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Abstract This paper studies modeling and existence issues for market models of op-
tion prices in a continuous-time framework with one stock, one bond and a family of
European call options for one fixed maturity and all strikes. After arguing that (classi-
cal) implied volatilities are ill-suited for constructing such models, we introduce the
new concepts of local implied volatilities and price level. We show that these new
quantities provide a natural and simple parametrization of all option price models
satisfying the natural static arbitrage bounds across strikes. We next characterize ab-
sence of dynamic arbitrage for such models in terms of drift restrictions on the model
coefficients. For the resulting infinite system of SDEs for the price level and all local
implied volatilities, we then study the question of solvability and provide sufficient
conditions for existence and uniqueness of a solution. We give explicit examples of
volatility coefficients satisfying the required assumptions, and hence of arbitrage-free
multi-strike market models of option prices.
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1 Introduction

Consider a financial market where the following assets are all traded liquidly: a bank
account (bond) paying no interest, a stock S, and a collection of European call options
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C(K,T ) on S with various strikes K ∈ K and maturities T ∈ T . Our ultimate goal
is to establish a framework for pricing and hedging (possibly exotic) derivatives in
an arbitrage-free way, using all the liquid tradables as potential hedging instruments.
The present paper takes a step in that direction.

In order to achieve our goal, we want to construct a class of models for bond, stock
and options having at least the following features:

(0) Of course, the model should be arbitrage-free.
(1) Any initial option price data from the market can be reproduced by the model;

this could be called perfect calibration or smile-consistency.
(2) Empirically observed stylized facts from market time series, i.e., characteristic

features of the joint dynamics of stock and options, can be incorporated in the
model. This requires that explicit expressions for option price processes and their
dynamics should be available.

The overwhelming majority of the literature uses the martingale approach, where
one specifies the dynamics of the underlying S under some pricing (i.e., martingale)
measure Q and defines option prices by Ct(K,T ) := EQ[(ST −K)+|Ft ]. This obvi-
ously satisfies (0), and a perfect fit of the entire initial option surface as in (1) is for
instance possible with the so-called smile-consistent models. However, (2) is usually
not feasible, or if it is to some extent, this often comes at the cost that it entails a loss
in (1). We discuss this in more detail in the next section.

An alternative approach is the use of market models where one specifies the joint
dynamics of all tradable assets—here, stock and options. This gives (1) and (2) by
construction, and the remaining issue is to ensure the absence of arbitrage to have
(0) as well. In interest rate modeling, this leads to the well-known HJM drift condi-
tions; but the case of options is more complicated. In fact, the absence of dynamic
arbitrage again corresponds to drift conditions for the joint dynamics of S and the
C(K,T ). But in addition, the absence of static arbitrage enforces a number of re-
lations between the various C(K,T ) and S, and this means that the state space of
these processes is constrained as well. To obtain a tractable model, one must there-
fore reparametrize the tradables in such a way that the parametrizing processes have
a simple state space and yet capture all the static arbitrage constraints. We explain
this in more detail in the next section, but the point here is that this (modeling) task
is quite difficult.

The literature with actual results on arbitrage-free market models for option prices
is quite small and most compactly summarized in terms of the families K and T .
Again, a more thorough discussion is postponed to the next section. For the case
K = {K}, T = {T } of one single call option available for trade, there are both an
existence result and some explicit examples for models. For models with K = {K},
T = (0,∞) (one fixed strike, all maturities), the drift restrictions are well known,
but the existence of models has been proved only very recently. The other extreme
K = (0,∞), T = {T } (all strikes, one fixed maturity) is the focus of this paper; it
is more difficult and has (to the best of our knowledge) no precursors in terms of
parametrization or results. Finally, the case K = (0,∞), T = (0,∞) of the full sur-
face of strikes and maturities is still open despite some recent work by Carmona and
Nadtochiy [13]; see Sect. 6 for more details.
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The paper is structured as follows. In Sect. 2, we give an overview of the litera-
ture that is most closely related to the problem studied here and we explain in more
detail the nature of our contribution. Section 3 reviews market models for stochastic
implied volatilities. We characterize the absence of arbitrage in terms of drift restric-
tions and provide a general existence result for the case of a single option C(K,T ).
This is done in order to illustrate where one meets difficulties with classical implied
volatilities when passing to models with multiple strikes. Our main contribution is
contained in Sect. 4. Instead of modeling stock price and (classical) implied volatil-
ities, we introduce for a set of maturity-T call prices with strikes K ≥ 0, price level
and local implied volatilities which parametrize in a natural and simple way all possi-
ble arbitrage-free option prices. We provide explicit formulas for these new quantities
as functions of stock price and (classical) implied volatilities, and vice versa. In anal-
ogy to (classical) implied volatilities, we then characterize their arbitrage-free dy-
namics in terms of drift restrictions. In Sect. 5, we provide explicit and fairly general
examples of arbitrage-free dynamic models for the price level and the local implied
volatilities. To prove the existence and uniqueness of a solution to the corresponding
infinite system of SDEs, we adapt results from [44] to our setting. Section 6 concludes
and points out a number of open questions.

2 Background, motivation, and literature

This section discusses in more detail what we want to and what we can achieve with
our approach. Moreover, it also gives an overview of related literature, and for this, a
slightly broader perspective is useful. So let us look at models that exploit or produce
information about an underlying stock as well as options written on S.

2.1 Martingale models

In the martingale approach, one writes down a dynamic model (usually an SDE) for
a stock price martingale S under a probability measure Q and defines

Ct(K,T ) := EQ

[
(ST − K)+

∣∣Ft

]
, 0 ≤ t ≤ T ,

for K ∈ K ⊆ (0,∞) and T ∈ T ⊆ (0,∞). These models by construction satisfy the
requirement (0) of being arbitrage-free. Calibration as in (1) to given market option
prices is more or less feasible for instance in stochastic volatility models (e.g., Hull
and White [31], Heston [30], Davis [20]) or in models with jumps (e.g., Merton [37],
Barndorff-Nielsen and Shephard [3], Carr et al. [15]), and several of the models also
match some of the stylized features for S alone. But of course, calibration is limited
by the fact that one has only a finite number of parameters to be fitted. A perfect
fit of the entire option surface C0(K,T ) for K = (0,∞), T = (0,∞) is achieved
by the so-called smile-consistent models, most prominent among which are the local
volatility model of Dupire [24] and discrete-time implied tree models like Derman
and Kani [22]. A good overview on smile-consistent pricing is given by Skiadopoulos
[43] and some recent papers like Carr et al. [17] or Rousseau [39] also produce in
addition fairly realistic dynamic behavior for S alone.
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Knowing at time 0 all call option prices C0(K,T ) for K ∈ (0,∞) is equivalent to
knowing the marginal distribution of ST under Q; this observation goes back to Bree-
den and Litzenberger [11]. Hence perfect fitting of all C0(K,T ) with K ∈ (0,∞),
T ∈ T can be achieved by constructing a martingale with the corresponding mar-
ginals for ST , T ∈ T , under Q, and this can be done in many ways and situations; see
for instance Madan and Yor [36], Carr et al. [16], Bibby et al. [6], Atlan [1], Hamza
and Klebaner [28]. There are also many papers on calibration or empirical analyses of
various models, even if we do not quote any of this work here. But from our perspec-
tive, all these models suffer from the same fundamental drawback: In general, there
are no explicit expressions for the processes C(K,T ), and so their joint dynamics
with S are not really available.

Another question of interest in the context of models for stocks and options is the
link between the implied and the instantaneous volatility. This has been studied both
for local and for stochastic volatility models, and the typical results are asymptotic
relationships close to maturity and for at-the-money options; see for instance Beresty-
cki et al. [4, 5] or Durrleman [26]. But again, these papers neither provide nor study
the joint dynamics of S and C(K,T ).

2.2 Market models

As already explained in the introduction, a natural way to construct a model satisfying
the requirements (1) of perfect calibration and (2) of joint dynamics is to use a market
model, where one specifies the dynamics of all liquid tradables simultaneously. This
goes back to ideas from interest rate modeling, and the absence of dynamic arbitrage
there leads to the well-known drift conditions of Heath et al. [29]. The same type
of conditions also appears in option price models. But in addition, static arbitrage
bounds lead to restrictions on the state space of the quantities used to describe the
model, and so the choice of a suitable parametrization becomes a crucial issue. (As
a matter of fact, the same problem arises in the interest rate context if one insists
on modeling zero-coupon bond prices; but it is easily resolved there by passing to
forward rates instead.)

In the literature, some work has been done in special cases. If the option col-
lection consists of a single call C = C(K,T ), one has the static arbitrage bounds
(St − K)+ ≤ Ct ≤ St as well as the terminal condition CT = (ST − K)+. Specify-
ing directly for the pair (S,C) dynamics which obey these state space constraints is
quite delicate. It is much easier to reparametrize the option price C by its implied
volatility σ̂ via Ct = c(St ,K, (T − t)σ̂ 2

t ), where c is the well-known Black–Scholes
[7] function given in (3.1) below. Then the pair (S, σ̂ ) may take any value in (0,∞)2,
the static arbitrage bounds and terminal condition are satisfied, and one can proceed
to specify and study models for the joint dynamics of (S, σ̂ ). Such market models
of implied volatilities for a single option have first been proposed in Lyons [35] and
Schönbucher [40], and arbitrage-free examples have been constructed in Babbar [2].
Even in this apparently simple situation, the construction is not entirely straightfor-
ward: in an Itô process framework over a Brownian filtration, the drifts are essentially
determined by the volatilities of S and σ̂ , and if one takes these nonlinear drift restric-
tions into account, the question whether the resulting two-dimensional SDE system
for S and σ̂ admits a solution becomes nontrivial.
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The situation becomes much more complicated if our option collection contains
more than one single call. In the literature, one can find several variants of necessary
conditions on the implied volatility dynamics for the resulting model to be arbitrage-
free; see, for instance, Schönbucher [40], Brace et al. [8, 9], and Ledoit et al. [33].
However, none of these works provide any explicit example of a multi-option mar-
ket model; in other words, no sufficient conditions are given, and the existence of
such models with specified dynamics remains an open issue. The key difficulty is
that the well-known static no-arbitrage conditions for calls with different strikes and
maturities (see, e.g., Carr and Madan [14] or Davis and Hobson [21]) entail rather
complicated relations between the implied volatilities of these options; this is illus-
trated in some more detail in Sect. 3. We believe that there is a fundamental reason
for this problem: despite their importance as a market standard to quote option prices,
(classical) implied volatilities are unsuited for modeling call prices in a multi-option
model. Put bluntly, they give the wrong parametrization.

Of course, the idea of replacing implied volatilities by another parametrization
of call prices in option market models is not entirely new. For the case K = {K},
T = (0,∞) of a family with one fixed strike K and all maturities T > 0, Schönbucher
[40] has introduced the forward implied volatilities

σ̂ 2
fw(T ) := ∂

∂T

(
(T − t)σ̂ 2(T )

)
, (2.1)

and we have recently used in [41] new techniques from [44] for infinite-dimensional
SDE systems to prove existence results for this class of models. The main contribu-
tion in [41] is to show how one can handle the complicated SDE systems that arise
via the drift restrictions coming from absence of dynamic arbitrage. The choice of
the parametrization (2.1) is taken from Schönbucher [40] and has its roots in the ob-
vious analogy to the well-known forward rates for interest rate modeling. As a matter
of fact, the results in [41] are more generally given for a maturity term structure
of options with one fixed (convex or concave) payoff function h and all maturities
T > 0. The special case h = log corresponds to a market model for variance swaps,
where the drift conditions take a particularly simple form; the resulting model has
been explicitly analyzed in Bühler [12]. Jacod and Protter [32] also study models
for options with one fixed payoff function and all maturities and parametrize via the
maturity derivatives ∂

∂T
Ct (T ). However, they do not specify C(T ) by joint dynamics

with S, and so their work falls into the realm of the martingale approach discussed in
Sect. 2.1.

