) dM

)∗

τn

η(dz)

]

=

∫
K
E

[(∫
ψ(z) dM

)∗

τn

]
η(dz)

≤ const.

∫
K
E

[(∫ τn

0

|ψr(z)|2 d[M ]r

)1/2]
η(dz) <∞

for each n. This implies that

∫
K

∣∣∣∣ ∫ t

0

ψr(z) dMr

∣∣∣∣ η(dz) <∞ P -a.s. on each J0, τnK,

and so (6.14) follows by combining this with (6.15). This completes the proof.

31



If we compare the classic stochastic Fubini theorem to our new result in Theorem 4.4, we

can see several differences. First, the former needs stronger assumptions on the integrand

φ (or ψ) than the latter; this can also be seen in the proof of Proposition 6.1. Second, if

we represent φ as in (6.1) as φt(dz) = ψt(z) ρ(ω, t, dz), the general weak∗ Fubini property

(4.7) in Theorem 4.4 for D = K (with the two sides interchanged) takes the form

(6.16)

∫ t

0

(∫
K
ψr(z) ρr(dz)

)
dSr =

∫
K

(∫ t

0

ψr(z) ρr( · ) dSr

)
(dz).

In comparison to the classic result (6.8), the left-hand side above is the obvious generalisa-

tion where we now mix the integrands ψr(z) with ρr(dz) instead of only η(dz). However,

the right-hand side of (6.16) is more complicated than in (6.8); we really need the stochas-

tic integral with respect to S of the measure-valued process ψρ, and it is no longer directly

possible to rewrite or construct this explicitly as a mixture (over z) of stochastic integrals∫
ψr(z) dSr. This is because in contrast to the fixed measure η, the kernel ρ depends on

both ω and t in general.

In comparison to the existing literature on stochastic Fubini theorems, our main con-

tribution is twofold. At the technical level, we deal with a parametric family of integrands

that is not dominated, with respect to its parameter, by a single and nonrandom mea-

sure. At the conceptual level, we achieve our results via the idea of viewing integrands as

measure-valued processes and developing and using a corresponding stochastic integration

theory. The latter viewpoint is similar in spirit to the approach of Bichteler and co-authors

[***we need to give a reference here] and has also been used in [***check that] van Neer-

ven/Veraar [23]; but its implementation must be done here more generally because we do

not have a dominating measure η, and we also need to develop a concept of stochastic

integration of measure-valued integrands with respect to general semimartingales.

Remark 6.2. It is an interesting question whether our approach allows to obtain the classic

stochastic Fubini theorem as a special case, and maybe even under weaker assumptions.

Purely formally, one could start from (6.16), plug in η for ρr and then hope that one could

move the deterministic η outside to dz on the right-hand side of (6.16). This would also

imply that in the dominated setting (6.5), our stochastic integral process φ•S is dominated
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by the measure η. If φ ∈ E is an elementary integrand, the above results can be proved

easily because all integrals then reduce to finite sums. But in general, one would probably

need a similar approximation as in the key Lemma 3.6, now at the level of densities ψ,

and it seems very likely that this would require extra conditions on ψ, maybe similar to

the condition (6.6) in Protter [29, Theorem IV.65]. We leave this issue as an open problem

and refer to Section 7 for a caveat against too much optimism.

7 An illustrative example

In this section, ***overview to be added

On the filtered probability space (Ω,F ,F, P ), let S = W = (Wt)t≥0 be a Brownian

motion. Fix T ∈ (0,∞) and take the compact set K = KT = [0, T ]. For α > 0, define

(7.1) φt(dz) := α(z − t)α−1I{z>t} dz =: ψt(z) dz for t ≥ 0 and z ∈ K.

Then each φt is a (nonnegative) measure on B(K) with

(7.2) ∥φt∥var = φt(K) =

∫ T

t

α(z − t)α−1 dz = (T − t)α <∞,

and so φ = (φt)t≥0 is an M-valued process. Moreover, as it is nonrandom, the process φ

is clearly weak∗ predictable. Note that ψt(z) = 0 for z ∈ K = [0, T ] and t > T ; so it is

enough to look only at (φt)0≤t≤T and (Wt)0≤t≤T .

If we take for W the control process Vt = t, then (7.2) gives

Dt(∥φ∥var;V ) =

∫ t

0

∥φr∥2var dVr =
∫ t

0

(T − r)2α dr =
1

2α + 1

(
T 2α+1 − (T − t)2α+1

)
.

