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Suppose discounted asset prices in a financial market are given by a P-semimar-
tingale of the form S = Sy + M + A. The minimal martingale measure for S is
characterised by the properties that it turns S into a local martingale and pre-
serves the martingale property for any local P-martingale strongly P-orthogonal
to M. It plays a key role in finding locally risk-minimising strategies, and it
comes up in various other contexts as well. Importantly, its density process can
be written explicitly in terms of M and A, so that one can use it very generally

and broadly. In some specific settings, it also has other optimality properties.
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Let S = (S) be a stochastic process on a filtered probability space (Q, F,(F), P) that mod-
els the discounted prices of primary traded assets in a financial market. An equivalent local
martingale measure (ELMM) for S is a probability measure () equivalent to the original (his-
torical) measure P such that S is a local Q-martingale; see [equivalent martingale measure
and ramifications|. If S is a nonnegative P-semimartingale, the fundamental theorem of asset
pricing says that an ELMM @ for S exists if and only if S satisfies the no-arbitrage condition
(NFLVR), i.e. admits no free lunch with vanishing risk; see [fundamental theorem of asset
pricing]. By Girsanov’s theorem, S is then under P a semimartingale with a decomposition
S =5Sy+ M + A into a local P-martingale M and an adapted process A of finite variation.
If S is special under P, then A can be chosen predictable and the resulting canonical decom-
position of S is unique. We say that S satisfies the structure condition (SC) if M is locally
P-square-integrable and A has the form A = [ d(M)\ for a predictable process A such that
the increasing process [ A d(M)\ is finite-valued. In an Itd process model where S is given

by a stochastic differential equation d.S; = S ((,Ut —ry) dt+oy th), the latter process is given
by [ ((Mt — 1)/ at)Q dt, the integrated squared instantaneous Sharpe ratio of S; see [Sharpe

ratio].

Definition. Suppose S satisfies (SC). An ELMM P for S with P-square-integrable density
d]g/dP is called minimal martingale measure (for S) if P =Pon Fo and if every local
P-martingale L which is locally P-square-integrable and strongly P-orthogonal to M is also

a local ﬁ—martingale. We call P orthogonality-preserving if L is also strongly ﬁ—orthogonal
to S.

The basic idea for the minimal martingale measure (MMM) first appeared in [46] in
a more specific model, where it was used as an auxiliary technical tool in the context of
local risk-minimisation. (See also [hedging, general concepts| for an overview of key ideas
on hedging and [mean-variance hedging and portfolio selection] for an alternative quadratic
approach.) More precisely, the so-called locally risk-minimising strategy for a given contin-
gent claim H was obtained there (under some specific assumptions) as the integrand from
the classical Galtchouk—Kunita—Watanabe decomposition of H under P. However, the intro-
duction of P in [46] and also in [47] was still somewhat ad hoc. The above definition was
given in [18] where also the main results presented here can be found. In particular, [18]
showed that for continuous S, the Galtchouk-Kunita—Watanabe decomposition of H under
the minimal martingale measure P provides (under very mild integrability conditions) the
so-called Follmer—Schweizer decomposition of H under the original measure P, and this in
turn immediately gives the locally risk-minimising strategy for H. We emphasise that this
is no longer true in general if S has jumps. The MMM subsequently found various other

applications and uses and has become fairly popular, especially in models with continuous
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price processes.
Suppose now that S satisfies the structure condition (SC). For every ELMM @ for S
with dQ/dP € L?(P), the density process then takes the form

d
z@.= Q1 _ oc (—/AdM+LQ>
dP|,,

with some locally P-square-integrable local P-martingale L?. If the MMM P exists, then it

has 20 =1 and L* =0, and its density process is thus given by the stochastic exponential

(see [stochastic exponentials])

Z=¢€ (—/AdM)
~ exp (— / NdM — % / N d[M] )\) T]( - NAM) exp (A’AM + %(/\’AM)2) |

The advantage of this explicit representation is that it allows to determine the minimal
martingale measure P and its density process Z directly from the ingredients M and A\ of
the canonical decomposition of S. Conversely, one can start with the above expression for 7
to define a candidate for the density process of the MMM. This gives existence of the MMM
under the following conditions:

(i) 7 is strictly positive; this happens if and only if NAM < 1, i.e. all the jumps of [ AdM

are strictly below 1.

