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Abstract: Suppose discounted asset prices in a financial market are given by a P -semimar-

tingale of the form S = S0 +M +A. The minimal martingale measure for S is

characterised by the properties that it turns S into a local martingale and pre-

serves the martingale property for any local P -martingale strongly P -orthogonal

to M . It plays a key role in finding locally risk-minimising strategies, and it

comes up in various other contexts as well. Importantly, its density process can

be written explicitly in terms of M and A, so that one can use it very generally

and broadly. In some specific settings, it also has other optimality properties.
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Let S = (St) be a stochastic process on a filtered probability space
(
Ω,F , (Ft), P

)
that mod-

els the discounted prices of primary traded assets in a financial market. An equivalent local

martingale measure (ELMM) for S is a probability measure Q equivalent to the original (his-

torical) measure P such that S is a local Q-martingale; see [equivalent martingale measure

and ramifications]. If S is a nonnegative P -semimartingale, the fundamental theorem of asset

pricing says that an ELMM Q for S exists if and only if S satisfies the no-arbitrage condition

(NFLVR), i.e. admits no free lunch with vanishing risk; see [fundamental theorem of asset

pricing]. By Girsanov’s theorem, S is then under P a semimartingale with a decomposition

S = S0 + M + A into a local P -martingale M and an adapted process A of finite variation.

If S is special under P , then A can be chosen predictable and the resulting canonical decom-

position of S is unique. We say that S satisfies the structure condition (SC) if M is locally

P -square-integrable and A has the form A =
∫
d〈M〉λ for a predictable process λ such that

the increasing process
∫
λ′ d〈M〉λ is finite-valued. In an Itô process model where S is given

by a stochastic differential equation dSt = St
(
(µt−rt) dt+σt dWt

)
, the latter process is given

by
∫ (

(µt − rt)/σt
)2
dt, the integrated squared instantaneous Sharpe ratio of S; see [Sharpe

ratio].

Definition. Suppose S satisfies (SC). An ELMM P̂ for S with P -square-integrable density

dP̂ /dP is called minimal martingale measure (for S) if P̂ = P on F0 and if every local

P -martingale L which is locally P -square-integrable and strongly P -orthogonal to M is also

a local P̂ -martingale. We call P̂ orthogonality-preserving if L is also strongly P̂ -orthogonal

to S.

The basic idea for the minimal martingale measure (MMM) first appeared in [46] in

a more specific model, where it was used as an auxiliary technical tool in the context of

local risk-minimisation. (See also [hedging, general concepts] for an overview of key ideas

on hedging and [mean-variance hedging and portfolio selection] for an alternative quadratic

approach.) More precisely, the so-called locally risk-minimising strategy for a given contin-

gent claim H was obtained there (under some specific assumptions) as the integrand from

the classical Galtchouk–Kunita–Watanabe decomposition of H under P̂ . However, the intro-

duction of P̂ in [46] and also in [47] was still somewhat ad hoc. The above definition was

given in [18] where also the main results presented here can be found. In particular, [18]

showed that for continuous S, the Galtchouk–Kunita–Watanabe decomposition of H under

the minimal martingale measure P̂ provides (under very mild integrability conditions) the

so-called Föllmer–Schweizer decomposition of H under the original measure P , and this in

turn immediately gives the locally risk-minimising strategy for H. We emphasise that this

is no longer true in general if S has jumps. The MMM subsequently found various other

applications and uses and has become fairly popular, especially in models with continuous
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price processes.

Suppose now that S satisfies the structure condition (SC). For every ELMM Q for S

with dQ/dP ∈ L2(P ), the density process then takes the form

ZQ :=
dQ

dP

∣∣∣∣
IF

= ZQ0 E
(
−
∫
λ dM + LQ

)

with some locally P -square-integrable local P -martingale LQ. If the MMM P̂ exists, then it

has Ẑ0 = 1 and LP̂ ≡ 0, and its density process is thus given by the stochastic exponential

(see [stochastic exponentials])

Ẑ = E
(
−
∫
λ dM

)

= exp

(
−
∫
λ dM − 1

2

∫
λ′ d[M ]λ

)∏
(1− λ′∆M) exp

(
λ′∆M +

1

2
(λ′∆M)2

)
.