In this paper, we consider the other extreme of the spectrum. We want to construct
arbitrage-free market models for call option prices in the case K = (0,∞), T = {T }
of a family with one fixed maturity T and all strikes K > 0. This is substantially more
difficult than the case of all maturities with one fixed strike because it requires new
ideas already at the modeling level. Our main achievement is to introduce a new para-
metrization of option prices for the multi-strike case in such a way that arbitrage-free
dynamic modeling becomes tractable. We define these new quantities, called “local
implied volatilities,” in Sect. 4. They have no comparable precursor or analogue in
interest rate theory because the traded assets in interest rate market models, the zero-
coupon bonds, simply do not have any “strike structure.” The key feature of these
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new parameters is that they have a simple state space and yet capture precisely all
the static arbitrage restrictions. Once they have been constructed, dynamic arbitrage
conditions and existence results for the corresponding dynamic option models still
need to be dealt with, but this can be achieved by using our techniques developed
in [44] and [41].

3 Market models for implied volatilities

In this section, we review market models for implied volatilities and explain why their
usefulness in arbitrage-free modeling is mostly limited to the case of a single traded
option C(K,T ). The general setup along with the concept of implied volatilities is
introduced in Sect. 3.1. In Sect. 3.2, we characterize the absence of dynamic arbitrage
in such models in terms of drift restrictions. This recovers the results in Sect. 3.3 of
Schönbucher [40]. Our Sect. 3.3 provides sufficient conditions for the existence and
uniqueness of the corresponding dynamics of S and σ̂ (K,T ) in the case of only
one pair (K,T ) and discusses the difficulties that arise if one tries to generalize this
approach to a model of implied volatilities for more than one strike.

3.1 Implied volatilities of call options

Throughout this paper, we work with the following setup. Let (Ω, F ,P ) be a proba-
bility space and T > 0 a fixed maturity. Let (St )0≤t≤T be a positive process modeling
a stock price, and (Bt )0≤t≤T a positive process with BT = 1 P -a.s., modeling the
price of a (nondefaultable) zero-coupon bond with maturity T . Moreover, for K > 0,
let (Ct (K))0≤t≤T be a nonnegative process modeling the price of a European call
option on S paying (ST −KBT )+ = (ST −K)+ at time T . Finally, let c(S,K,Υ ) be
the Black–Scholes function

c(S,K,Υ ) = SN

(
log(S/K) + 1

2Υ

Υ
1
2

)
− KN

(
log(S/K) − 1

2Υ

Υ
1
2

)
(Υ > 0),

c(S,K,0) = (S − K)+,

⎫
⎪⎬

⎪⎭
(3.1)

where N(·) denotes the standard normal distribution function. Clearly, c is strictly
increasing in Υ with limΥ →∞ c(S,K,Υ ) = S for all S,K ≥ 0. If the model con-
sisting of B , S, and C(K) for a fixed K > 0 does not admit an elementary arbitrage
opportunity, then it is well known that we have, for all 0 ≤ t ≤ T ,

(St − KBt)
+ ≤ Ct(K) ≤ St

(see, e.g., [41, Proposition 2.1]). This allows us to give the following:

Definition 3.1 The implied volatility of the price Ct(K) is the unique parameter
σ̂t (K) ≥ 0 satisfying

c
(
St ,KBt , (T − t)σ̂ 2

t (K)
)= Ct(K). (3.2)
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Since the Black–Scholes function c has the homogeneity property
c(S,K,Υ ) = S c̃(K

S
,Υ ) for a suitable function c̃, the implied volatility is invari-

ant under a change of numeraire; in other words, the defining condition (3.2) can be
rewritten, for every positive numeraire process M , as

c
(
St/Mt ,KBt/Mt , (T − t)σ̂ 2

t (K)
)= Ct(K)/Mt .

Therefore, we always use from now on the bond B as numeraire, and in the sequel,
all price processes B , S, C(K) denote B-discounted price processes, so that B ≡ 1.

3.2 Drift restrictions for implied volatilities

Let W be an m-dimensional Brownian motion on (Ω, F ,P ), F = (Ft )0≤t≤T the
P -augmented filtration generated by W , and F = FT . We denote, for d ∈ N and
p ≥ 1, by L

p

loc(R
d) the space of all R

d -valued, progressively measurable, and lo-
cally p-integrable (in t , P -a.s.) processes on [0, T ]. We model a stock price process
(St )0≤t≤T and, for some set of strikes K ⊆ (0,∞), a family of price processes
(Ct (K))0≤t≤T (K ∈ K) of call options paying (ST − K)+ at time T by

Ct(K) = c
(
St ,K, (T − t)Xt (K)

)
(3.3)

with dynamics

dSt = μtSt dt + σtSt dWt , S0 = s0, (3.4)

dXt (K) = ut (K)Xt (K)dt + vt (K)Xt (K)dWt , X0(K) = x0(K) (3.5)

for 0 ≤ t ≤ T . Here c is the Black–Scholes function from (3.1), μ,u(K) are in
L1

loc(R), and σ, v(K) are in L2
loc(R

m). Each X (K) = σ̂ 2(K) is a positive process
modeling the square of the implied volatility of C(K).

It is now natural to ask under which conditions there exists a common equivalent
local martingale measure for the (discounted) price processes S, C(K) for all K ∈ K.
The existence of such a measure is essentially equivalent to the drift restrictions

μt = −σtbt , (3.6)

ut (K) = 1

T − t

(
1 − 1

Xt (K)

∣∣∣∣σt + 1

2
log

(
K

St

)
vt (K)

∣∣∣∣

2)

+
(

1

16
(T − t)Xt (K) + 1

4

)∣∣vt (K)
∣∣2 −

(
σt

2
+ bt

)
· vt (K) (3.7)

for all K ∈ K and a market price of risk process b ∈ L2
loc(R

m). More precisely, we
have the following result.

Theorem 3.2 (a) If there exists a common equivalent local martingale measure Q

for S and C(K) for all K ∈ K, then there exists a market price of risk process
b ∈ L2

loc(R
m) such that (3.6) and (3.7) (K ∈ K) hold for a.e. t ∈ [0, T ], P -a.s.
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(b) Conversely, suppose that the coefficients μ, σ , u(K), and v(K) satisfy, as func-
tions of S and X (K), relations (3.6) and (3.7) (K ∈ K) for a.e. t ∈ [0, T ], P -a.s., for
some bounded (uniformly in t , ω) process b ∈ L2

loc(R
m). Also suppose that there ex-

ists a family of positive continuous adapted processes S, X (K) on [0, T ] satisfying
the system (3.4), (3.5). Then there exists a common equivalent local martingale mea-
sure Q on FT for (St )0≤t≤T , (Ct (K))0≤t≤T for all K ∈ K. One such measure is given
by

dQ

dP
:= E

(∫
b dW

)

T

,

where E denotes the stochastic exponential. Moreover, if σ is bounded, then S and
C(K) for all K ∈ K are martingales under Q.

This result is essentially proved in Sect. 3.3 of Schönbucher [40]. Note that the free
input parameters in the model are the stock volatility σ and the family of processes
v(K) for all K ∈ K, i.e., the volatilities of the implied volatilities X (K); they deter-
mine (together with the market price of risk b) the drifts μ and u(K) via (3.6) and
(3.7). The v(K) are often called volvols.

3.3 Existence problems in arbitrage-free implied volatility models

We now turn to the question of existence and uniqueness of solutions for arbitrage-
free implied volatility models. This is an important issue; without an existence result,
it is not possible to specify a concrete model, and the uniqueness is the basis for
any convergence result of an eventual numerical implementation. For the case of one
single call option, a positive result can be found in Babbar [2]. In order to point out
the major difficulties arising in the general case of several calls, we review here the
case of a single option by discussing a slightly more general version of the basic
result of Babbar [2].

Consider the model (3.4), (3.5), where μ and u(K) are given by (3.6), (3.7), and
take the case where the coefficients v(K) are nonzero constants and σ is in L2

loc(R
m).

In general, two problems will arise:

1. Because of the nonlinear dependence on X (K) of the drifts u(K) in (3.7), a so-
lution of (3.5) will in general only exist up to an explosion time which may be
strictly less than T with positive probability.

2. Due to the factor 1
T −t

, the drifts u(K) will typically not be in L1
loc(R). The solution

of (3.5) will explode at maturity, i.e., for t ↗ T , and C(K) will no longer be a local
martingale on [0, T ].

So for a general specification of the coefficients σ , v(K), we must expect that the
system (3.4), (3.5) does not have a (nonexploding) solution on [0, T ] and that there
does not exist an arbitrage-free model with these coefficients. See also Schönbucher
[40], Sect. 3.5, for a discussion of the second problem.

For a positive result, we need to make a choice for σ , v(K) which avoids the above
difficulties. As in Babbar [2], we restrict to the case K = {K} of a single call option
and, to simplify the notation, we drop the dependence on K in the quantities X , u, v.
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We choose the processes v and σ as functions of the state variables t, S, X , writing
(with a slight abuse of notation)

vt = v(t, S, X ),

σt = σ(t, S, X ),

and define for a fixed market price of risk process b the processes

μt = μ(t, S, X ),

ut = u(t, S, X )

by the drift restrictions (3.6), (3.7). In order to obtain a unique strong solution to
our SDEs, we have to impose some sort of Lipschitz condition on the coefficients.
To that end, let U ⊆ R

d and Θ be a (possibly empty) set. We say that a function
f : Θ × U → R

k is locally Lipschitz on U if f (·, x) is bounded for fixed x ∈ U and
if there exists a continuous function C(·, ·) on U2 such that

∣∣f (θ, x) − f (θ, x′)
∣∣≤ C(x, x′)|x − x′| ∀x, x′ ∈ U, θ ∈ Θ.

One easily checks that if f , g are locally Lipschitz on U and h : f (U) → R
k is

locally Lipschitz on f (U), then f + g, fg, and h ◦ f are locally Lipschitz on U .
In the following, const denotes a generic positive constant whose value can change
from one line to the next. We now have the following result.

Proposition 3.3 Let b be a progressively measurable process which is uniformly
bounded and

σ(t, s, x) := −1

2
log(K/s)v(t, s, x) + √

x
(
f (t, s, x) + (T − t)g(t, s, x)

)
, (3.8)

where f,g, v : [0, T ] × (0,∞)2 → R
m are locally Lipschitz on (0,∞)2 and satisfy

∣∣f (t, s, x)
∣∣= 1,

∣∣g(t, s, x)
∣∣≤ const,

∣∣v(t, s, x)
∣∣≤ const

1

1 + √
x + | log(K/s)| .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.9)

Then the system (3.4), (3.5) with (3.6), (3.7) has a unique positive (nonexploding)
solution (S, X ) on [0, T ].

For the proof, we need an existence and uniqueness result for strong solutions of
SDEs with locally Lipschitz coefficients.

Proposition 3.4 Let x0 ∈ R
d and β : [0,∞) × R

d → R
d , γ : [0,∞) × R

d → R
d×m

be functions which are locally Lipschitz on R
d . Suppose that, for f ∈ {β,γ },

∣∣f (t, x)
∣∣≤ const

(
1 + |x|) ∀t ≥ 0, x ∈ R

d . (3.10)
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Then there exists a unique strong solution on [0,∞) to the SDE

dXt = β(t,Xt ) dt + γ (t,Xt ) dWt , X0 = x0.

Proof This follows from Chap. 5 and Theorems 3.1 and 3.2 in Durrett [25] for the
time-homogeneous case. The time-inhomogeneous case is proved completely analo-
gously. �

We now come to the

Proof of Proposition 3.3 In order to deal with the positivity requirement for S and X ,
we work with a suitable transformation of the state variables. Let a ≥ 1 be sufficiently
large. Then there exists a convex smooth strictly increasing function ψ : R → (0,∞)

such that

ψ(z) =
{

− 1
z

for z ≤ −a,

z for z ≥ a.
(3.11)

Let ϕ : (0,∞) → R be the inverse of ψ . We apply Proposition 3.4 with d = 2 to the
SDE system for the processes Y = logS, Z = ϕ(X ), that is, to the system

dY =
(

μ
(
t, eY ,ψ(Z)

)− 1

2

∣∣σ
(
t, eY ,ψ(Z)

)∣∣2
)

dt + σ
(
t, eY ,ψ(Z)

)
dW,

Y (0) = log s0,

⎫
⎪⎬

⎪⎭
(3.12)

dZ = ū(t, Y,Z)dt + v̄(t, Y,Z)dW,

Z(0) = ϕ(x0),

}

(3.13)

where

ū(t, y, z) = u
(
t, ey,ψ(z)

)
ψ(z)ϕ′(ψ(z)

)+ 1

2

∣
∣v
(
t, ey,ψ(z)

)∣∣2ψ(z)2ϕ′′(ψ(z)
)
,

v̄(t, y, z) = v
(
t, ey,ψ(z)

)
ψ(z)ϕ′(ψ(z)

)
.