This is finite for any t ∈ [0, T ] and α > 0 so that φ is in Φ. Thus φ •W is well defined

(on [0, T ]) and we can use the general weak∗ Fubini property (4.6) from Theorem 4.4. In

particular, taking D = [0, u] and computing φr([0, u]) = (u− r)αI{u>r} as in (7.2), we get

(φ • ST )([0, u]) = φ([0, u]).ST =

∫ T

0

I{u>r}(u− r)α dSr =

∫ u

0

(u− r)α dWr.

To check whether φ • S is a measure-valued process, we want to use Proposition 6.1.

From (7.1), it is clear that we are in the dominated case (6.5), with η being Lebesgue
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measure on K = [0, T ], and φ is clearly P ⊗ B(K)-measurable. For the integrability

condition (6.6), we need to look at∫ t

0

(∫
K
|ψr(z)| η(dz)

)
dVr =

∫ t

0

∫ T

r

α2(z − r)2α−2 dz dr(7.3)

=
α2

2α− 1

∫ t

0

(T − r)2α−1 dr

=
α2

2α(2α− 1)

(
T 2α − (T − t)2α

)
,

where the second equality requires 2α− 2 > −1 or α > 1
2
to ensure that the inner integral

does not diverge at z = r. For α > 1
2
, the quantity in (7.3) is always finite; so (6.6) is then

satisfied and Proposition 6.1 tells us that φ • S is for α > 1
2
a measure-valued process.

To get more information about φ • S, we now want to use the results on Volterra-type

semimartingales from Section 5. As in (5.7) and (5.4), we look at Ψ given by Ψs,s = 0 and

Ψt,sI{t≥s} = I{t≥s}φs

(
(0, t]

)
= I{t≥s}

∫ t

0

ψs(z) dz = I{t≥s}

∫ t

s

α(z−s)α−1 dz = I{t≥s}(t−s)α.

Clearly t 7→ Ψt,s is of finite variation, and it also satisfies (5.9) due to (7.2) and because

φ ∈ Φ. We then obtain as in (5.6) that for any α > 0,

(7.4) Yu =

∫ u

0

(Ψu,s −Ψs,s) dSs =

∫ u

0

(u− s)α dWs,

and Theorem 5.1 tells us that Y = (Yu)0≤u≤T is a semimartingale if φ • S is measure-

valued. But the process Y in (7.4) has been studied (even for W replaced by a Lévy

process) in detail in Basse/Pedersen [3], and [3, Theorem 3.1], with σ = 1, shows that Y

is a semimartingale (in the filtration of W ) if and only if the function x 7→ f(x) = xα has

f ′ locally square-integrable on [0,∞), which holds as in (7.3) if and only if α > 1
2
.

Remark 7.1. In this very specific example, we see that φ • S is a measure-valued process

if and only if a Volterra-type process (
∫ t

0
Ψt,s dSs)t≥0 with Ψ naturally associated to φ is

a semimartingale. It is very tempting to conjecture that such a result could hold more

generally, maybe even beyond the dominated setting (6.5). But even formulating this

precisely, let alone proving it, is beyond the scope of the present paper.
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Calculus and Applied Analysis 19, 1356–1392

[12] M. El Omari (2023), “On the Gaussian Volterra processes with power-type kernels”,

Stochastic Models (to appear), DOI: 10.1080/15326349.2023.2212763
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XXXII, Lecture Notes in Mathematics 1686, Springer, 137–165

[23] J. M. A. M. van Neerven and M. C. Veraar (2006), “On the stochastic Fubini theorem

in infinite dimensions”, in: G. da Prato and L. Tubaro (eds.), “Stochastic Partial

Differential Equations and Applications – VII”, Lecture Notes in Pure and Applied

Mathematics 245, Chapman & Hall/ CRC, 323–336

[24] J. M. A. M. van Neerven, M. C. Veraar and L. Weis (2007), “Stochastic integration

in UMD Banach spaces”, Annals of Probability 35, 1438–1478

[25] J. van Neerven, M. Veraar and L. Weis (2013), “Stochastic integration in Banach

spaces — a survey”, preprint, available at http://arxiv.org/abs/1304.7575v4/

[26] E. Neuman (2014), “The multifractal nature of Volterra–Lévy processes”, Stochastic

Processes and their Applications 124, 3121–3145
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