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Abstract

We study the exponential utility indifference valuation of a contingent
claim B in an incomplete market driven by two Brownian motions.
The claim depends on a nontradable asset stochastically correlated
with the traded asset available for hedging. We use martingale argu-
ments to provide upper and lower bounds, in terms of bounds on the
correlation, for the value V2 of the exponential utility maximization
problem with the claim B as random endowment. This yields an ex-
plicit formula for the indifference value b of B at any time, even with a
fairly general stochastic correlation. Earlier results with constant cor-
relation are recovered and extended. The reason why all this works
is that after a transformation to the minimal martingale measure, the
value VB enjoys a monotonicity property in the correlation between
tradable and nontradable asset.
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1 Introduction

It is widely accepted that valuing contingent claims in incomplete markets
needs subjective criteria in addition to absence of arbitrage. Utility indiffer-
ence provides one such criterion, which has an economic justification because
the chosen utility function reflects the individual investor’s risk preferences.
The basic idea of this approach is that the investor should achieve the same
expected utility in the two cases where (1) he is free of obligation, or (2) he
has to pay out the contingent claim B but has an initial capital increased by
the amount of the indifference (seller) value of B. A precise mathematical
formulation leads to a pair of optimization problems over investment strate-
gies. By using dual methods, which involve finding an optimal probability
measure instead of an optimal strategy, one can derive some general proper-
ties for the exponential utility indifference value of a claim; see for instance
Delbaen et al. [3] or Mania and Schweizer [15], or Becherer [1] for an ap-
proach via BSDEs in a model with jumps. However, it is difficult to derive
a closed-form formula for the indifference value even in an explicit model.

Our basic model presented in Section 2 consists of a risk-free bank account
and a stock S driven by a Brownian motion W. The contingent claim B to be
valued depends on another Brownian motion Y, which has stochastic instan-
taneous correlation p with W. Indifference valuation is done via exponential
utility. In the literature, which we compare in Section 4 with our results,
there are two main approaches to obtain explicit formulas for the value of
the resulting optimization problem. In a Markovian setting, Henderson [7],
Henderson and Hobson [9,10] and Musiela and Zariphopoulou [18], among
others, start with the Hamilton-Jacobi-Bellman nonlinear PDE for the value
function of the underlying stochastic control problem. This PDE is then lin-
earized by a power transformation with a constant exponent called distortion
power. This method works only if one has a Markovian model and if p is con-
stant. In an alternative approach, Tehranchi [21] first proves a Holder-type
inequality which he then applies to solve the portfolio optimization prob-
lem. The distortion power there arises as an exponent from the Holder-type
inequality. Tehranchi finds an explicit expression for the indifference value
at time 0 if p is constant. While this method needs no Markovian assump-
tion and can treat claims which are general (bounded) functionals of the
process Y, it is still restricted to situations with constant correlation.

Since (exponential) utility indifference valuation hinges on (exponential)
utility maximization with a random endowment, we start by tackling the
latter. With the goal of deriving explicit results in our Brownian setting,
Section 2.2 motivates the introduction of an auxiliary abstract optimization
problem in a martingale framework. Our main theoretical result is Theo-



rem 1 in Section 3; it gives an explicit formula for the value of this abstract
problem. The proof uses martingale arguments to give upper and lower
bounds on that value, in terms of bounds on p. Crucially, these bounds have
the same structure, which enables us to derive a closed-form expression by
interpolation. In particular, this allows us to handle a random correlation p.

Section 4 contains two applications of Theorem 1. In the first, case (I), we
extend the model of Tehranchi [21] to a fairly general stochastic correlation;
the typical example is a model with stochastic volatility which is correlated
with the stock in a nondeterministic way. In the second, case (II), the asset
driving the claim B is traded in principle, but nontradable for our investor.
A typical example here is the valuation of (European) executive stock op-
tions. In both cases, we obtain closed-form expressions for the exponential
utility indifference value of the claim B at all times ¢t € [0,T]. The key
feature of our formulas is that the explicit form of the indifference value is
preserved at any time t, except that the distortion power, which is shown to
exist but not explicitly determined, may now be random and depend on the
contingent claim B to be valued. To the best of our knowledge, this is the
first explicit result on exponential utility indifference valuation in a setting
with nonconstant and nondeterministic correlation. As another novelty, our
general framework allows us to distinguish (via measurability conditions) be-
tween the settings of case (I) and case (II); this is impossible when p and the
instantaneous Sharpe ratio A\ of S are constant, as in most of the existing
literature. Section 4.2 discusses this and other issues in more detail.

In Section 5, we provide both intuitive and rigorous explanations for our
results. We show that the value of the abstract optimization problem is
monotonic in |p|. Because this value can be computed explicitly for con-
stant p and is continuous in the p-argument, interpolation implies that the
basic structure is preserved for a random p. This explains why we can ob-
tain our nice and explicit results. However, the precise interpretation of the
above monotonicity is delicate, since it only holds when the (p-dependent)
probability measure P(p) appearing in the abstract problem is kept fixed.
A counterexample shows that the value of the original optimization problem
under P may fail to be monotonic in |p| if we allow P(p) to vary with p, and
we explain how keeping P(p) fixed is linked to standard financial reasoning.

For concreteness and ease of exposition, all our results are given for two
correlated Brownian motions W and Y. The final Section 6 briefly shows
how everything can be generalized to a multidimensional Ito process setting.



2 Preliminaries

2.1 Model setup

We work on a finite time interval [0,7] for a fixed " > 0 and a complete
filtered probability space (2,G,G, P). The filtration G = (Gs)o<s<7 satis-
fies the usual conditions, has Gy trivial, and Y = (Y,)p<s<r and Y are two
independent (G, P)-Brownian motions. Unless otherwise mentioned, all pro-
cesses and filtrations are indexed by s € [0, 7, and we fix ¢ € [0,T]. For any
process X, FX = (]-";( ) denotes the P-augmented filtration generated by X.
For any filtration F C G, a process X is called F-predictable if it is measur-
able with respect to the F-predictable o-field on [0, 7] x €2, completed by the
nullsets of (Lebesgue measure)®@P. To simplify computations, we use the
notation E(N),,, :=exp(N, — Ny — S((N), — (N))), 0 < s <y < T for a
continuous G-semimartingale N . Notions such as L™ or ‘almost surely’ (a.s.)
always refer to P (or any probability measure equivalent to P).