If we have a solution (Y,Z) to (3.12), (3.13), then by Itô’s lemma
(S, X ) := (eY ,ψ(Z)) is a solution to (3.4), (3.5), and vice versa.

It now only remains to check the conditions of Proposition 3.4 for the coefficients
in the system (3.12), (3.13). The local Lipschitz condition is clearly satisfied, since
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f,g, v,ψ,ϕ′, ϕ′′ are locally Lipschitz. To check (3.10), first note that we have

∣∣ψ(z)ϕ′(ψ(z)
)∣∣≤ const

(
1 + |z|) ∀z ∈ R,

∣∣ψ(z)2ϕ′′(ψ(z)
)∣∣≤ const

(
1 + |z|) ∀z ∈ R.

}

(3.14)

This follows for z /∈ [−a, a] by direct computation from (3.11) and for z ∈ [−a, a]
by the continuity of the functions on the left-hand sides of (3.14). Next, note that
from (3.7) and (3.8) we obtain

u(t, s, x) = −2f (t, s, x) · g(t, s, x) − (T − t)
∣∣g(t, s, x)

∣∣2

+
(

1

16
(T − t)x + 1

4

)∣∣v(t, s, x)
∣∣2 −

(
1

2
σ(t, s, x) + b

)
· v(t, s, x),

and now (3.8) and (3.9) imply that u(t, s, x) and v(t, s, x) are bounded. Together with
(3.14), this yields (3.10) for the coefficients of (3.13). Finally, (3.8) and (3.9) imply

∣∣σ
(
t, ey,ψ(z)

)∣∣≤ const
(
1 +√

ψ(z)
)≤ const

(
1 +√

a + |z| ).
Together with (3.6), this yields (3.10) for the coefficients of (3.12), and the proof is
complete. �

The main ideas for the volatility specifications in Proposition 3.3 are the following.
First, we choose v in a form which ensures that u from (3.7) is bounded in X ; this is
why we need the asymptotic behavior v(t, s, x) ∼ 1√

x
for x → ∞ in (3.9). Once v is

given, the choice of σ in (3.8) is then necessary to remove the singularity and ensure
the boundedness of u from (3.7) near maturity, i.e., for T − t ↘ 0.

We can now also illustrate one of the main difficulties in extending this result to
|K| > 1. In the market model (3.4), (3.5) for a stock S and several call options and
squared implied volatilities X (K) satisfying the no-arbitrage conditions (3.6), (3.7),
it is not clear how to choose the coefficients σ , v(K) to ensure nonexplosion of the
drifts u(K) (and thus the absence of arbitrage) for T − t ↘ 0. Already for |K| = 2,
the above method would force us to choose σ for given v(K1) and v(K2) in such a
way that we keep both u(K1) and u(K2) under control, and it is not clear if or how
this could be achieved. It does not help either if one tries to first specify σ and then
find suitable v(K1) and v(K2); getting simultaneous control over both u(K1) and
u(K2) looks equally hard.

The true reason behind these difficulties is the fact that implied volatilities cannot
take arbitrary values across a spectrum of strikes: the absence of arbitrage between
different options enforces awkward constraints and relations between the correspond-
ing implied volatilities. For an easy example, take strikes 0 < K1 < K2 and suppose
that the call price C(K1) is given by some implied volatility σ̂ (K1) > 0. If the im-
plied volatility σ̂ (K2) for the strike K2 now exceeds a certain finite bound (depend-
ing on S, σ̂ (K1), K1,K2), the price curve K �→ c(S,K, (T − t)σ̂ 2(K)) is no longer
decreasing on [K1,K2], which leads to an immediate arbitrage opportunity. This is
the same effect we have already seen in Sect. 2, where modeling (S,C) was very
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delicate, whereas modeling (S, σ̂ ) was straightforward. In the present two-strike sit-
uation, we now find that modeling (S, σ̂ (K1), σ̂ (K2)) is unpleasant, and the reason
is again that the state space of this process is very complicated due to static arbitrage
constraints. We conclude again that we need another, better suited parametrization—
and this is why we think that (classical) implied volatilities are not the right choice
for constructing market models of option prices.

To overcome these problems, we introduce in the next section a transformation
of the variables S, X (K), K ∈ K, to a new parametrization which has a very simple
state space, and for which a nonsingular specification of the arbitrage-free dynamics
consequently becomes straightforward.

4 Local implied volatilities and price level of option price curves

It has been a market standard for a long time to use implied volatilities for quoting
option prices, and they have been extensively analyzed in many respects; a good
overview can be found in Lee [34]. In particular, the statistical behavior of σ̂ is well
known from many empirical studies on the dynamics of the surface σ̂ (K,T ) (see,
for example, Cont and da Fonseca [18] for a list of references in this area). But for
the purpose of a theoretical analysis, implied volatilities in an arbitrage-free setting
suffer from the serious drawback that they cannot take arbitrary positive values across
different strikes, and we have just seen in Sect. 3.3 that this makes the construction
of option market models via implied volatilities a tremendous (if not impossible)
challenge.

In this section, we therefore propose to parametrize call prices by a new set of
quantities which do not suffer from the above problems. In Sect. 4.1, we introduce
local implied volatilities and the price level which model an arbitrage-free set of call
prices in a natural way. We provide an interpretation for these quantities and show
how they are related to classical implied volatilities and the stock price. Examples
are given in Sect. 4.2. In Sect. 4.3, we then derive the arbitrage-free dynamics of
local implied volatilities and the price level. The resulting infinite system of SDEs is
studied in more detail in Sect. 5; it is still complicated but tractable.

4.1 The new parametrization: definitions and basic properties

We resume the setup of Sect. 3.1. On some probability space (Ω, F ,P ), we have
a (discounted) bond price process B ≡ 1 and positive processes (St )0≤t≤T and
(Ct (K))0≤t≤T , K > 0, modeling the (discounted) prices of a stock S and European
call options on S with one fixed maturity T > 0 and all strikes K > 0. In the notation
of Sect. 3, we have here K = (0,∞). By setting Ct(0) := St , the model is specified
through the processes C(K), K ≥ 0, on the interval [0, T ].

Definition 4.1 A function Γ : [0,∞) → [0,∞) is called a price curve. A price curve
is called statically arbitrage-free if it is convex and satisfies −1 ≤ Γ ′+(K) ≤ 0 for all
K ≥ 0.

This definition is motivated by the following:
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Proposition 4.2 If the above market C(K), K ≥ 0 does not admit an elementary ar-
bitrage opportunity, then, for each t ∈ [0, T ), the price curve K �→ Γ (K) := Ct(K)

is statically arbitrage-free.

Proof See Davis and Hobson [21], Theorem 3.1. �

Since Ct(0) = St , one easily checks that any statically arbitrage-free price curve
satisfies the elementary static arbitrage bounds (St −K)+ ≤Ct(K)≤St . Besides ab-
sence of arbitrage, a further economically reasonable requirement for a European call
option model is that limK→∞ Ct(K) = 0 for all t ∈ [0, T ), and, under some nonde-
generacy conditions on S, one can also show that the inequalities in Definition 4.1
must be strict. This motivates that we restrict ourselves to the following class of mod-
els.

Definition 4.3 An option model C(K), K ≥ 0 is called admissible if the price
curve Γ (K) := Ct(K) has an absolutely continuous derivative with Γ ′′(K) > 0
for a.e. K > 0, −1 < Γ ′(K) < 0 for all K > 0, and limK→∞ Γ (K) = 0 for each
t ∈ [0, T ), and if we have CT (K) = (ST − K)+ for all K ≥ 0, P -a.s.

We now introduce a new set of fundamental quantities which allow a straightfor-
ward parametrization of admissible option models. Let N−1(·) denote the quantile
function and n(·) = N ′(·) the density function of the standard normal distribution.
To motivate our subsequent definition, recall the Black–Scholes function c(S,K,Υ )

in (3.1) and note that its first and second partial derivatives with respect to the
strike are given by cK(S,K, (T − t)σ 2) = −N(d2) and cKK(S,K, (T − t)σ 2) =
n(d2)

1
K

1√
T −t σ

with d2 = log(S/K)−(T −t)σ 2/2√
T −t σ

. Hence we have the identity

σ = n(N−1(−cK(S,K, (T − t)σ 2)))√
T − tK cKK(S,K, (T − t)σ 2)

. (4.1)

This motivates the following:

Definition 4.4 Let Ct(K)0≤t≤T be admissible. The local implied volatility of the
price curve at time t ∈ [0, T ) is the measurable function K �→ Xt(K) given by

Xt(K) := 1√
T − tKC′′

t (K)
n
(
N−1(−C′

t (K)
))

for a.e. K > 0. (4.2)

Next, for a fixed constant K0 ∈ (0,∞), we define the price level of the price curve at
time t ∈ [0, T ) as

Yt := √
T − tN−1(−C′

t (K0)
)
. (4.3)

By (4.1), the quantity Xt(K) can be interpreted as an “implied volatility” in the
sense of a functional of the call price curve that yields back the volatility parame-
ter for option prices given by Black–Scholes prices. The terminology local implied
volatility is justified by the following result.
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Proposition 4.5 Let X(K) and Y be the local implied volatilities and price
level of an admissible model C(K), K ≥ 0. Suppose that, for a small interval
I = [a, b] ⊆ (0,∞) and fixed t < T , we have Xt(K) = Xt(a) for all K ∈ I . Then
there exists a unique pair (xt , zt ) ∈ (0,∞)2 such that

c
(
zt ,K1, (T − t)x2

t

)− c
(
zt ,K2, (T − t)x2

t

)= Ct(K1) − Ct(K2) (4.4)

holds for all K1,K2 ∈ I . It is given by

xt = Xt(a),

zt = exp

(
Xt(a)Yt − Xt(a)

∫ a

K0

dh

Xt(h)h
+ loga + 1

2
(T − t)Xt (a)2

)
.

The proof is given at the end of this section. By Proposition 4.5, the local im-
plied volatility Xt(a) at the strike a is that unique implied volatility parameter xt for
which the Black–Scholes formula prices all call option differences Ct(K1) − Ct(K2)

with strikes in the small interval I = [a, b] consistently, i.e., with the same implied
volatility parameter xt and the same “implied stock price” zt . Note that this inter-
pretation only holds locally, in the sense that the assumption Xt(K) = Xt(a) for
K ∈ [a, b] can only hold (approximately) if the interval [a, b] is very small. The
“implied stock price” zt in general depends on I and differs from the underlying
stock price Ct(0) = St , unless the price curve Ct(K) is generated by a Black–Scholes
model; see Example 4.10 below. As we shall see later, the price level Yt (which does
not depend on K or I by construction) serves as a convenient substitute for the im-
plied stock price zt in our option model framework.