(ii) The local P-martingale 7 is a true P-martingale.

(iii) 7 is P-square-integrable.

Condition (i) automatically holds (on any finite time interval) if S, hence also M, is contin-
uous; it typically fails in models where S has jumps. Conditions (ii) and (iii) can fail even
if (i) holds and even if there exists some ELMM for S with P-square-integrable density; see
[45] or [15] for a counterexample.

The above explicit formula for 7 shows that P is minimal in the sense that its density
process contains the smallest number of symbols among all ELMMs ). More seriously, the
original idea was that P should turn S into a (local) martingale while having a minimal
impact on the overall martingale structure of our setting. This is captured and made precise
by the definition. If S is continuous, one can show that P is even orthogonality-preserving;
see [18] for this, and note that this usually fails if S has jumps.

To some extent, the naming of the “minimal” martingale measure is misleading since P
was not originally defined as the minimiser of a particular functional on ELMMs. However,

if S is continuous, Féllmer and Schweizer [18] have proved that P minimises

oo
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over all ELMMs @ for S; see also [49]. Moreover, Schweizer [50] has shown that if S is
continuous, then P minimises the reverse relative entropy H(P|Q) over all ELMMs @ for S;

this no longer holds if S has jumps. Under more restrictive assumptions, other minimality

properties for P have been obtained by several authors. But a general result under the sole

assumption (SC) is not available so far.

There is a large amount of literature related to the MMM. In fact, a Google Scholar

search for “minimal martingale measure” (enclosed in quotation marks) produced in April
2008 a list of well over 400 hits. As a first category, this contains papers where the MMM

is studied per se, or used as in the original approach of local risk-minimisation. In terms of

topics, the following areas of related work can be found in that category:

properties, characterisation results and generalisations for the MMM: [1], [4], [9], [11],
[14], [19], [33], [36], [37], [49], [51].

convergence results for option prices (computed under the MMM): [25], [32], [42], [44].
applications to hedging: [7], [39], [47], [48]. See also [hedging, general concepts].

uses for option pricing: [8], [13], [55], to name only a very a few; comparison results for
option prices are given in [22], [24], [34]. See also [risk neutral pricing].

problems and counterexamples: [15], [16], [43], [45], [52].

equilibrium justifications for using the MMM: [26], [40].

A second category of papers contains those where the MMM has (sometimes unexpect-

edly) come up in connection with various other problems and topics in mathematical finance.

Examples include

classical utility maximisation and utility indifference valuation ([3], [20], [21], [23], [35],
[41], [53], [54]); the MMM here often appears because the special structure of a given
model implies that it has a particular optimality property. See also [expected utility max-
imization], [expected utility maximization], [utility indifference valuation| and [minimal
entropy martingale measure].

the numeraire portfolio and growth-optimal investment ([2], [12]); this is related to the
minimisation of the reverse relative entropy H(P|-) over ELMMs. See also [Kelly prob-
lem)].

the concept of value preservation (28], [29], [30]); here the link seems to come up because
value preservation is like local risk-minimisation a local optimality criterion.

good deal bounds in incomplete markets ([5], [6]); the MMM naturally shows up here
because good deal bounds are formulated via instantaneous quadratic restrictions on the
pricing kernel (ELMM) to be chosen. See also [good-deal bounds], [Sharpe ratio] and
[pricing kernels].

local utility maximisation ([27]); again, the link here is due to the local nature of the
criterion that is used.

risk-sensitive control ([17], [31], [38]); this is an area where the connection to the MMM
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seems not yet well understood. See also [risk-sensitive asset management].
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