The stochastic framework of our model consists of two Brownian motions
W and Y with random instantaneous correlation p. To construct this, let
p = (ps) be a G-predictable process valued in [—1, 1] such that |p| is bounded
away from one (uniformly in s,w) and define

Ws:/pydnyr/ J1-p2dy)t, 0<s<T. (2.1)
0 0

In our financial market, two assets are available for investing and going
short: a risk-free bank account and a stock S. The instantaneous yield of
the bank account is described by a deterministic spot interest rate func-
tion r : [0,7] — [0,00) which is bounded and Borel-measurable. For ease
of notation, we directly pass to discounted quantities which means that we
take r = 0. (See Section 4 for more comments on this.) The (discounted)
dynamics of the stock is given by

dSs = usSsds + 0,5, dW,, 0<s<T, Sy >0, (2.2)

where the drift © and the volatility o are G-predictable processes. We assume

for simplicity that p is bounded and o is bounded away from zero and infinity.

Hence the instantaneous Sharpe ratio A := £ is also bounded. We write
ds;
Ss

and note that by Girsanov’s theorem, the processes

:usds+anWS:08dWs, 0<s<T

WS::WS+/)\ydy and Ys::YSjL/py)\ydy, 0<s<T (23)
0 0
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are Brownian motions under the probability P ~ P on (Q, Gr) given by

g - 5(—/Adw>”. (2.4)

)

In the terminology of Follmer and Schweizer [5], P is the minimal martingale
measure for S.

Let B be a bounded Gp-measurable random variable, interpreted as a
contingent claim or payoff due at time 7. To value B, we assume that our
investor has an exponential utility function U(z) = —exp(—vz), z € R, for
a fixed v > 0. He starts at time ¢ € [0,7] with initial capital x; and runs a
self-financing strategy m = (7)i<s<7 S0 that his wealth at time s € [t, T is

S T S .

X — g, 4 / S—y dS, = x; + / Tyoy AWy,
t Oy ¢

where 7 represents the amount invested in S. The set A; of admissible

strategies on [t, T'] consists of all G-predictable processes m = (7s)<s<7 Which

satisfy ftT 72 ds < oo a.s. and are such that

(exp (—7/ Ty0y dWy)> is of class (D) on (2,Gr,G, P), (2.5)
t t<s<T

abbreviated by ‘of P-class (D). We define VZ (and analogously V?) for
t € [0,7] and z; bounded Gi-measurable by

VB (x,) ;= esssup Ep [U(X;Wr — B)}gt}

e A

gt} | (2.6)

using that (bounded) Gi-measurable factors can be pulled out. Thus V2 (x;)
is the maximal expected utility the investor can achieve by starting at time ¢
with initial capital z;, using some admissible strategy m, and paying out B
at time 7.

Viewed over time ¢, VZ(0) defined (up to a minus sign) by the essen-
tial infimum in (2.6) is the dynamic value process for the stochastic control
problem associated to exponential utility maximization. One can show by
standard arguments that V2(0) has an RCLL version and then study its
dynamic properties as a process; see for instance [1], [15] or [17]. However,
our goal in this paper is rather to provide explicit or structural formulas for

V,B(0) with a fixed ¢.

T
= —e " essinf Ep [exp (—’y/ meos AW, + 'yB>
t

e A




Remark. Condition (2.5) is technically useful, but also has the following
desirable implication. From an economic point of view, one should only
allow strategies which are close in some sense to investments with finite
credit lines, as Schachermayer [19] emphasizes after his Definition 1.3. In
our model, any 7 € A; can be approximated in the following way. Con-
sider a sequence (7, )nen of G-stopping times increasing to 7' stationarily and
define a self-financing strategy 7(" = nly -, by trading according to 7 un-
til 7, and then putting all the capital into the bank account. This gives a
terminal portfolio value z; + ftT” MO dWS, leading to the individual utility
—exp(—yzy — v [ 7m0, dWs), which converges in L'(P) to the utility of the
final value X7"" of the strategy 7 due to (2.5). If we specifically choose

7, = inf {s € [t,T] ‘Xf“”—xt < -n} AT, neN,

each of the approximating 7(™ represents an investment with finite credit
line. A similar approximation is used in Proposition 1 to find an upper bound
for VB and the same class of strategies has been used in Hu et al. [12]. o

The indifference (seller) value by(x;) at time ¢ for B is implicitly defined
by
V() = VP (e + by(2)).

This says that the investor is indifferent between solely trading with initial

capital x;, versus trading with initial capital z; + b;(z;) but paying out B

at T. Our final goal is to find an explicit formula for b;(z;). By (2.6),
1. VP(0)

by =0 =—1
F= ) =S )

(2.7)

does not depend on z;. This also shows that we are done once we have V,(0)
explicitly, and so our focus henceforth lies on the optimization problem (2.6).

2.2 DMotivation

Our goal is to find an explicit expression for

T
~V:B(0) = essinf Ep {exp (—'y/ meos AW, + 'yB)
t

me A

gt] L (29)

Section 3 studies and solves an abstract martingale version of this problem,
and we first explain how that formulation naturally arises out of (2.8). Since
we only want to provide motivation, we ignore here all technical issues like
integrability etc.



Suppose first that B = 0 and S is a (local) P-martingale; equivalently,
©w=A=0 and W is a P-Brownian motion. Then the stochastic integral in
(2.8) is a P-martingale, we minimize the expectation of a convex function
of this, and so Jensen’s inequality immediately tells us that the optimizer is
7 = 0 and that V,2(0) = —1.

In the general case where S is a P-semimartingale, the idea is now to
reduce (2.8) to the martingale case by writing

Z T .
—V;B(O) = eﬁseigtf Ep {Z; exp (—'y/t w0, AW, + VB)

5] e

where Z' is the P-density process of some fixed measure P’ (not depending
on m) under which S or W is a local martingale. To choose a good P’ one
might be tempted by the duality results of [3] to take the minimal entropy
martingale measure Q% because its density ZZ is up to a constant the ex-
ponential of a stochastic integral of S. However, this is not true for the
density ZF on G;, and it is in general also very difficult to find Q¥ explicitly
in any given model. Because we want explicit formulas, we need Z;/Z/. as
explicitly as possible. Now any equivalent local martingale measure P’ has
a P-density process of the form Z' = £(— [ AdW)E(N) for some local P-
martingale N orthogonal to W, and inserting this expression for Z’ in (2.9)
gives after a straightforward calculation

T
Ep {exp (—v / 05 AW, +WB) gt]
t
T ) 1 T
=Ep {exp (—/ (ymsos — As) AW + B — 5/ A2 ds) Qt].
t t

The minimal martingale measure P from (2.4) appears naturally in this way,
and it has the enormous benefit that its density Z = & (— i /\dW) is com-
pletely explicit. Combining (2.10) with (2.8) gives

(2.10)

Te A

T
~V,2(0) = essinf E [exp (—/ (ymsos — As) AW + E)
¢

Qt}, (2.11)

and we can recognize this as a “martingale version” of (2.8) with an artificial
random endowment