For an admissible option model, we clearly have by definition Xt(K) > 0,
Yt ∈ R. The main motivation for Definition 4.4 is that the set of positive local im-
plied volatility curves and real-valued price levels is (up to some integrability condi-
tions) in a one-to-one relation to admissible option price models, as is shown in the
following:

Theorem 4.6 Let X(K),Y be the local implied volatilities and price level of an
admissible model C(K). Then

Ct(K) =
∫ ∞

K

N

(
Yt − ∫ k

K0

dh
Xt (h)h√

T − t

)
dk, K ∈ [0,∞), (4.5)

C′
t (K) = −N

(
Yt − ∫ K

K0

dh
Xt (h)h√

T − t

)
, K ∈ (0,∞), (4.6)

C′′
t (K) = n

(
Yt − ∫ K

K0

dh
Xt (h)h√

T − t

)
1

Xt(K)K
√

T − t
, a.e. K ∈ (0,∞). (4.7)

Conversely, for continuous adapted processes X(K) > 0, Y on [0, T ] for which the
right-hand side of (4.5) is finite P -a.s., define Ct(K) via (4.5). Then C(K), K ≥ 0 is
an admissible model having local implied volatilities X(K) and price level Y .
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Proof We start with the second assertion. Equation (4.5) implies (4.6) and (4.7), so
the price curves Γ (K) := Ct(K) are strongly arbitrage-free. The finiteness of the
integral in (4.5) ensures limK→∞ Γ (K) = 0, and using the behavior of the integrand

N

(
Yt−

∫ k
K0

dh
Xt (h)h√

T −t

)
in (4.5) for t ↗ T gives

CT (K) =
∫ ∞

0
I{

YT >
∫ k
K0

dh
XT (h)h

}(k) dk −
∫ K

0
I{

YT >
∫ k
K0

dh
XT (h)h

}(k) dk.

Because X(h) > 0, the integrand k �→ g(k) := I{
YT >

∫ k
K0

dh
XT (h)h

} is decreasing, has

values 0 and 1, and its integral from 0 to ∞ is CT (0) = ST . So either g ≡ 1 on
[0,K], in which case CT (K) = ST − K , or g drops to 0 before K , in which case
ST = ∫ K

0 g(k)dk < K . This shows that CT (K) = (ST −K)+. Finally, solving (4.6) at
K = K0 for Yt gives (4.3), and solving (4.7) for Xt(K) via plugging in (4.6)
yields (4.2).

For the first assertion, note that C′
t (K) defined by (4.6) solves the first-order ODE

(4.2) for C′
t (K) with initial condition (4.3). Since x �→ n(N−1(−x)) is locally Lip-

schitz on (0,1), the solution is unique and thus must be given by (4.6). Finally, (4.5)
follows by integrating (4.6) and using limK→∞ Ct(K) = 0. �

Remark Definition 4.4 and Theorem 4.6 can be extended to the following setting.
Let C(K), K ≥ 0 be an option model such that the price curve
Γ (K) := Ct(K) is statically arbitrage-free, has absolutely continuous derivative, and
satisfies limK→∞ Γ (K) = 0 for each t ∈ [0, T ). We also suppose that there exists a
constant K0 ∈ (0,∞) with K0 ∈ It := {K > 0 |C′

t (K) ∈ (−1,0)} for all t ∈ [0, T ).
Note that It is an interval since C′

t (·) is an increasing function. Then define, for
t ∈ [0, T ),

Xt(K) :=

⎧
⎪⎨

⎪⎩

1√
T −tKC′′

t (K)
n(N−1(−C′

t (K))) if C′′
t (K) > 0,

0 if C′′
t (K) = 0, K /∈ It ,

∞ if C′′
t (K) = 0, K ∈ It ,

and Yt by (4.3). Then in analogy to Theorem 4.6, the option prices can be written as
in (4.5)–(4.7) with the obvious interpretation of the integrals

∫ k

K0

dh
Xt (h)h

for [0,∞]-
valued functions Xt(h). Conversely, for a process X(K) satisfying Xt(K) ∈ (0,∞]
for K ∈ It and Xt(K) = 0 for K /∈ It with intervals It containing K0, and a real-
valued process Y , define Ct(K) again via (4.5). Then we obtain a model with sta-
tically arbitrage-free price curves having local implied volatilities X(K) and price
level Y . This extended definition of the local implied volatilities can be used, for
example, to construct models in which the stock price S only takes values in some
interval I ⊆ [0,∞); in this case, the absence of arbitrage requires that C′′

t (K) = 0 for
K /∈ I .

Here is a sufficient criterion for the finiteness of the right-hand side of (4.5). Note
that this is a condition on X(K).

Proposition 4.7 If there exists K1 > 0 such that Xt(K) ≤
√

1
2

logK
T −t

for a.e. K ≥ K1,
then the outer integral in (4.5) is finite.
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Proof We may assume that K1 > K0. Then, for sufficiently large k (depending on
K1 and Yt ), we have

∫ k

K0

dh

Xt(h)h
≥
∫ k

K1

dh

2
√

loghh

√
8(T − t) = (√

logk −√
logK1

)√
8(T − t),

Yt − ∫ k

K0

dh
Xt (h)h√

T − t
≤ −√logk

√
8 +√

logK1
√

8 + Yt√
T − t

≤ −√4 logk,

N

(
Yt − ∫ k

K0

dh
Xt (h)h√

T − t

)
≤ N

(−√4 logk
)≤ n

(−√4 logk
)= 1√

2π
e−2 log k = 1√

2π

1

k2
.

So the integral is finite (P -a.s., for each t). �

Remarks (1) If there exists an equivalent martingale measure Q ≈ P for the model
C(K), K ≥ 0, then we have C′

t (K) = −Q[ST > K | Ft ], and hence (4.6) implies the
relation

Q[ST > K0 | Ft ] = N

(
Yt√
T − t

)

between the price level and the risk-neutral probability of the call C(K0) being in
the money at maturity. In particular, this relation shows that we have to exclude the
choice K0 = 0 in the definition (4.3) of the price level unless we are dealing with a
defaultable stock model.

(2) Under the assumption in (1), the default probability P [ST = 0 | Ft ] is zero if
and only if we have C′

t (0) = −1. This condition can be ensured in a local implied
volatility model, for instance, by demanding that, for some ε > 0 and x > 0, we have

Xt(K) ≤ x| logK| for a.e. K ≤ ε;

this implies that
∫ K

K0

dh
Xt (h)h

→ −∞ for K → 0 and hence C′
t (0) = −1 by (4.6).

In addition to providing an interpretation for the local implied volatilities and price
level, we can also express these new quantities in terms of the classical implied
volatilities σ̂t (K) of the admissible option prices Ct(K) and the stock price St . These
formulas are a bit lengthy but explicit.

Proposition 4.8 Define Υt(K) := (T − t)σ̂ 2
t (K) and d2(t,K) := log(St /K)− 1

2 Υt (K)√
Υt (K)

.
Then the local implied volatilities and price level are given by

Yt = √
T − t N−1

(
N
(
d2(t,K0)

)− 1

2
n
(
d2(t,K0)

)√
Υt(K0)

K0

σ̂ 2
t (K0)

d

dK
σ̂ 2

t (K0)

)
.

(4.8)

and
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Xt(K) = σ̂t (K) n

(
N−1

(
N
(
d2(t,K)

)

− 1

2
n
(
d2(t,K)

)√
Υt(K)

K

σ̂ 2
t (K)

d

dK
σ̂ 2

t (K)

))

× 1

n(d2(t,K))

[
1 +

(
log

(
St

K

)
+ 1

2
Υt(K)

)
K

σ̂ 2
t (K)

d

dK
σ̂ 2

t (K)

+ 1

4

(
log2

(
St

K

)
− Υt(K) − 1

4
Υ 2

t (K)

)(
K

σ̂ 2
t (K)

d

dK
σ̂ 2

t (K)

)2

+ 1

2
Υt(K)

K2

σ̂ 2
t (K)

d2

dK2
σ̂ 2

t (K)

]−1

(4.9)

Proof From (3.2) we obtain

C′
t (K) = cK

(
St ,K,Υt (K)

)+ cΥ

(
St ,K,Υt (K)

)
(T − t)

d

dK
σ̂ 2

t (K),

C′′
t (K) = cKK

(
St ,K,Υt (K)

)+ 2cKΥ

(
St ,K,Υt (K)

)
(T − t)

d

dK
σ̂ 2

t (K)

+ cΥ Υ

(
St ,K,Υt (K)

)(
(T − t)

d

dK
σ̂ 2

t (K)

)2

+ cΥ

(
St ,K,Υt (K)

)
(T − t)

d2

dK2
σ̂ 2

t (K).

Computing the partial derivatives of the Black–Scholes function c(S,K,Υ ) yields

C′
t (K) = −N

(
d2(t,K)

)+ 1

2
n
(
d2(t,K)

)√
Υt(K)

K

σ̂ 2
t (K)

d

dK
σ̂ 2

t (K), (4.10)

C′′
t (K) = 1

K
n
(
d2(t,K)

) 1√
Υt(K)

[
1 +

(
log

(
St

K

)
+ 1

2
Υt(K)

)
K

σ̂ 2
t (K)

d

dK
σ̂ 2

t (K)

+ 1

4

(
log2

(
St

K

)
− Υt(K) − 1

4
Υ 2

t (K)

)(
K

σ̂ 2
t (K)

d

dK
σ̂ 2

t (K)

)2

+ 1

2
Υt(K)

K2

σ̂ 2
t (K)

d2

dK2
σ̂ 2

t (K)

]
. (4.11)

Now the result follows by inserting (4.10), (4.11) into (4.2), (4.3). �

Note that by using (4.10), (4.11), we could express the (strong) static no-arbitrage
restrictions C′

t (K) ∈ (−1,0) and C′′
t (K) > 0 of Proposition 4.2 in terms of the im-

plied volatilities σ̂ (K). However, it is not at all obvious how one could parametrize
those implied volatility curves K �→ σ̂t (K) which satisfy the resulting conditions.
In contrast, Theorem 4.6 says that any positive-valued local implied volatility curve
X(K) satisfying the simple bound in Proposition 4.7 is compatible with the static
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no-arbitrage restrictions in an admissible model. In other words, the absence of dy-
namic arbitrage can be characterized and ensured by imposing only conditions on the
coefficients in the dynamics; there are no restrictions on the state space of the X(K)

and Y , which can take arbitrary values in (0,∞) and R, respectively. We therefore
argue that this new parametrization is very natural and convenient for constructing
models.

Remark In [41], we have shown how one can parametrize an infinite family of option
price processes for one fixed payoff function (e.g., calls with one fixed strike) and
all maturities T > 0. The parametrization chosen in [41] is via the forward implied
volatilities over the remaining time to maturity, and we have shown that this is very
convenient to analyze in terms of absence of dynamic arbitrage. The local implied
volatilities and price level introduced here play the analogous role for models of calls
with one fixed maturity and all strikes K > 0.

It remains to give the

Proof of Proposition 4.5 By (4.5) and the assumption in Proposition 4.5, we have,
for any K1,K2 ∈ I ,

Ct(K1) − Ct(K2) =
∫ K2

K1

N

(
Yt − ∫ k

K0

dh
Xt (h)h√

T − t

)
dk

=
∫ K2

K1

N

(
Yt − ∫ a

K0

dh
Xt (h)h

+ loga
Xt (a)

− log k
Xt (a)√

T − t

)
dk.

For any xt > 0 and zt > 0, we have d
dK

c(zt ,K, (T − t)x2
t ) = −N

( log(zt /K)− 1
2 (T −t)x2

t√
T −t xt

)

for all K , and therefore

c
(
zt ,K1, (T − t)x2

t

)− c
(
zt ,K2, (T − t)x2

t

)

=
∫ K2

K1

N

( log zt

xt
− 1

2 (T − t)xt − log k
xt√

T − t

)
dk. (4.12)

So clearly zt = exp(Xt (a)(Yt −
∫ a

K0

dh
Xt (h)h

+ loga
Xt (a)

+ 1
2 (T − t)Xt (a))) and xt = Xt(a)

satisfy (4.4). To see the uniqueness of (xt , zt ), note that by using (4.2), then (4.4), and
finally (4.1), we obtain, for K ∈ I ,

Xt(a) = Xt(K) = 1√
T − tKC′′

t (K)
n
(
N−1(−C′

t (K)
))

= n(N−1(−cK(zt ,K, (T − t)x2
t )))√

T − tK cKK(zt ,K, (T − t)x2
t )

= xt .