The advantage of this explicit representation is that it allows to determine the minimal

martingale measure P̂ and its density process Ẑ directly from the ingredients M and λ of

the canonical decomposition of S. Conversely, one can start with the above expression for Ẑ

to define a candidate for the density process of the MMM. This gives existence of the MMM

under the following conditions:

(i) Ẑ is strictly positive; this happens if and only if λ′∆M < 1, i.e. all the jumps of
∫
λ dM

are strictly below 1.

(ii) The local P -martingale Ẑ is a true P -martingale.

(iii) Ẑ is P -square-integrable.

Condition (i) automatically holds (on any finite time interval) if S, hence also M , is contin-

uous; it typically fails in models where S has jumps. Conditions (ii) and (iii) can fail even

if (i) holds and even if there exists some ELMM for S with P -square-integrable density; see

[45] or [15] for a counterexample.

The above explicit formula for Ẑ shows that P̂ is minimal in the sense that its density

process contains the smallest number of symbols among all ELMMs Q. More seriously, the

original idea was that P̂ should turn S into a (local) martingale while having a minimal

impact on the overall martingale structure of our setting. This is captured and made precise

by the definition. If S is continuous, one can show that P̂ is even orthogonality-preserving;

see [18] for this, and note that this usually fails if S has jumps.

To some extent, the naming of the “minimal” martingale measure is misleading since P̂

was not originally defined as the minimiser of a particular functional on ELMMs. However,

if S is continuous, Föllmer and Schweizer [18] have proved that P̂ minimises

Q 7→ H(Q|P )− EQ



∞∫

0

λ′u d〈M〉uλu



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over all ELMMs Q for S; see also [49]. Moreover, Schweizer [50] has shown that if S is

continuous, then P̂ minimises the reverse relative entropy H(P |Q) over all ELMMs Q for S;

this no longer holds if S has jumps. Under more restrictive assumptions, other minimality

properties for P̂ have been obtained by several authors. But a general result under the sole

assumption (SC) is not available so far.

There is a large amount of literature related to the MMM. In fact, a Google Scholar

search for “minimal martingale measure” (enclosed in quotation marks) produced in April

2008 a list of well over 400 hits. As a first category, this contains papers where the MMM

is studied per se, or used as in the original approach of local risk-minimisation. In terms of

topics, the following areas of related work can be found in that category:

– properties, characterisation results and generalisations for the MMM: [1], [4], [9], [11],

[14], [19], [33], [36], [37], [49], [51].

– convergence results for option prices (computed under the MMM): [25], [32], [42], [44].

– applications to hedging: [7], [39], [47], [48]. See also [hedging, general concepts].

– uses for option pricing: [8], [13], [55], to name only a very a few; comparison results for

option prices are given in [22], [24], [34]. See also [risk neutral pricing].

– problems and counterexamples: [15], [16], [43], [45], [52].

– equilibrium justifications for using the MMM: [26], [40].

A second category of papers contains those where the MMM has (sometimes unexpect-

edly) come up in connection with various other problems and topics in mathematical finance.

Examples include

– classical utility maximisation and utility indifference valuation ([3], [20], [21], [23], [35],

[41], [53], [54]); the MMM here often appears because the special structure of a given

model implies that it has a particular optimality property. See also [expected utility max-

imization], [expected utility maximization], [utility indifference valuation] and [minimal

entropy martingale measure].

– the numeraire portfolio and growth-optimal investment ([2], [12]); this is related to the

minimisation of the reverse relative entropy H(P | · ) over ELMMs. See also [Kelly prob-

lem].

– the concept of value preservation ([28], [29], [30]); here the link seems to come up because

value preservation is like local risk-minimisation a local optimality criterion.

– good deal bounds in incomplete markets ([5], [6]); the MMM naturally shows up here

because good deal bounds are formulated via instantaneous quadratic restrictions on the

pricing kernel (ELMM) to be chosen. See also [good-deal bounds], [Sharpe ratio] and

[pricing kernels].

– local utility maximisation ([27]); again, the link here is due to the local nature of the

criterion that is used.

– risk-sensitive control ([17], [31], [38]); this is an area where the connection to the MMM
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seems not yet well understood. See also [risk-sensitive asset management].
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