_ 1 [T
B::ryB—E/ A2 ds. (2.12)
t

Note that in the genuine semimartingale case A # 0, the quantity B appears
even if the claim B is zero. Hence there is no simplification from assuming
B =0, and so we do not discuss this case separately.
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3 The main (but abstract) result

3.1 An explicit formula for an optimization problem

This section contains the main mathematical contribution of this paper. We
derive an explicit formula for the value of the optimization problem

T
—Vt = essinf Fp {exp(—/ ﬁdeS-FB)
¢

=N

t} =:essinf (1),  (3.1)

T e A

where A, consists of all G-predictable 7 = (#,);<s<r satisfying ftT 72ds < oo
a.s. and such that <exp(—fts Ty dWy)> is of P-class (D). B is abounded

t<s<T
ﬂT—measurable random variable, where H = (’HS) C G is a filtration such
that the P-Brownian motion }Af from (2.3) has the representation property
in H. This means that any (H, P) -martingale L is of the form L = Lo+ [ (dY

for an ]I:]I-predictable ¢ with fOT (?ds < oo a.s. The assumption Be L® (7:(T)

is slightly weaker than B € L™ (]—1}/ ), and the two different applications in
Section 4 will make it clear why this is useful. It is worth pointing out that
all the subsequent arguments only involve the filtration ]I:]I; this is the reason
why we can formulate our model with a general filtration G D F**¥" such
that Y and Y+ are (G, P)-Brownian motions.

While the idea of considering a problem like (3.1) has been motivated in
Section 2.2 from (2.8), it is not clear at this stage how B and especially H
arise. This will become clearer in Section 4 from the applications. However,
we already point out that B and the artificial claim B = vB — % tT A ds
from (2.12) can well be different.

Theorem 1. Under the above assumptions, set

1 —
and 0; := sup

_ 1
inf T 2
selt.T] |1 — p?| Lo seltT)

1—p3

8, = (3.2)

Lo

Then there exists a Gy-measurable random variable 5? with values in [Qt,gt]
such that 5
] )

—VP(w) = (Ep|exp(B)*

for almost all w € Q2.

(3.3)

6=5F (w)

The right-hand side of (3.3) is understood as follows: We compute for
fixed § (a version of) the (7—2,5, f))—conditional expectation of exp(B)g, eval-
uate that (version) in the given w and then insert for ¢ the value §7(w).

8



Before we actually prove Theorem 1, we provide here an outline of the
proof. The key idea is to find a family of processes Z®) with

T
Z\ = exp (— / o dW, + B) (3.4)
t

and such that Z(™ is a (G, f’)—submartingale for every 7 € A, and a (G, ]5)—
martingale for some T = 7 € A;. If we can do this, the same argument as in
Section 2.2 easily shows that the essential infimum in (3.1) is attained for 7*.
To find such a family Z® we need a good representation for eB , and
the multiplicative form of (3.4) might suggest that we write e as the final
value of some stochastic exponential martingale. But unless we believe that
#* = 0 happens to be optimal, e? = Z;O) should be the final value of a
(G, ]5) -submartingale rather than a (G, ]5) -martingale. Again in view of the
multiplicative structure, the simplest way to transform a positive martingale
into a submartingale is to raise it to a power bigger than one. Fixing a
constant 0 > 1 to be specified later and using Be L™ (ﬂT), we thus write

~ 5 NS 5
exp(B) = exp(B/§)° = (¢:&(L)e 1)
for a BMO (]I:]I, p)-martingale L. (More precisely, the positive (H:]I, p)-mar-
tingale with final value exp(B / 6) is uniformly bounded away from zero and
infinity, and thus its stochastic logarithm L is in BM O.) By the representa-

. G = Ep[exp(B/(D‘ﬂt} (3.5)

tion property of Y in H, L is of the form
A A T
L= / ¢dY for an H-predictable ¢ with E { / ¢ ds] <oo.  (3.6)
0

So L is a BMO(G, p)—martingale, too, and combining (3.4) and (3.5) gives
A~ 5 T ~
Z50 = & (E(L)yr)” exp (—/ Trs dWs)
¢
. 1 [T
_ cfg(aL)t,Te(_ / frdW) exp(§ / (62— )2 + 72) ds).
4T t

Using Yor’s formula, (3.5) and d<f/, W>S = psds yields
5(5L)5(—/7%dW) :5(5L—/7%dVV— <6L,/frdW>)
= M exp (— / 0(Ttsps ds>



with the local (G, P)—martingale

M® :zE(éL—/frdW) :8(/5§d}7—/frdW), (3.7)

and putting everything together and completing squares leads us to define
# # L[
Z = M7 exp (5 / ((wy —6Cupy)” + (51— p2) — 1)) dy) (3.8)

for t < s <T. This gives (3.4) by construction, and if p is constant, choosing
0= ﬁ ensures that the integrand in (3.8) is always nonnegative and van-
ishes for #* = §¢p. Hence Z™ is then on [t,T] a local (G, f’)-submartingale
for every 7 and a local (G, ]3) -martingale for 7*. Apart from integrability
issues, we thus have achieved our goal in that case.

In general, p is not constant. Then we choose one ¢ for the submartingale
property of Z(® for all #, and another § for the martingale property of Z™").
This gives an upper and a lower bound for ‘A/;B , and Theorem 1 is obtained
by interpolation. The detailed proof is given in the next section.

Remark. The attentive reader may have noticed that we only give results
on the value of the optimization problem, and may object that for hedging
or investing purposes, one would also like to know the optimal strategy ex-
plicitly. While this is a valid point, it is a well-known unfortunate fact that
this problem is notoriously difficult even in quite specific (e.g., Markovian)
settings. We hope to address this question in subsequent work, as it goes
beyond the scope of the present paper. o

3.2 Proof of Theorem 1

The argument for Theorem 1 follows the outline given in Section 3.1. We
assume throughout that the assumptions of Theorem 1 hold and first derive
an upper bound for V;2. Recall ¢;(#) from (3.1) and &; from (3.2).