Moreover, (4.12) shows that c(zt ,K1, (T − t)x2
t ) − c(zt ,K2, (T − t)x2

t ) is strictly
increasing in zt , so the uniqueness of zt follows. �
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4.2 Examples

We now illustrate the concept of local implied volatilities in several stock models. By
Theorem 4.6, the local implied volatilities and price level could have been equiva-
lently defined via (4.5). This equation (and along with it also the new parametriza-
tion) can be motivated quite naturally as an option pricing formula in a certain stock
martingale model driven by a one-dimensional Brownian motion, as explained in our
first example.

Example 4.9 Suppose that the stock price process S = (St )0≤t≤T satisfies

ST = F
(
W̃T

)
(4.13)

for a Brownian motion W̃ under a pricing measure Q and a strictly increasing bijec-
tive differentiable function F : R → I ⊆ (0,∞). Suppose further that both S and W̃

generate the same filtration (Ft )0≤t≤T . Our aim is now to fit the function F to a given
admissible price curve C0(K) of call option prices at time 0. Under the absence of
arbitrage, we obtain, for the call option prices Ct(K) with K ≥ 0,

Ct(K) = EQ

[
(ST − K)+

∣∣Ft

]= EQ

[(
F

(
W̃T − W̃t√

T − t

√
T − t + W̃t

)
− K

)+∣∣∣∣Ft

]

= EQ

[(
F
(
W̃1

√
T − t + y

)− K
)+]∣∣

y=W̃t

= EQ

[∫ ∞

K

I{F(W̃1
√

T −t+y)≥k}dk

]∣∣∣∣
y=W̃t

=
∫ ∞

K

Q
[
F
(
W̃1

√
T − t + y

)≥ k
]
dk

∣∣∣∣
y=W̃t

=
∫ ∞

K

Q

[
W̃1 ≥ F−1(k) − y√

T − t

]
dk

∣∣∣∣
y=W̃t

=
∫ ∞

K

N

(
W̃t − F−1(k)√

T − t

)
dk (4.14)

for t ∈ [0, T ]. In particular, for K = 0, we obtain the underlying stock price model
St = Ct(0). The local implied volatilities are now introduced as a straightforward
parametrization of the function F−1. Since F : R → I is strictly increasing, bijec-
tive, and differentiable, for a fixed K0 > 0, there exists a unique integrable function
f : I → [0,∞] with F−1(k) = ∫ k

K0
f (h)dh. If we define

X(k) := 1

f (k)k
(k ≥ 0) (4.15)
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and Yt := W̃t , then F−1(k) = ∫ k

K0

dh
X(h)h

, and (4.14) becomes (4.5). Solving this for
X(k) and Y then leads to Theorem 4.6 and shows how one can fit local implied
volatilities, and hence the function F , to the initial price curve C0(K).

Theorem 4.6 says that the admissible price curves C0(K) at time 0 are in a one-to-
one relation to positive local implied volatilities X(k) and real-valued price levels Y0.
The above calculations show that the admissible price curves C0(K) are also in a one-
to-one relation to strictly increasing bijective differentiable functions F : R → (0,∞)

as in (4.13). This reflects the well-known result that modeling statically arbitrage-
free price curves of T -maturity calls is equivalent to specifying the distribution of the
stock price ST under the pricing measure. Our parametrization of the arbitrage-free
option prices then arises quite naturally via the nonnegative quantities f (k) parame-
trizing the set of functions F−1(k) as above. Once the representation (4.14) is found,
the scaling in the definition (4.15) of the local implied volatilities X(k) is chosen to
establish compatibility with the Black–Scholes model, in the sense that X(k) is con-
stant and yields the volatility parameter if S follows a geometric Brownian motion.

Example 4.10 For the Black–Scholes model with volatility σ > 0, we have
St = S0 exp(σW̃t − 1

2σ 2t), where W̃ is a Brownian motion under the risk-neutral
measure, and σ̂t (K) = σ for all K > 0. So (4.9) simplifies to Xt(K) = σ , recovering
identity (4.1) again, and (4.8) yields

Yt = √
T − t d2(t,K0) = 1

σ
logSt − 1

σ
logK0 − 1

2
(T − t)σ

= W̃t + 1

σ

(
log(S0/K0) − 1

2
T σ 2

)
.

Plugging this into the expression for zt in Proposition 4.5 readily shows that zt = St

in the Black–Scholes model.

Example 4.11 In Heston’s [30] stochastic volatility model, the stock and instanta-
neous variance are modeled by the 2-dimensional diffusion (S, ζ ) given by

dSt = St

√
ζt dW̃ 1

t ,

dζt = κ(θ − ζt )dt + ν
√

ζt

(
ρ dW̃ 1

t +
√

1 − ρ2 dW̃ 2
t

)

for a 2-dimensional Brownian motion (W̃ 1, W̃ 2) under the risk-neutral measure, with
constants κ, θ, ν > 0, and ρ ∈ (−1,1). Stochastic volatility models can reproduce
implied volatility smiles and skews, and Heston’s model is a popular choice in prac-
tice, since there exists a semi-closed formula for call prices (see [30]) which allows
fast calibration of the model parameters to market prices. Because of the compli-
cated structure of the price formula, however, no simple expression for local implied
volatilities in Heston’s model seems to be available. Numerical calculations show
that, for typical parameter values, local implied volatilities exhibit a similar but more
pronounced smile and skew structure than classical Black–Scholes implied volatili-
ties; see Fig. 1.
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Fig. 1 Classical versus local
implied volatility as function of
moneyness K

St
in Heston’s

model for different times to
maturity. Parameter values are
κ = 3, θ = 0.22, ν = 0.45,
ρ = −0.5 and ζt = 0.22

4.3 Arbitrage-free dynamics of the local implied volatilities

In this section, we derive the dynamics of the local implied volatilities under the
absence of arbitrage. Let W be an m-dimensional Brownian motion on (Ω, F ,P ),
F = (Ft )0≤t≤T the P -augmented filtration generated by W , and F = FT . We sup-
pose that we have positive processes Xt(K) for a.e. K > 0, satisfying the condition
in Proposition 4.7, and a real valued process Yt with P -dynamics

dXt(K) = ut (K)Xt (K)dt + vt (K)Xt (K)dWt (0 ≤ t ≤ T ), (4.16)

dYt = βt dt + γt dWt (0 ≤ t ≤ T ), (4.17)

where β,u(K) ∈ L1
loc(R), and γ, v(K) ∈ L2

loc(R
m) for a.e. K . We also suppose

that u,v are uniformly bounded in ω, t,K and that the initial local implied volatil-
ity curve satisfies

∫ K

K0

dh

X0(h)2 < ∞ for all K > 0. Now define the processes Ct(K),
K ≥ 0 by (4.5), so that Xt(K), Yt are by construction and Theorem 4.6 the local im-
plied volatilities and price level of the option prices Ct(K), K ≥ 0. Remember that
St = Ct(0) and note that, for defining Ct(0) via (4.5), the values Xt(0) are not needed.

Our aim is now to show that the existence of a common equivalent local martingale
measure for C(K) for all K ≥ 0 is essentially equivalent to the drift restrictions

βt = 1

2

Yt

T − t

(|γt |2 − 1
)− γt · bt , (4.18)
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ut (K) = 1

T − t

[
1

2
− 1

2

∣∣∣∣γt +
∫ K

K0

vt (h)

Xt (h)h
dh

∣∣∣∣

2

+
(

Yt −
∫ K

K0

dh

Xt(h)h

)(
γt +

∫ K

K0

vt (h)

Xt (h)h
dh

)
· vt (K)

]

+ ∣∣vt (K)
∣∣2 − vt (K) · bt (4.19)

for a market price of risk process b ∈ L2
loc(R

m). More precisely, we have the follow-
ing result.

Theorem 4.12 (a) If there exists a common equivalent local martingale measure Q

for all C(K) (K ≥ 0), then there exists a market price of risk process b ∈ L2
loc(R

m)

such that (4.18), (4.19) (for a.e. K > 0) hold for a.e. t ∈ [0, T ], P -a.s.
(b) Conversely, suppose that the coefficients β,γ,u(K), and v(K) satisfy, as func-

tions of Yt and Xt(K), relations (4.18), (4.19) (for a.e. K > 0) for a.e. t ∈ [0, T ],
P -a.s. for some bounded (uniformly in t,ω) process b ∈ L2

loc(R
m). Also suppose that

there exists a family of continuous adapted processes X(K) > 0, Y satisfying the sys-
tem (4.16) (for a.e. K > 0) and (4.17). Then there exists a common equivalent local
martingale measure Q on FT for C(K) (K ≥ 0). One such measure is given by

dQ

dP
:= E

(∫
b dW

)

T

, (4.20)

where E is again the stochastic exponential.
(c) In the situation of (a) or (b), the dynamics of C(K) under Q are given by

dCt (K) =
∫ ∞

K

n

(
Yt − ∫ k

K0

dh
Xt (h)h√

T − t

)
1√

T − t

(
γt +

∫ k

K0

vt (h)

Xt (h)h
dh

)
dk · dW̃t

(4.21)
for K ≥ 0 and a Q-Brownian motion W̃ = W − ∫

bs ds.

Equations (4.18), (4.19) for the local implied volatility setting are the analogues to
the drift restrictions (2.13), (2.14) in [41] for the forward implied volatility modeling.
Note that the free input parameters are the market price of risk process b as well as γ

and the family of processes v(K) for all K , i.e., the volatilities of the state variables
Y and X(K); they determine the drifts β and u(K) via (4.18), (4.19). Note also that
since St = Ct(0), the volatility σt of the stock price process dSt = σtStdW̃t can easily
be derived from (4.21) and (4.5) as

σt =
∫ ∞

0
n

(
Yt − ∫ k

K0

dh
Xt (h)h√

T − t

)
1√

T − t

(
γt +

∫ k

K0

vt (h)

Xt (h)h
dh

)
dk

×
(∫ ∞

0
N

(
Yt − ∫ k

K0

dh
Xt (h)h√

T − t

)
dk

)−1

.
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This implies that if γ or the “volvols” v(K) are random, we obtain for the stock price
S a model with a certain (quite specific) stochastic volatility. Whether or not this is
Markovian depends on γ, v(K).

Example 4.13 Let X0(·) be a positive measurable function on (0,∞) satisfying the
condition in Proposition 4.7 and Y0 ∈ R. Take m = 1, γ ≡ 1, and v(K) ≡ 0 for all K .
Then Theorem 4.12 yields β = −b, u(K) = 0 for all K , and thus Yt = Wt − ∫ t

0 bs ds

and Xt(K) = X0(K) for all K . Hence we recover the arbitrage-free one-factor model
with constant (strike-dependent) local implied volatility of Example 4.9. In Sect. 5,
we construct more generally arbitrage-free option price models with stochastic (and
thus potentially more realistic) local implied volatility processes.

The remainder of this section is devoted to the proof of Theorem 4.12. We use the
following:

Proposition 4.14 Let Zt(k) := Yt − ∫ k

K0

dh
Xt (h)h

. Under P , the dynamics of Ct(K) for
each fixed K ≥ 0 are then given by

dCt (K) =
∫ ∞

K

n

(
Zt(k)√
T − t

)
1√

T − t

[
1

2

Zt(k)

T − t

(
1 −

∣∣∣∣γt +
∫ k

K0

vt (h)

Xt (h)h
dh

∣∣∣∣

2)

+ βt −
∫ k

K0

v2
t (h) − ut (h)

Xt (h)h
dh

]
dk dt

+
∫ ∞

K

n

(
Zt(k)√
T − t

)
1√

T − t

(
γt +

∫ k

K0

vt (h)

Xt (h)h
dh

)
dk · dWt .