Proposition 1. For all # € A;, we have
A /A A~ /T » gt
O(T) > Ep[exp(B/ét)}Ht} a.s.
Proof. We use the reasonin%s and notations from Section 3.1 with J := 5,5.
1) Suppose first that [ #2ds is uniformly bounded. Then [7dW is
a BMO (G, P)—martingale like L = f{dff from (3.6), and hence by Theo-
rem 2.3 of Kazamaki [14], M® = (6L — [#dW) from (3.7) is a (G, P)-

martingale. The choice § = g’i implies that the integrand in (3.8) is nonneg-
ative and thus Z® is a (G, P)—submartingale; in fact, integrability follows
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via (3.4) because Z:(Fﬁ) = exp(— fT o dW, + B) is in L! (ﬁ) since [ 7AW is

t

in BMO. Thus (3.1), (3.4), (3.8) and (3.5) yield
A fa % # A5 15\ |4 10
o(1) = Ep [Z; )|Qt} > Zt( ) — Ep[exp(B/dtHHt] a.s.
2) In general, we define a localizing sequence by

Tn::inf{SE[t,T] Suchthat/fr;dyzn}/\T, neN
t

and set 7™ ;= g € A,. Applying step 1) to #™ then gives

2 (7)) > Ep[exp(B/5)[H]" as. (3.9)
Because <exp(— [y, dWy)>t§s§T is of P-class (D) and B is bounded, the
sequence (Z}’“"”) LT (exp(— ftT M AW, + E)) . is P-uniformly inte-
ne ne

grable and converges a.s. to Zﬁ). Hence the conditioned random variables
¢ (7)) = Ep [Zgr(n)) Qt], n € N, converge to @;(7) in L! (]5) and therefore

also a.s. along a subsequence. This concludes the proof in view of (3.9). [

The next result entails a lower bound for ‘A/tB . Recall ¢, from (3.2).

Proposition 2. Define 7 = (7} )i<s< by

7= (pudy+\ 9207 40, = 03) G, 1SS, (3.10)

where ¢ is now defined in (3.5), (3.6) with 6 :== §,. Then we have
o) = Ep[exp(B/ét)‘ﬂt}ét a.s., and 7€ A,. (3.11)

To be more precise, 77 is for any s € [t,T] defined by (3.10) on the set

s

Q, = {w e Q ) #Q(M) > ét}, which has (P— and p—)probability one. For
w ¢ Q,, we set 7*(w) := 0. By the definition of §,, the expression under the
square root in (3.10) is nonnegative, and 7* is G-predictable.

Proof. We use the notations of Section 3.1 with d := J,, and first show the

equality in (3.11). Because 7* in (3.10) is chosen to make the integrand in
(3.8) vanish, we get from (3.8)

Z(ﬁ*) _ ﬁtM(fT*) — F. B/s 7:( étg NE)

T G My plexp(B/8,)|Hi]™E( )

o (3.12)
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with N®) .= [§,(dY — [#*dW. An easy computation using (3.10) yields
(NWB;%N“”fzélC&MZQUUw—@MatSSST (3.13)

and so N is like [¢dY = L a BMO(G, P)-martingale; see below (3.6).
We conclude by Theorem 2.3 of Kazamaki [14] that M®) = £(N®) is a
(G, p)—martingale, and so (3.1), (3.4) and (3.12) yield the equality in (3.11).

To prove 7+ € Ay, we first note that £ [ftT 2 ds] < oo from (3.6) implies
Es [LT 7% |2 ds] < 00 by (3.10). To show that (exp(— [ 7% dW,)),_ _.is of
P-class (D), we observe that (3.6) and (3.13) yield

exp (— / ﬁ;dﬁ@) = exp (Ns(ﬁ*) — N s, / ¢ de) = M7 E(L) 2
t t

for s € [t, T], and the process £(L)™% is bounded because (3.5) gives

E; B/3,)|H,
£(Ly, = Zele(BA)[H] oy
B [exp(B/3,) [
and B is bounded. Moreover, M () as a ((G, P)—martingale is of P-class (D),
and hence so is <exp(— A dWy)>tSs§T. Thus 7* is in A,. O

Remark. The choice of 7* in (3.10) deserves a comment. As we have seen
in the proof of Proposition 2, it ensures that the integrand

(8,05Cs — 72)7 4 20,(8,(1 — p2) — 1) (3.14)

in (3.8) (with 6 = ¢, and # = 7*) vanishes identically. But for fixed s € [t, T
and w € Q, (3.14) is a quadratic function in 7} (w), and requiring it to be zero
for each s does not determine the process 7* uniquely. In fact, Proposition 2
remains true if 7* is replaced by 7" with

71 i= (0ol + 7\ 9207 + 8, 82) G, t<s ST

for any G-predictable process n on [t, 7] with values in {—1,1}.
Suppose now we replace 7* by 7 with 7% := §,ps(s, s € [t,T], which
minimizes (3.14) pointwise and makes it nonpositive. Then we get

(7)) = Ep [Zgr )

G < Ba By o (B/5) ) M5

G| = pu(i),

12



using that M) is like M) a (G,[f’)—martingale. Similar arguments as
for #* also yield #** € A;, and we even obtain ¢,(7**) < ¢,(#*) on a set
A € G, with P[A] > 0 if ftT ¢2(8,(1 — p?) — 1) ds is non-zero with positive
probability. This shows that the lower bound

—pu(7%) < —essinf @ (7) = VP as. (3.15)
e A

entailed by Proposition 2 need not be sharp. Nevertheless, we work with 7*
and not with 7**, because ¢(7*) has the nice representation (3.11) which
allows us to obtain an explicit expression for ‘7,53; see the interpolation argu-
ment below. The sharper bound given via 7** is not explicit enough to give
this result. We remark that if p is constant, 7** and 7* coincide and (3.15)
holds with equality; compare Propositions 1 and 2. o

As announced, we now prove Theorem 1 by an interpolation argument.

Proof of Theorem 1. Define f(-,-) : [d,,0:] x Q — R by

£(6,0) == (Ep [exp(f;)% ﬂt] (w))d, (6,w) € [6,,8:] x Q.

Because B is bounded, dominated convergence and Jensen’s inequality imply
that f admits a version which is continuous and nonincreasing in ¢ for each
fixed w € 2. We use this version in the sequel. From Propositions 1 and 2
we already know that

f(gt,w) < —Vté(w) < f(ét,w) for a.a. w € Q.
By the intermediate value theorem, the set
Aw) = {6 € [8,3] | 10.0) = V() }
is thus nonempty for almost all w € 2. Define 5? Q) — [ét,gt] by
5f(w) =supAw), w e, (3.16)
setting 02(.) := (6, + ;) /2 on the nullset {w € Q|A(w) = 0}. By the

continuity of f in its first argument, A(w) is closed in R for all w € €, and
we obtain for almost all w € Q) that

FOB(w),w) = VP (w). (3.17)
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It remains to prove that the mapping w — 5? (w) is Gi-measurable.
Because f is nonincreasing and due to (3.16) and (3.17), we have for any
a € [ét, 5& that up to a null set,

{wEQ‘éf(u))<a}:{weQ‘f@f(w),w)>f(a,w)}
:{w€Q| —Vf(w)>f(a,w)}
= U{w| ~VE(w) > g} n{wl|qg> fla,w)}.

q€Q

The last set is in G; since ‘A/tB and f(a,-) for a fixed a € [§,,0;] are G-
measurable. Since G, is complete, we have {w € Q|7 (w) < a} € G for
every a € R, and so 072(-) is Gi-measurable. This ends the proof. O

4 Applications in two settings

4.1 Explicit formulas for the indifference value

Our goal in this section is to find explicit formulas for V,2(0) in (2.6) or (2.11)
in two different settings. This will be achieved by applying Theorem 1 and
will also yield explicit results for the indifference value b, via (2.7). We recall
W and Y from (2.1) and (2.3) and write for brevity

F = (F.) for BV, Y =(),) for B, Y= (J,) for F*.

If p is Y-predictable, then Y from (2.3) is Y-adapted and hence Y C Y. In
general, however, none of the above three filtrations contains any other.
Theorem 1 gives us the freedom to specify the artificial endowment B but
also the task of finding a filtration H such that B is Hp-measurable and Y
has the representation property in H. Comparing (2.11) with (3.1) suggests
to choose B = B = vB — % tT A2 ds. In a first application, we do this, set

H = Y and assume that B is Yr-measurable and A is Y-predictable, to ensure
that B is Hp-measurable. We shall later see in the proof of Theorem 2 that
we also need to assume that p is Y-predictable to guarantee that Y has the
representation property in Y.

For our second application, we choose B = 7B and assume that : ftT A ds
is replicable by trading in S. This is satisfied if A\ is F-predictable, as we
shall see in the proof of Theorem 3. In this case, we moreover set H =Y and
assume that B is JAJT—measurable.
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Cases. In more detail, we consider one of the following two situations:

(I) B e L*(Yr), A is Y-predictable, and p is Y-predictable;
(II) B € L™ (j)T), A is ]Fsy—predictable, and X\ is F-predictable.

The assumption in case (II) that A is Fsy—predictable is quite natural
since S and Y are the quantities observable for our investor. Moreover, it
guarantees by Lemma 1 below that F¥"Y" C FSY | i.e., the two basic driving
Brownian motions Y and Y are observable from S and }A/ In particular, if
we take G = F¥Y" | the a priori condition that X\ is Y -predictable turns
out to be innocent a posteriori.

To motivate our model choice, we discuss for each case a typical example.

Case (I): Here one should think of a stochastic volatility model, where p
and o are Y-predictable and the contingent claim B depends only on o (e.g.,
a variance swap). The stock S is driven by the Brownian motion W, whereas
its drift and volatility depend on a second factor Y. Our approach allows
us to consider the situation where the correlation between W and Y is not
constant, but more realistically a functional of Y.

In this setting, B is naturally }r-measurable and A = £ is Y-predictable
like 4 and o. The only genuine condition is that p should be Y-predictable,
which we technically need to guarantee that Y has the representation prop-
erty not only in YA{', but also in Y.

Case (II): A good application here comes from ezecutive stock options.
Consider a manager who receives call options on the stock (driven by Y) of
her company as part of her performance-related compensation. The manager
must not trade the company stock and all its derivatives because of legal
restrictions. However, she might be able to trade other, correlated stocks.
So S'is here a market index, a representative portfolio of other companies in
the same line of business, or the stock of a leading company in the same line
of business, which serves as a benchmark. We assume that the only source of
incompleteness is the fact that the manager is not allowed to directly trade
the stock of her company. In particular, we suppose that the market formed
by the bank account and S is complete by assuming that p and o are both F-
and F9-predictable. Then F = F°| i.e., the uncertainty (IF) about S equals
the information (F*) available from S. This follows from (2.2) because o
is bounded away from zero. We then provide a fair value for the executive
options in such a situation.

In this setting, A = £ is F- and FS-predictable like i and o. The only
genuine condition here is that B is )A)T—measurable, and the next remark
explains why this is natural. Equivalently, that remark clarifies why we view
the nontradable asset here as driven by ¥ and not by Y.
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In both cases, the measurability assumptions make precise the underlying
idea: The payoff B is driven by Y (or Y), whereas hedging can only be

done in S which is imperfectly correlated with Y (or ?) The examples
also illustrate two reasons why direct hedging in the underlying of B may
be impossible; either its driver is not traded at all (e.g., a volatility or a
consumer price index), or it is traded in principle but not tradable by our
investor, due to legal, liquidity, practicability, cost or other reasons.

Remark. To see why Yp-measurability of B is reasonable in case (IT), recall
that B is a claim on some asset Z, and write dY = pdW + /1 — p2dW+ for
a (G, P)-Brownian motion W+ P-independent of W. The asset change dZ is
driven by two factors: the market development % of the benchmark S, and
company specific risks dIW=. To determine the genuine driver of Z, we weight
the two factors by the correlation process p, but first make them comparable
by “normalizing” %, which means that we use %Q — dW instead of %.

L =
Thus Z is driven by
pdW + /1 = p2dW+ = pAds + pdW + /1 — p2dW* = pAds +dY = dY,

using (2.3). Hence assuming the Z-dependent claim B to be )A/T—measurable
is more natural than having it Yp-measurable. Note that the filtrations Y
and Y differ in general, but coincide if p and \ are deterministic. o

Let us now briefly look at the information available to our investor. We
always assume that the tradable stock S is observable. In addition, we assume
in both cases (I) and (II) that the driver for the uncertainty behind B (i.e.,
Y or Y, respectively) is also observable. The following result shows that
the observable filtration then contains the filtration F¥*¥™ of the underlying
Brownian motions, and this justifies why we always use G D FYY™ to describe

the information on which our strategies m € A; must be based.
Lemma 1. In case (I), F*"Y" CF5Y | and in case (II), F*"Y" C FSY

Proof. Note that the argument in each case uses only the middle condition
on \. For brevity, we write Z € FX to mean that Z is F¥-predictable.

Case (I): By (2.2), (S) = [02S%ds and (S) € F* as continuous path-
wise quadratic variation; so 0S = +v/025? € F° and hence also 0 € F°.
Next, A € Y by assumption, and so = o\ € F¥Y. Because ¢ is bounded
away from 0, we obtain W = [2=dS — [£ds € F¥Y. As a consequence,
p € F5Y since it is the density of (W,Y) with respect to Lebesgue measure
and (W,Y) € FSY as a continuous pathwise quadratic covariation. Finally,
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|p| is bounded away from 1; so solving (2.1) for Y+ implies that Y+ € FSY
and therefore FY:Y" C FSY.

Case (I1): Again, o € F°. Moreover, (2.2), (2.1) and the definition (2.3) of
Y give <S, }A/> [ oSpdsso that p € FSY. Because A € FSY by assumption,

we get 4= o\ € FS ¥ and now we can argue like in case (I) to deduce that
Y+ e FSY. Moreover, Y =Y — [ pAds € F*Y and hence F¥Y* CFSY. O

The two following theorems give explicit formulas for the value V2 and
the indifference value b in cases (I) and (II). To facilitate comparisons with
the literature, we state them for a spot interest rate on the bank account given
by a bounded deterministic Borel-measurable function r : [0,7] — [0, c0).
Our results and arguments given for » = 0 easily extend to this case; allowing
r to be stochastic, however, would be a different issue.