Proof Formally this follows from applying Itô’s lemma under the integral in (4.5)
and then using (4.16), (4.17). Using the condition in Proposition 4.7, one can show
that we may apply Fubini’s theorem for stochastic integrals (see Protter [38], Chap.
IV, Theorem 65) to justify interchanging the dk-integral and the stochastic integral.
A detailed proof can be found in [46], Sect. 4.7.3. �

Proof of Theorem 4.12 (a) Since F is generated by W , Itô’s representation theorem
implies that we have E[ dQ

dP
|Ft ] = E (

∫
b dW)t for some process b ∈ L2

loc(R
m), and

W̃ := W −
∫

bt dt

is a Q-Brownian motion by Girsanov’s theorem. Now Proposition 4.14 yields

dCt (K) =
∫ ∞

K

n

(
Zt(k)√
T − t

)
1√

T − t
μt (k) dk dt

+
∫ ∞

K

n

(
Zt(k)√
T − t

)
1√

T − t

(
γt +

∫ k

K0

vt (h)

Xt (h)h
dh

)
dk · dW̃t , (4.22)
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where

μt(k) := 1

2

Zt(k)

T − t

(
1 −

∣∣∣∣γt +
∫ k

K0

vt (h)

Xt (h)h
dh

∣∣∣∣

2)
+ βt −

∫ k

K0

v2
t (h) − ut (h)

Xt (h)h
dh

+
(

γt +
∫ k

K0

vt (h)

Xt (h)h
dh

)
· bt

for k > 0. Since C(K) are local Q-martingales for all K , by Fubini’s theorem we
have P -a.s., for a.e. t ,

μt(k) = 0 for a.e. k (4.23)

and then for all k by the continuity of μt in k. Letting k → K0 in (4.23), we obtain
(4.18). Finally, (4.19) follows after a straightforward calculation if we differentiate
(4.23) with respect to k.

(b) Define dQ
dP

:= E (
∫

b dW)T on FT ; then W̃ := W − ∫
bt dt is a Q-Brownian

motion on [0, T ] by Girsanov’s theorem. Another lengthy but straightforward cal-
culation shows that (4.18) and (4.19) imply μt(k) = 0 for all k. Plugging this and
dWt = dW̃t + bt dt into Proposition 4.14, we obtain (c) under (b). It now easily fol-
lows from (c) that C(K) for all K ≥ 0 are Q-local martingales on [0, T ].

(c) The assertion under (b) has been proved together with (b) above. Under (a), the
assertion follows from (4.22) and (4.23). �

5 A class of arbitrage-free local implied volatility models

In this section, we apply the existence and uniqueness results of [44] to the infi-
nite system (4.16), (4.17) of SDEs arising in Sect. 4, providing explicit examples of
arbitrage-free local implied volatility models. This requires some additional work:
An existence result for general SDEs like in [44] uses assumptions on both the drift
and the volatility coefficients, but in the case of our system (4.16), (4.17), we may
only choose the volatility coefficients γ, v. Our aim is therefore to find conditions on
the coefficients γ, v such that the drift coefficients β,u given by (4.18), (4.19) behave
nicely and the results of [44] can be applied.

We first adapt the framework for infinite systems of SDEs developed in [44] to the
present setup in Sect. 5.1. Then we provide an existence result in Sect. 5.2. We gen-
eralize Example 4.13 to nonzero v and hence to stochastic local implied volatilities.
Our approach is similar in spirit to the existence results in [44, Sect. 5] for interest rate
term structure models or in [41, Sect. 3] for forward implied volatility term structure
models.

5.1 Construction of the solution space

In this section, we define the spaces in which we construct the SDE solutions in
Sect. 5.2 below. This is done broadly in parallel to Sect. 3.1 in [41]. Some rather
technical concepts from [44] (including an existence result for infinite-dimensional
SDEs) which are only used in proofs have been shifted into the Appendix; it can be
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skipped by those readers who are mainly interested in the results and less in the details
of the proofs. An alternative approach to our existence problem could be based on the
theory of Hilbert space-valued SDEs by Da Prato and Zabczyk [19]; this is sketched
at the end of this section.

Our key trick to obtaining results for the infinite family of real-valued processes
X(K), K > 0, on Ω is to view this as one real-valued process on an extended space
Ω̃ whose elements are pairs (K,ω). Since we only need our processes up to the
fixed maturity T , we work throughout this section on [0, T ]. So let (Ω, F ,P ) be
a probability space, T > 0, F = (Ft )0≤t≤T a filtration on this space satisfying the
usual conditions, W an m-dimensional Brownian motion with respect to P and F,
and K0 > 0 the constant in Definition 4.4. Let λ be a strictly positive probability
density on (0,∞) with λ(K0) < ∞, and define

ζ(K) := inf
h∈[K0∧K,K0∨K]λ(h)h, K ∈ (0,∞).

Then ζ ∗ := supK∈(0,∞) ζ(K) = λ(K0)K0 < ∞. Let ν be the probability on (0,∞)

corresponding to λ, and set

(Ω̃, F̃ , G̃, P̃ ) := (
(0,∞) × Ω,

({∅, (0,∞)
}⊗ F

)∨ Ñ , B(0,∞) ⊗ F , ν ⊗ P
)
,

where Ñ is the family of (ν ⊗ P)-zero sets in B(0,∞) ⊗ F . Also define

G̃ = (G̃t )t∈[0,T ] with G̃t := (
B(0,∞) ⊗ Ft

)∨ Ñ , t ∈ [0, T ],
W̃ = (W̃t )t∈[0,T ] with W̃t (k,ω) := Wt(ω) ∀t ∈ [0, T ], (k,ω) ∈ Ω̃.

It is straightforward to check that W̃ is a (G̃, P̃ )-Brownian motion on Ω̃ .
We can now introduce the spaces in which we construct our SDE solutions. The

following definition coincides with the corresponding one in [44].

Definition 5.1 For p ≥ 1 and d ∈ N, S p,d
c or shortly S p

c is the space of all (equiva-
lence classes of) R

d -valued, G̃-adapted, P̃ -a.s. continuous processes
X = ((X(t))0≤t≤T on Ω̃ which satisfy

‖X‖p := E
P̃

[
sup

0≤t≤T

∣∣X(t)
∣∣p
]

=
∫ ∞

0
E

[
sup

0≤t≤T

∣∣X(t, k)
∣∣p
]

dν(k) < ∞;

we identify X and X′ in S p
c if ‖X − X′‖ = 0.

The following simple result says that stochastic integrals with respect to W̃ can be
interpreted as stochastic integrals with respect to W in the natural way; it is proved
exactly like Proposition 5.1 in [44].

Proposition 5.2 Let h be a G̃-progressively measurable process on Ω̃ such that∫ T

0 h2
u du < ∞ P̃ -a.s. Then we have

∫ T

0 hu(k)2 du < ∞ P -a.s. for a.e. k ∈ (0,∞),
and the stochastic integral

∫
hdW̃ satisfies

(∫ t

0
hu dW̃u

)
(k) =

(∫ t

0
hu(k) dWu

)
∀t P -a.s. for a.e. k ∈ (0,∞).
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From now on, we identify F-progressively measurable (or F-adapted) processes h

on Ω with G̃-progressively measurable (or G̃-adapted) processes h̃ on Ω̃ by setting
h̃(t, k,ω) := h(t,ω), and similarly F-stopping times τ on Ω with G̃-stopping times
τ̃ on Ω̃ by setting τ̃ (k,ω) := τ(ω). In other words, we extend quantities from Ω to
Ω̃ = (0,∞) × Ω by letting them be constant in the k-argument, k ∈ (0,∞). With a
slight abuse of notation, we write τ for τ̃ and h for h̃, in particular W for W̃ .

In Sect. 5.2 below, we consider 2-dimensional processes (X,Y ) on the space Ω̃

such that X(t, k,ω) represents the local implied volatility at strike k and Y(t, k,ω)

does not depend on k and represents the price level of the underlying option curve at
time t when the market is in state ω ∈ Ω . Proposition 5.2 then implies that, for a.e. k,
X(·, k) can be interpreted as an Itô process on Ω .

Let us conclude this section with some comments on the classical approach to
infinite-dimensional SDEs. Instead of constructing the process (X,Y ) on the space
Ω̃ as described above, one could also view X as a process on Ω taking values
X(t, k,ω)k>0 in some Hilbert space H of functions (of k) on (0,∞), and use the
theory of Hilbert space-valued SDEs by Da Prato and Zabczyk [19] to obtain exis-
tence results for our models. Since our methodology only allows the construction of
local implied volatility processes X(t, k,ω) which are measurable as a function of
k, one advantage of the Hilbert-space approach would be the possibility to obtain
regularity properties in k via a suitable choice of H. This has been demonstrated for
Heath–Jarrow–Morton interest rate models by Filipović [27] (see Sect. 5.1 there),
and for term structures of implied volatilities (the case K = {K}, T = (0,∞)) in a
recent paper by Brace et al. [10]. In [27], Filipović uses the existence results from Da
Prato and Zabczyk [19, Theorems 6.5 and 7.4] for Hilbert space-valued SDEs with
Lipschitz coefficients to obtain the existence of HJM models with a specified volatil-
ity structure (Theorem 5.2.1, ii, in [27]); the latter is chosen in such a way that the
drift coefficients given by the HJM drift restrictions satisfy global Lipschitz condi-
tions. For option market models, such a choice is in general not possible because of
the complex structure of the drift restrictions, and we can typically only achieve that
the drift coefficients are locally Lipschitz and of linear growth in the state variables.
A general (global) existence result for this type of SDEs is given in Seidler [42, The-
orem 1.5, iii]. In the case of option term structure models, Brace et al. [10] deal with
the existence problem by a localization argument (see Lemmas 22–25 there) which
again allows them to apply the existence results from [19].

We expect that similar arguments as in [42] and [10] will work in our setting
as well. Nevertheless, we choose in this paper the alternative approach described in
the beginning of this section, where we can also apply a general existence result
(Proposition A.3) for SDEs with locally Lipschitz and linearly growing coefficients.
This choice is admittedly somewhat arbitrary, and our main reason for making it is
that we have the results in [44] easily and readily at our disposal.

5.2 The existence result

We now provide a class of volatility coefficients γ (t), v(t,K) for which there
exists an arbitrage-free local implied volatility model (4.16), (4.17). Fix T > 0
and let (b1(t), . . . , bm(t)) be a uniformly bounded R

m-valued F-progressively
measurable process on Ω . To make things more transparent, we assume that
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γ (t) = (γ1(t),0, . . . ,0) (we may always achieve this without loss of generality by
an orthogonal transformation of the vector dWt ). We choose the coefficients γ (t),
v(t,K) = (v1(t,K), . . . , vm(t,K)) of the functional form

γ (t, Y ) = (
1 + (T − t)g

(
t, Y (t)

)
,0, . . . ,0

)
, (5.1)

vj (t,K,X,Y ) = fj

(
t,K,X(t,K)

)
Vj

(
t,K,

∫ K

K0

dh

X(t, h)h
,Y (t)

)
ζ(K)2 (5.2)

for measurable functions g : [0, T ] × R → R, fj : [0, T ] × (0,∞)2 → R and
Vj : [0, T ]× (0,∞)×R

2 → R. With these functions, we define, as in Theorem 4.12,

β(t, Y ) := 1

2

Y(t)

T − t

(
γ1(t, Y )2 − 1

)− γ1(t, Y )b1(t), (5.3)

u(t,K,X,Y ) := 1

T − t

[
1

2
− 1

2

∣∣∣∣γ (t, Y ) +
∫ K

K0

v(t, h,X,Y )

X(t, h)h
dh

∣∣∣∣

2

+
(

Y(t) −
∫ K

K0

dh

X(t, h)h

)

×
(

γ (t, Y ) +
∫ K

K0

v(t, h,X,Y )

X(t, h)h
dh

)
· v(t,K,X,Y )

]

+ ∣∣v(t,K,X,Y )
∣∣2 − v(t,K,X,Y ) · b(t). (5.4)

Let Y0 ∈ R and X0 be a positive measurable function on (0,∞) with
∫ K

K0

dh

X0(h)2 < ∞
for all K > 0. We take d = 2 and consider in S p,2

c the SDE

dX(t,K) = u(t,K,X,Y )X(t,K)dt + v(t,K,X,Y )X(t,K)dWt ,

dY (t) = β(t, Y ) dt + γ (t, Y ) dWt

}

(5.5)

with initial condition X(0,K) = X0(K), Y(0) = Y0. If we have a (unique) solution
(X,Y ) to (5.5), then Y does not depend on K .

We can now give sufficient conditions for (5.5) to have a unique solution. Recall
the definition of the functions ψ and ϕ in (3.11). In the following, const denotes a
generic positive constant whose value can change from line to line.