Theorem 2. Consider the setting and the assumptions from Section 2 and
— A~ 2
recall (5t, o from (3.2). In case (1), define B := B — %ff@ds and

§ oo 1 (T ()
0 = — [T et g,

(5?, 80 with values mn [Qt,ét} such that

Then there exist G,-measurable random variables

VP () = — exp(—alw)e ) (B e (B) 3] @)

6=68(w)
(4.1)
and
— [T r(s)ds E. B)Y/? ’
bi(w) = & og (e 2B V() (4.2)
v (Ep[exp(())l/‘S |yt](w)) §'=60 (w), =68 (w)

for almost all w € Q and every bounded G;-measurable random variable x;.

Theorem 3. Consider the setting and the assumptions from Section 2 and
recall §,, (515 from (3.2). In case (II), there exists a Gi-measurable random
variable 877 with values in (4, (5,5} such that

)

T 1 T s — 2
V@) = —exp(—rm(wpel 10— Lg [ L=,

< (B oo rB)i |9 @) >6 5=57% ()
and T (s)ds
bi(w) = %log(B [exp(vB) yt}( ))6 5=67% )

for almost all w € Q and every bounded G;-measurable random variable x;.
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To the best of our knowledge, results like Theorems 2 or 3 have not been
available in the literature so far; all previous approaches leading to explicit
formulas have only considered situations where the correlation p is determin-
istic and constant in time. One nice feature of all formulas in Theorems 2
and 3 is that the only unknowns are the distortion powers 62, 8° or 675, and
we have precise bounds for these in terms of bounds on the correlation p. In
general, each such power is random (in a G-adapted way) and depends on
B via B. Since we have assumed that Gy is trivial, 55} is deterministic, but
may still depend on B. However, if the correlation p is deterministic and
constant in time, the functions § and 0 in (3.2) coincide and equal ﬁ, and

then 68 = 1_1p2 becomes constant and independent of B or B. This explains
why the constant correlation case is easier to handle and understand.
We defer the proofs of Theorems 2 and 3 to Section 4.3, and first compare

our results with the existing literature.

4.2 Comparison with the literature

Exponential utility indifference valuation in Brownian settings has been ex-
tensively studied, particularly in Markovian models. An overview with a long
literature list is provided by Henderson and Hobson [11]. We present here
some references and comment first on the different model assumptions and
then on the methods and results.

Recall the model in (2.1) and (2.2). Henderson [7, 8], Henderson and
Hobson [9,10], and Musiela and Zariphopoulou [18] all work in a Markovian
framework where u, o, r and p are all constant. [7-10] have a nontraded
asset Z satisfying, for some constants ¢ > 0 and b € R,

dZ
Zs

=bds+adY;,, 0<s<T, Zy>0, (4.3)

and the contingent claim B = B(Z7) is a function of the terminal value Zr
alone. Like in (2.1), Y is a Brownian motion having correlation p with W.
[18] contains a slightly more general diffusion setting where as = a(Zs, s) and
bs = b(Zs, s) may depend on the current level of Z and on time. Monoyios [16]
studies a similar model where o and A = £ are not constant, but o equals Z
and Ay = \(Zs) is a function of the current level of Z. Grasselli and Hurd [6]
and Stoikov and Zariphopoulou [20] consider claims which depend not only
on Zr, but also in a certain way on the trajectory of Z. In contrast to all the
above Markovian models, Tehranchi [21] analyzes a more general situation
very similar to case (I); but his approach is still restricted to a constant
correlation p.
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To the best of our knowledge, the only article where p is not constant
is by Benth and Karlsen [2] who study a Markovian setting with p = p(Zy)
depending on the present level of the nontraded asset Z. They show that
the minimal entropy martingale measure can be expressed in terms of the
solution of a semilinear PDE for which they prove existence and uniqueness
of a classical solution. However, they have no claim B and they also do not
derive any general explicit formulas.

Remark. All Markovian models above with constant u, o, r, p, a, b sat-
isfy the measurability conditions for both cases (I) and (II). It is there-
fore somewhat arbitrary whether one views them as stochastic volatility or
rather as executive stock option models. (Indeed, only our general model
makes this precise distinction really possible.) The subsequent generaliza-
tions in [21], [16], [6] and [20] all head towards our case (I), whereas models
from case (II) have not yet been studied for nondeterministic A or p. In that
sense, it seems fair to say that our formulation with a clear distinction be-
tween cases (I) and (II) represents a significant generalization of previously
considered models. o

We now recall and comment on how explicit formulas for the indifference
value b are derived in the literature. As in Section 2.1, one usually first
derives an expression for the value V® and then obtains a formula for b
via (2.7). In a Markovian model, the usual approach is to condition on the
current state of the nontraded asset Z in (4.3), i.e., to write

VP (24) = v(xy, 2, 1) ==esssup E[U (X" — B(Zr)) | X[ = 34, Zy = ).

e A

Henderson [7], Henderson and Hobson [9,10], and later Musiela and Zaripho-
poulou [18] first write the Hamilton-Jacobi-Bellman nonlinear PDE for the
value function v. Exploiting the scaling properties of the exponential utility
function U, they try an ansatz of the form

v(x, z,t) =U(x)F(z,1),

which results in a nonlinear PDE for F. A clever power transformation,

1

F(z,t) = f(z,t)1-22, (4.4)

reduces this to a linear and solvable PDE for f. This yields an explicit
formula for v and thus also for b via (2.7).

The idea to convert a nonlinear to a linear PDE by a power transforma-
tion was introduced by Zariphopoulou [22] for optimal portfolio management
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problems with nontraded assets when the utility is of the separable CRRA
type: the payoff B(Zr) of the claim is multiplied by a power of the in-
vestor’s final portfolio value X727 i.e., ﬁ(X;”r, B(Zr)) = B(Z7)| X7/~
with 0 # v < 1. The application of the power transformatlon (4. 4) to ex-
ponential utility indifference valuation appeared first in Henderson [7], Hen-
derson and Hobson [9,10], and later in Musiela and Zariphopoulou [18]. The
exponent 0 := from (4.4) is called distortion power, a terminology due

1
1— 2
to Zariphopouloup[22], and the approach is also known as distortion method.
Henderson [7] and Henderson and Hobson [9, 10] also derive an approxima-
tion (for a small number of claims) of the power utility indifference value,
which they compare with the exponential indifference value. Henderson [§]
examines the latter criterion and incentives for executive stock options in the
Markovian model of [7,9,10]. Monoyios [16] derives a representation of the
optimal measure for the dual problem by combining the distortion method
with general duality results. He further considers the optimization problem
under power utility, but without random endowment. Grasselli and Hurd [6]
and Stoikov and Zariphopoulou [20] present explicit formulas for the expo-
nential utility indifference value of a path-dependent claim on the volatility.
But as already mentioned, all these approaches work only in a Markovian
model and if the instantaneous correlation p between W and Y is constant.

In an alternative approach, Tehranchi [21] obtains an explicit expression
for V,B(z;) in (2.6) with ¢ = 0. He first proves a Holder-type inequality
which he then applies to determine Vj%(x), and this also yields an explicit
formula for the indifference value at time 0. His method has the advantage
that it needs no Markovian assumption and can treat general (bounded)
Yr-measurable claims; but it is still restricted to situations with constant
correlation. The distortion power § = — from (4.4) arises here as an
exponent in the Holder-type inequality.

In all the above approaches, § plays an important role, and it is crucial
that it is deterministic and constant in time. We also use in (3.5) a power
transformation with a power ¢ which must be constant, whereas § = #
in the above methods depends on p. This explains why we use two different
powers in our proof of Theorem 1: 0, gives in Proposition 1 an upper bound
for XA/tB , and J, a lower bound in Proposition 2. The deeper reason why we
can deal with a random correlation p is then a monotonicity property, as will
be explained in Section 5.
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Remarks. 12 We can in Theorem 2 replace P by the restriction @) of P to
Yr, because B and 0 are Yp-measurable; so for almost all w € 2, we have

e Sl r(s)ds log (Eg [eXp(B)l/d‘yt} (w))é
— N , 5

v (EQ [exp(0)1/5 ))t] (w))
Since p and \ are Y-predictable in case (I), (2.4) and (2.1) yield explicitly

aQ dp B

)

by(w)

§'=60(w), §=68 (w)

This formula is used by Tehranchi [21] to define @ in his setting with con-
stant p. Similarly, we could in Theorem 3 replace P by the restriction Q of
P to Yr. However, this is less useful because Q unlike @), has in general no
explicit form.

2) Apart from exponential utility, Tehranchi [21] also explicitly deter-
mines V? for constant p when the investor’s utility is of the same sepa-
rable form as in Zariphopoulou [22], i.e., ﬁ(X;t’”,B) = B\X%”P/’y with
0#~<1,or U(X‘”" B) = Blog X7""™. Those results could be extended
with our technlques as for exponential utility to all times ¢ and to random p.
But we give no details since this provides no essential new insights and, above
all, does not help for finding an indifference value, because the above utilities
are not of the form U (X7"" + B) required for a natural formulation.

3) The original motivation for this paper was that we were intrigued
by the elegantly simple and yet general approach of Tehranchi [21]. Along
the way, we then discovered that not all arguments in [21] seem completely
rigorous; the proof there of Lemma 4.2 is not quite clear (measurability of in-
tegrands?), and we see no argument why the portfolios constructed in Propo-
sitions 3.3-3.5 satisfy the integrability requirements to lie in the respective
classes A of admissible strategies. Moreover, the proofs of these propositions
also contain an incorrect statement; in general, a Brownian motion W and
a process of the form W + [ Ads do not generate the same filtration or o-
field, even if X is predictable with respect to the filtration generated by W.
A counterexample is given by Dubins et al. [4]. Despite all this, the final
results in [21] are essentially correct; one way to circumvent the last problem
is contained in the proof of our Theorem 2. o

4.3 Proofs of Theorems 2 and 3

We first need the following general result which says that the class (D) prop-
erty behaves under a change to an equivalent probability measure in the same
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way as martingales. This is very intuitive and probably folklore, but we have
not found it anywhere.

Lemma 2. Denote by Z' the P-density process of a probability measure P’
equivalent to P, i.e., Z. = Ep[i—lg|gs], s € [0,T]. A G-adapted RCLL
process A is of P'-class (D) if and only if AZ' is of P-class (D).

Proof. By symmetry and Bayes’ formula it is enough to prove the “only if”
part. Take a G-adapted RCLL process A of P'-class (D) and fix € > 0. We
want to find K > 0 with sup_ Ep[|AT]Z;[{|AT‘Z4>K}} < ¢, where the sup is
taken over all G-stopping times 7. Using that dP’ = Z. dP on G, gives

Ep[|A|ZL a1 z05 k1) = Ep [|A | Ia 125K} ] -

Since A is of P'-class (D), m := 1V sup, Ep [|A.|] is finite and there exists
d; > 0, which does not depend on 7, such that

A € Gr with P'[A] < d;, T G-stopping time = FEp/ [|AT|]A] <e. (4.6)
Because P’ < P by assumption, there exists dy > 0 such that

Set K :=m/dy and use Markov’s inequality to obtain

1 , 1 m
PA1Z; > K] < Ep[IA-|Z] = ZEp [IA]] < 25 = ds

for any G-stopping time 7. Now (4.6) and (4.7) yield Ep/|:|AT|I{|AT|Z7/_>K}:| <,
uniformly over 7, which ends the proof. O

Now we can prove Theorems 2 and 3 by applying Theorem 1.

Proof of Theorem 2. (4.2) follows directly from (2.7) and (4.1). To prove
(4.1), we apply Theorem 1 with B:=B=+B —% tT A ds and H := Y.
Comparing (3.1) with (2.11) shows that it only remains to argue that

i) Y has the representation property in Y, and

i) TE A = yro — )\ € A,
The latter follows directly from Lemma 1 which yields that exp (— [ ro dW)
is of P-class (D) if and only if exp(— [(yro — ) dW) is of P-class (D),
because [ A?ds is bounded. Property 1) is deduced from Itd’s representation
theorem in the form of Lemma 1.6.7 of Karatzas and Shreve [13]. In more
detail, consider the restriction Q of P to YVr, given as in (4.5) by

dQ

ap
ap ~ br {d_P

(- fo),
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because A and p are Y-predictable. Note that this uses the assumptions
of case (I). Y is also a (Y, Q)-Brownian motion, and Lemma 1.6.7 in [13]
now yields that any (Y, Q)-martingale L is of the form L = Ly+ [ ¢ dY for
a Y-predictable ¢ with fOT (?ds < oo a.s. This crucially needs that p) is

Y-predictable, to ensure that Y =Y + [ pAds from (2.3) is Y-adapted. [J

Proof of Theorem 3. As in the proof of Theorem 2, we apply Theorem 1, but
now with B := = vB and H := Y. Of course, the (]HI P) Brownian motion Y’
then has the representation property in H. To get 1id of the term 3 ft A ds
in B in (2.11), we use again [t0’s representation theorem as in Lemma 1.6.7
of [13] and obtain an F-predictable process n = (n5)i<s<r with

1T 1 T T ’
_/ A?dsz—Ep/ X ds|F, +/ ns AW,  and Ep/ n; ds
2 t 2 t t t

Here we use that A is F-predictable in case (IT), where we recall that F = F".
Finally, comparison of (2.11) and (3.1) with B = 4B shows that it remains
to prove that m € A, if and only if vro — A + 1 € A,. But this follows as
in the proof of Theorem 2 from Lemma 1, using that [ dW is like [ A*ds
uniformly bounded. [l

< 00.