Theorem 5.3 (a) Let p > 2 be sufficiently large and X0 such that ϕ(1/X0(·)) ∈ Lp(ν).
Suppose that γ, v are of the form (5.1), (5.2), fj is a.e. differentiable in x, and g, Vj

and fj (j = 1, . . . ,m) satisfy the Lipschitz conditions
∣∣g(t, y) − g(t, y′)

∣∣≤ const |y − y′|,
∣∣V1(t, k,w,y) − Vj (t, k,w′, y′)

∣∣≤ const (T − t)
(|w − w′| + |y − y′|),

∣∣Vj (t, k,w,y) − Vj (t, k,w′, y′)
∣∣≤ const

√
T − t

(|w − w′| + |y − y′|)

(j = 2, . . . ,m),
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∣∣x ∂xfj (t, k, x)
∣∣≤ const (j = 1, . . . ,m) (5.6)

as well as the bounds

∣
∣g(t, y)

∣
∣≤ const, (5.7)

∣∣V1(t, k,w,y)
∣∣≤ T − t

1 + |y − w| , (5.8)

∣∣Vj (t, k,w,y)
∣∣≤

√
T − t

1 + |y − w| (j = 2, . . . ,m), (5.9)

∣∣fj (t, k, x)
∣∣≤ const

(|x| ∧ 1
)

(j = 1, . . . ,m) (5.10)

for all t ∈ [0, T ], k > 0, x ≥ 0, w,w′, y, y′ ∈ R. Then (5.5) has a unique solution
(X,Y ) ∈ S p,2

c . Y does not depend on K , we have X > 0, and u(t,K,X,Y ) and
v(t,K,X,Y ) are uniformly bounded.

(b) Moreover, suppose that there exist constants K1 ≥ 1+K0 and x0 > 0 such that
X0(k) ≤ x0 for all k ≥ K1 and fj (t, k, x) = 0 for all k ≥ K1 and x ≥ 0, j = 1, . . . ,m.
Then supk≥K1

Xt(k) is uniformly bounded in ω, t , and so the assumption of Proposi-
tion 4.7 is satisfied.

It is straightforward to specify examples of functions g,Vj , fj satisfying the con-
ditions of Theorem 5.3, and we do this below. The above result therefore provides a
fairly large class of examples for stochastic local implied volatility models. Note that
this stands in contrast to the models of Sect. 3 parametrized by the classical implied
volatility; there, a corresponding existence result for the multi-strike case does not
seem to be available so far.

Proof of Theorem 5.3 (a) This proof should be read in conjunction with the Appen-
dix. Let ϕ1(z) := ϕ′(ψ(z))ψ(z), ϕ2(z) := ϕ′′(ψ(z))ψ(z)2, and recall that ϕ is the
inverse of ψ in (3.11). We want to use the transformation Z = ϕ( 1

X
). We consider in

S p,2
c the SDE

dZ(t,K) = ū(t,K,Y,Z)dt + v̄(t,K,Y,Z)dWt ,

dY (t) = β(t, Y ) dt + γ (t, Y ) dWt

}

(5.11)

with initial condition Z(0,K) = ϕ( 1
X0(K)

), Y(0) = Y0, where

ū(t,K,Y,Z) := ϕ1
(
Z(t,K)

)(
∣∣∣∣v
(

t,K,
1

ψ(Z)
,Y

)∣∣∣∣

2

− u

(
t,K,

1

ψ(Z)
,Y

))

+ ϕ2
(
Z(t,K)

)
∣∣∣∣v
(

t,K,
1

ψ(Z)
,Y

)∣∣∣∣

2

,

v̄(t,K,Y,Z) := −ϕ1
(
Z(t,K)

)
v

(
t,K,

1

ψ(Z)
,Y

)
.
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If we have a unique solution (Y,Z) to (5.11), then Itô’s lemma readily yields that
(X,Y ) = ( 1

ψ(Z)
, Y ) is the unique solution to (5.5).

We now want to apply Proposition A.3 to (5.11). It follows easily from (5.1),
(5.2) that the coefficients in (5.11) are strongly (S p,2

c -)progressively measurable. To
check that they are locally Lipschitz on S p,2

c , we use Proposition A.4. It is proved in
Lemma 5.4 below that the functions

e1(t,K,Y,Z) := ϕ1
(
Z(t,K)

)
, (5.12)

g1j (t,K,Y,Z) := fj

(
t,K,

1

ψ(Z(t,K))

)
ϕ1
(
Z(t,K)

)
, (5.13)

h1j (t,K,Y,Z) := fj

(
t,K,

1

ψ(Z(t,K))

)2
ϕ2
(
Z(t,K)

)
(5.14)

(j = 1, . . . ,m) satisfy (A.2). Next, we introduce the functions

g2(t,K,Y,Z) := g
(
t, Y (t)

)
,

g3(t,K,Y,Z) :=
(

Y(t) −
∫ K

K0

ψ
(
Z(t,h)

)dh

h

)
ζ(K),

(5.15)

g4j (t,K,Y,Z) := Vj

(
t,K,

∫ K

K0

ψ
(
Z(t,h)

)dh

h
,Y (t)

)
ζ(K),

g5j (t,K,Y,Z) :=
∫ K

K0

vj

(
t, h,

1

ψ(Z)
,Y

)
ψ
(
Z(t,h)

)dh

h

and claim that g2, g3, 1
T −t

g41, 1
T −t

g51, 1√
T −t

g4j , and 1√
T −t

g5j (j ≥ 2) satisfy the

polynomial Lipschitz condition (A.3). This is easily verified for g2, g3, 1
T −t

g41, and
1√
T −t

g4j by using the definition of ζ and the fact that g, Vj , and ψ are Lipschitz, and

it is proved in Lemma 5.5 below for 1
T −t

g51 and 1√
T −t

g5j . Now we have, by (5.3),
(5.4), and the definitions of ū and v̄ above,

ū =
m∑

j=1

g1j g4j ζ(K)bj

− 1

T − t

[

− 1

2
e1

(

2(T − t)g2 + (T − t)2g2
2 + 2

(
1 + (T − t)g2

)
g51 +

m∑

j=1

g2
5j

)

+
(

g11g41
(
1 + (T − t)g2

)+
m∑

j=1

g1j g4j g5j

)

g3

]

+
m∑

j=1

h1j g
2
4j ζ(K)2,

β = 1

2
Y(t)

(
2g2 + (T − t)g2

2

)− (
1 + (T − t)g2

)
b1,
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v̄j = −g1j g4j ζ(K),

γ1 = 1 + (T − t)g2,

and so Proposition A.4 yields that the coefficients in (5.11) are locally Lipschitz if p is
sufficiently large. Finally, we have to check condition (A.1). It is clearly satisfied for
β and γ1, and it follows easily for v̄j from (5.2) and (5.8)–(5.10). Using Lemma 5.4
and (5.10), we see that

|e1| + |g1j | + |h1j | ≤ const
(
1 + Z(t,K)

)
,

and from (5.2), (5.9), (5.10), and ζ(h)
h

≤ λ(h) we obtain, for j = 2, . . . ,m,

|g5j | ≤
∫ K

K0

const
1

ψ(Z(t, h))

√
T − t ζ(h)2ψ

(
Z(t,h)

)dh

h
≤ const ζ ∗√T − t

and similarly |g51| ≤ const ζ ∗(T − t). Moreover, using (5.8), (5.9), we get
|g41g3| ≤ (ζ ∗)2(T − t) and |g4j g3| ≤ (ζ ∗)2

√
T − t . Combining these estimates

yields (A.1) for ū. Now Proposition A.3 gives us the existence and uniqueness of
the solution (Y,Z).

The boundedness of v(t,K,X,Y ) is clear, and that of u(t,K,X,Y ) follows by
writing u − |v|2 + v · b in a similar form as ū and then using (5.7)–(5.10) plus the
already established boundedness of g51

T −t
and

g5j√
T −t

.

(b) By (5.2) we have vj (t,K,X,Y ) = 0 for K ≥ K1 and j = 1, . . . ,m, and this
implies, for K ≥ K1,

u(t,K,X,Y ) = 1

2(T − t)

[

1 −
∣
∣∣∣1 + (T − t)g

(
t, Y (t)

)+
∫ K1

K0

vj (t, h,X,Y )

X(t, h)h
dh

∣
∣∣∣

2

−
m∑

j=2

∣∣
∣∣

∫ K1

K0

vj (t, h,X,Y )

X(t, h)h
dh

∣∣
∣∣

2
]

.

Now using (5.7) and the bounds obtained in the proof of part (a) for g5j defined in
(5.15), we find that |u(t,K,X,Y )| ≤ const for K ≥ K1. The assertion follows from
Xt(K) = X0(K) exp(

∫ t

0 u(s,K,X,Y )ds) for K ≥ K1. �

Lemma 5.4 The functions e1, g1j , and h1j defined by (5.12)–(5.14) satisfy (A.2).

Proof We have

d

dz

[
fj

(
t,K,

1

ψ(z)

)
ϕ1(z)

]
= ∂xfj

(
t,K,

1

ψ(z)

)
1

ψ(z)

−ψ ′(z)
ψ(z)

ϕ1(z)

+ fj

(
t,K,

1

ψ(z)

)
ϕ′

1(z),
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d

dz

[
fj

(
t,K,

1

ψ(z)

)2

ϕ2(z)

]
= 2fj

(
t,K,

1

ψ(z)

)
∂xfj

(
t,K,

1

ψ(z)

)

× 1

ψ(z)

−ψ ′(z)
ψ(z)

ϕ2(z) + fj

(
t,K,

1

ψ(z)

)2

ϕ′
2(z).

Now the functions −ψ ′(z)
ψ(z)

ϕ1(z),
−ψ ′(z)
ψ(z)

ϕ2(z), ϕ′
1(z), and ϕ′

2(z) are bounded on R (for
z /∈ [−a, a], this follows by direct computation and for z ∈ [−a, a] by continuity).
Together with (5.6) and (5.10), it follows that the above derivatives are bounded, and
therefore the functions are globally Lipschitz in z. This yields (A.2). �

Lemma 5.5 The functions 1
T −t

g51 and 1√
T −t

g5j defined in (5.15) satisfy (A.3).

Proof Define g6j (t,K,Y,Z) := fj (t,K, 1
ψ(Z(t,K))

)ψ(Z(t,K)). Then one shows in
the same way as for g1j in Lemma 5.4 that

∣∣g6j (t,K,Y,Z) − g6j (t,K,Y ′,Z′)
∣∣≤ const

∣∣Z(t,K) − Z′(t,K)
∣∣.

Since g5j (t,K,Y,Z) = ∫ K

K0
g6j (t, h,Y,Z)g4j (t, h,Y,Z)ζ(h)dh

h
and ζ(h)

h
≤ λ(h), we

obtain
∣∣g5j (t,K,Y,Z) − g5j (t,K,Y ′,Z′)

∣∣

≤
∫ K

K0

∣∣g6j (t, h,Y,Z) − g6j (t, h,Y ′,Z′)
∣∣∣∣g4j (t, h,Y,Z)

∣∣ζ(h)
dh

h

+
∫ K

K0

∣
∣g6j (t, h,Y ′,Z′)

∣
∣
∣
∣g4j (t, h,Y,Z) − g4j (t, h,Y ′,Z′)

∣
∣ζ(h)

dh

h

≤ √
T − tζ ∗const

∫ ∞

0

∣∣Z(t,h) − Z′(t, h)
∣∣λ(h)dh

+ sup
h∈[K0,K]

∣∣g4j (t, h,Y,Z) − g4j (t, h,Y ′,Z′)
∣∣

×
(

const
∫ ∞

0

∣∣Z′(t, h)
∣∣λ(h)dh + const

)

for j ≥ 2, and, for j = 1, the same holds with
√

T − t replaced by T − t . Now divide
this inequality by 1

T −t
for j = 1 and 1√

T −t
for j ≥ 2. Since 1

T −t
g41 and 1√

T −t
g4j

satisfy (A.3), the assertion follows. �

Example 5.6 Let g(y) be a bounded and Lipschitz function, x∗ > 0 a constant, and
aj (K) bounded functions satisfying aj (K) = O(K2) for K → 0 and aj (K) = 0 for
all sufficiently large K . Define

fj (t,K,x) = 4aj (K)
(

K
K0

∧ K0
K

)2
(|x| ∧ x∗),
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Vj (t,K,w,y) = (T − t)rj

1 + |y − w| ,

where r1 = 1 and rj = 1
2 for j ≥ 2. Clearly, these functions satisfy the conditions

of Theorem 5.3. Now let λ be the probability density function on (0,∞) given by
λ(h) = 1

2K0
I{h≤K0} + K0

2h2 I{h>K0}. Then we have ζ(K) = 1
2 ( K

K0
∧ K0

K
) for K > 0.

So a possible choice for the volatility coefficients of an arbitrage-free local implied
volatility model is given by

γ1(t, Y ) = 1 + (T − t)g
(
Y(t)

)
,

vj (t,K,X,Y ) = aj (K)
(
X(t,K) ∧ x∗) (T − t)rj

1 + ∣∣Y(t) − ∫ K

K0

dh
X(t,h)h

∣∣
.

This provides a whole family of stochastic dynamic arbitrage-free market models for
option prices in the multi-strike case.

Let us conclude this section with a few comments on the conditions in Theo-
rem 5.3. The special choice of γ1(t, Y (t)) is natural since it ensures nonexplosion of
the drift β in (5.3) near maturity. The Lipschitz conditions as well as (5.7) and (5.10)
are essentially technical conditions which guarantee the local Lipschitz continuity of
the coefficients in the abstract existence result in Proposition A.3. The appearance of
Y(t) − ∫ K

K0

dh
X(t,h)h

in the denominator of Vj in (5.9) is also quite natural: It ensures
the linear growth of the drift coefficient uX in (5.5). Finally, vj is chosen propor-
tional to

√
T − t (and even to (T − t) for j = 1) in order to avoid explosion of u

in (5.4) near maturity. It is unclear to us whether or not this asymptotic for t ↗ T can
be relaxed.

6 Comments and conclusion

In this paper, we have studied models for a stock S and a set of European call options
with one fixed maturity and all strikes K > 0. In the traditional martingale approach,
option prices are specified as conditional expectations of the payoff under an equiv-
alent martingale measure for S, and the parameters of the stock model are usually
calibrated to a set of vanilla option prices expressed in terms of implied volatilities.
In contrast, we use here market models where the stock and option price processes
are constructed simultaneously, so that we have at the same time joint dynamics for
stock and options and perfect calibration to the given set of initial vanilla option
prices. But because option prices are no longer automatically conditional expecta-
tions, the absence of dynamic arbitrage now translates into drift conditions on the
modeled quantities to ensure the local martingale property of all the tradables’ price
processes.

A crucial point here is the choice of a good parametrization; this should be done in
such a way that the static arbitrage restrictions do not already result in a complicated
state space for the quantities describing the model. We have argued in Sect. 3.3 that
the classical implied volatilities are ill-suited under that aspect and we have proposed
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the new concept of local implied volatilities in Sect. 4 to overcome this difficulty.
These new quantities can indeed be used to construct, and prove the existence of,
arbitrage-free multi-strike market models with specified volatilities for option prices,
as we have shown in Sects. 4.3 and 5.

The setting of the present paper is that of one fixed maturity and all strikes. The
symmetric (but slightly simpler) case of one fixed strike and all maturities has been
dealt with in our earlier paper [41]. It is a natural and practically important question
how these two approaches can be extended to a situation with both multiple strikes
and maturities, so that one could attack the problem of arbitrage-free market mod-
eling for the full option surface. From our experience, we expect that this will need
more than just combining the two approaches developed so far; we rather believe
that another new parametrization idea will be required. It has been suggested in Der-
man and Kani [23] to model the option price surface via local volatilities, and the
corresponding arbitrage conditions have recently been analyzed in a rigorous way
by Carmona and Nadtochiy [13]. However, the drift conditions in [13] have a rather
implicit form that involves functions given not explicitly, but only as solutions to a
PDE. Proving the existence of corresponding market models with a given volatility
structure is not addressed in these papers and thus remains a (probably difficult) open
question. See, however, the work of Wissel [45] for some recent progress.

Our paper is clearly just a first step, and there are many open and important prob-
lems. To name but a few, we could mention

– models with multiple strikes and maturities: see the discussion above.
– issues of liquidity: which options exactly should be included as tradables in the

modeling?
– calibration and implementation: how to solve our SDE systems numerically?
– fine structure: how about recalibration? Is there some Markovian property? (This

is probably an area where the approach via Hilbert-space valued SDEs is better
suited.)

– applications: how to use the models for hedging? How about the qualitative behav-
ior of the joint dynamics? How do smiles behave and evolve?

The above list is certainly not exhaustive, and one may well feel (like we do) that we
have raised more questions than we have given answers. However, all the above issues
can only be addressed legitimately once the fundamental questions of parametrization
and existence of models have been answered—and this is what we have done here.
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Appendix

In this appendix, we present some further definitions and results from [44] which
are used in the proofs of the existence results in Sect. 5. Recall the definitions of
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Ω̃, F̃ , G̃, G̃, P̃ , W̃ , and S p
c = S p,d

c from Sect. 5.1. Note that tilde quantities here (like
Ω̃ , etc.) correspond to the analogous quantities (like Ω) without tilde in [44], and
quantities here without tilde (like Ω , W , etc.) correspond to the analogous quantities
(like Ω1, W 1 etc.) with superscript 1 in [44]. In particular, ω̃ = (k,ω) here corre-
sponds to ω in [44].

We repeat some definitions from [44]. The coefficients of our SDEs lie in the
following class.

Definition A.1 Let n ∈ N. A map f : [0, T ]×Ω̃ ×{X | X G̃-adapted process} → R
n

is called strongly (S p
c -)progressively measurable if, for each X ∈ S p

c , the map

(t, k,ω) �→ f (t, k,ω,X)

is progressively measurable and satisfies, for all X ∈ S p
c and for each F̃ -measurable

stopping time τ ,

f (t, ·,X)I{t≤τ(·)} = f
(
t, ·,Xτ

)
I{t≤τ(·)} ∀t P̃ -a.s.

Note that a quantity on Ω̃ does not depend on k iff it is F̃ -measurable. For a
process X ∈ S p

c , define the process q(X) by

q(X)(t) :=
(∫ ∞

0
sup

0≤u≤t

∣∣X(u, k, ·)∣∣pdν(k)

) 1
p

, t ∈ [0, T ].

It is easy to check that q(X) is F̃ -measurable and G̃-adapted, and dominated conver-
gence yields that it is P̃ -a.s. continuous in t since X ∈ S p

c . Define, for each X ∈ S p
c ,

the sequence of [0, T ] ∪ {∞}-valued stopping times τN(X), N ∈ N, by

τN(X) := inf
{
t ∈ [0, T ] ∣∣ q(X)(t) ≥ N

}

with inf∅ = ∞. Note that, as a random variable, τN(X) is F̃ -measurable.

Definition A.2 A strongly progressively measurable function f is called locally

Lipschitz (on S p
c ) if there exist functions CN with CN(t)

t→0−→ 0 such that, for all
t ∈ [0, T ] and X,X′ ∈ S p

c , we have

∫ ∞

0

(∫ t∧τN (X)∧τN (X′)

0

∣∣f (u, k, ·,X) − f (u, k, ·,X′)
∣∣2 du

) p
2

dν(k)

≤ CN(t)
(
q(X − X′)

(
t ∧ τN(X) ∧ τN(X′)

))p
.

Proposition A.3 ([44], Theorem 3.1) Let d = 2, p > 2, and (X0, Y0) ∈ Lp(ν). Sup-
pose that β and γ are strongly progressively measurable and locally Lipschitz on
S p,2

c . Suppose that f ∈ {β,γ } satisfy |f (u, k, ·, (0,0))| ≤ const as well as the growth
condition

E
P̃

[∫ T

0

∣∣f
(
u, k, ·, (X,Y )

)∣∣pdu

]
≤ const

(
1 + ∥∥(X,Y )

∥∥p) (A.1)
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for (X,Y ) ∈ S p,2
c . Then the SDE system

d(X,Y )(t, k, ·) = β
(
t, k, ·, (X,Y )

)
dt + γ

(
t, k, ·, (X,Y )

)
dWt

with (X,Y )(0, k, ·) = (X0(k), Y0(k)) has a unique solution (X,Y ) ∈ S p,2
c .

The local Lipschitz condition in Definition A.2 is often difficult to verify. We
therefore give a criterion which we apply in Sect. 5.2.

Proposition A.4 Suppose that g1, . . . , gn are strongly progressively measurable
functions satisfying |gj (t, k,0)| ≤ const for j = 1, . . . , n and, for all X,X′ ∈ S p

c ,

∣∣g1(t, k,X) − g1(t, k,X′)
∣∣ ≤ const

∣∣X(t, k) − X′(t, k)
∣∣, (A.2)

∣∣gj (t, k,X) − gj (t, k,X′)
∣∣ ≤ Pj

(∫ ∞

0

∣∣X(t,h)
∣∣dν(h),

∫ ∞

0

∣∣X′(t, h)
∣∣dν(h)

)

×
∫ ∞

0

∣∣X(t,h) − X′(t, h)
∣∣dν(h) (A.3)

for j = 2, . . . , n, where Pj is a polynomial function of degree kj ≥ 0. If
p > 2(1 + 2

∑n
j=2 kj ), then the product g1 · · · gn is locally Lipschitz (on S p

c ).

Proof We use Proposition 3.3 in [44]. Let τ := t ∧ τN(X) ∧ τN(X′) for t ∈ [0, T ].
From (A.2) we have

∫ ∞

0

∫ τ

0

∣∣g1(u, k,X) − g1(u, k,X′)
∣∣p dudν(k) ≤ T const

(
q(X − X′)(t)

)p

and so we have (3.3) of [44] for g1. Let pj := p
2kj

; then 1
p

+∑n
j=2

1
pj

< 1
2 . To show

(3.4) of [44] for gj (j ≥ 2), note that by Jensen’s inequality for the convex function
xkj and the probability measure ν, we have, for some constant c > 0,

B(u) := Pj

(∫ ∞

0

∣∣X(u,h)
∣∣dν(h),

∫ ∞

0

∣∣X′(u,h)
∣∣dν(h)

)

≤ c

(
1 +

∫ ∞

0

∣∣X(u,h)
∣∣kj dν(h) +

∫ ∞

0

∣∣X′(u,h)
∣∣kj dν(h)

)
, (A.4)

∫ ∞

0

∫ τ

0

∣∣X(u,h) − X′(u,h)
∣∣2pj dudν(h)

≤
∫ ∞

0

(
T sup

0≤u≤τ

∣∣X(u,h) − X′(u,h)
∣∣2pj

)
dν(h)

≤ T
((

q(X − X′)(τ )
)p)1/kj . (A.5)
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We now integrate the pj th power of (A.3) and use Cauchy–Schwarz, then Jensen and
(A.4), and then (A.5) and the definition of τ . This yields

∫ τ

0

∣∣gj (u, k,X) − gj (u, k,X′)
∣∣pj du

≤
(∫ τ

0

(∫ ∞

0

∣∣X(u,h) − X′(u,h)
∣∣dν(h)

)2pj

du

) 1
2
(∫ τ

0
B(u)2pj du

) 1
2

≤
(∫ τ

0

∫ ∞

0

∣∣X(u,h) − X′(u,h)
∣∣2pj dν(h)du

) 1
2

× (
c2pj 32pj −1) 1

2

(
T +

∫ τ

0

∫ ∞

0

∣∣X(u,h)
∣∣2pj kj dν(h)du

+
∫ τ

0

∫ ∞

0

∣∣X′(u,h)
∣∣2pj kj dν(h)du

) 1
2

≤ T
1
2
(
q(X − X′)(τ )

) p
2kj
(
c2pj 32pj −1) 1

2
(
T + 2T Np

) 1
2 ,

and so we have (3.4) of [44] for gj . �
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