5 On the monotonicity in the correlation

In this section, we explain both intuitively and mathematically why we can
obtain results even for a random correlation p.

For a constant correlation p, the abstract optimization problem (3.1) has
by Theorem 1 (or from Tehranchi [21] for ¢ = 0) an explicit value, namely
(3.3) with § = ——. This expression is continuous in p and increasing in |p|,

Jor fized P, and the intuition is as follows. The endowment B is driven by
Y whereas hedging can only be done in W which is imperfectly correlated
with V. If the correlation between W and Y is increased, better hedging
is possible; so the value of the optimization problem (3.1) decreases. (Note
that (3.1) gives us minus the maximal expected utility. )

If we can extend the above monotonicity to a general correlation, it is clear
why we can get the explicit structure in Theorem 1. Indeed, if p is random
but lies between two bounds, the corresponding optimization problem must
by monotonicity have an explicit expression with the same basic structure —
and of course the interpolating distortion power may now be random and
depend on B.
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Let us now introduce more precise notations by writing (3.1) as

J

for a G-predictable process o denoting the instantaneous correlation between
the (G, P)-Brownian motions W(p') and Y; the set Ai(p') depends on pf

through the P-class (D) condition on (exp(— [ 7y dWy(p’))) Note

t<s<T"
that if we change p/, only W(p') and all expressions depending on it will
change. This is reasonable; clearly B and H should not be affected.
The above intuitive argument now says that if we keep P fixed and vary p,
we get a monotonicity, which is made precise in the following result.

A ~ T ~ A
VP (p', P) := —essinf Fp {exp (—/ s dWs(p') + B)
¢

7€ A(p')

Proposition 3. Let P be fized and suppose that p' and o are G-predictable
processes such that |p/| < ¢y < |p"| <o <1 on[t,T] x Q for some constants

c; and cy. Then VtB (,0', f’) < f/tB (p”, P) a.s.

Proof. This follows from applying twice Theorem 1, once for ‘A/té (p’ , 15) and
once for V;B (p” , ]3), and then using Jensen’s inequality. O]

Remark. Proposition 3 says that p/ — f/tB (p’ , ]5) is monotonic for corre-
lation processes p, p” that can be separated by a constant, uniformly in s
and w. We do not know if the weaker assumption |p'| < [p"| on [¢t,T] x £ is
also sufficient to prove the same conclusion. o

The above intuition and Proposition 3 make it tempting to think that
also the value V;2(0) in (2.9) is monotonic in |p|. However, this is not true
in general; we give a counterexample in the next paragraph. The crucial
point is that P itself depends on p because W does; this can be seen from
(2.1) and (2.4). So the abstract optimization problem (3.1) has the structure
—VB (v, P(p)) —,» and proving as in Proposition 3 that p— VB (v, P(p))

is monotonic for fized p need not imply that p — ‘A/tB (p, P(p)) is monotonic.

We now show by a counterexample that p — \A/té (,0,]5(,0)) and thus
p— VP2(0;p) :== V,2(0) from (2.9) are indeed not monotonic in general. In
view of Proposition 3, this can only fail in the non-martingale case A\ # 0,
since otherwise P(p) = P does not depend on p. We take p and A both
constant, ¢ = 0, and set H = Y as in case (I). Then Theorem 1 implies

V2 (0, Pl)) = (o [en(B) ™) |
= (e exp (B0 ) - vy - “j)D

24




Wherg we have conditioned on YVr under P and used that B is Yr-measurable.
For B=—Y":= ((=Yr) An) V (—n),n € N, dominated convergence and an
easy calculation yield

o yn A TN\ ]\ =
lim V5" (p, P(p)) = — <Ep {exp (—YT(l —p?) — ApYr — P )})

i 2
= — exp((—p2 +2Ap + 1)%) =:g(p). (5.1)

The mapping p — g(p) is clearly not monotonic in |p| except in the martin-
gale case A\ = 0. Because of (5.1), the mapping p +— V5 ¥~ (p, P(p)) for n big
enough is not monotonic in |p| either. If we now consider case (I) with v = 1

and B = —Y™ the proof of Theorem 2 implies that
Vo (0:p) = Vg (0) = NIV (0, P(p)

so that p — V¥ (0; p) for n big enough is not monotonic in |p| either. This
completes our example.

Remark. One can directly show that V{YT (p, 13(,0)) = g(p) if one adapts
the definition of flt(p).A For such an unbounded B, one stipulates that
(exp(— fts 7, AW, (p) + B))tgng instead of (exp(— f: Tty dWy(p)))tgng is
of P-class (D). The point is then that one can for this example explic-
itly determine L = (p* — 1)(Y + Aps) defined in (3.5), and L is obviously a
BMO(G, P(p))-martingale. o

The above example shows that V7 is in general not monotonic in |p|. We
now explain the intuition for this. In the martingale case A = 0, the value
Vo T (0;p) = VT (p, ﬁ(p)) = —exp((1 — p*)T/2) is clearly monotonic in
|p|, and we have already seen why: Higher correlation permits better hedg-
ing, and so the investor runs less risk and has a higher expected utility. For
the semimartingale case A # 0, this effect is still there, but now also inter-
acts with the correlation. Consider for instance the case where A > 0 and
p > 0. The optimal strategy 7* for Voo (,0, ]3(,0)) is zero and hence the opti-
mal strategy for VP (0; p) is 7 = %; compare the proof of Theorem 2. This
strategy m* makes a positive investment in the stock S. Adding —B = Y
leads to a total position with a higher risk, since the correlation p between
Y and S is positive. To counteract this exposure, the investor will reduce
his position in S and smooth out his terminal wealth. Hence he accepts in
average a lower return on his portfolio in S to reduce the risk of his total
position. So an increase in correlation yields a higher risk exposure for a fixed
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strategy; this is compensated by more conservative (smaller) investment in
S, leading to a lower return and hence a decrease of the value V; 7 (0; p).
In total, p — VO_YT(O; p) can therefore become decreasing in |p| —despite
the better hedging possibility. The above argument explains why this can
happen, and (5.1) shows that it does happen for 0 < p < .

Remark. In a Markovian framework with constant p and A, the result of
Proposition 3 has already been established by Henderson [8] who shows that
the indifference value b (or, equivalently in that setting, VB) is increas-
ing in |p|. Henderson’s analysis at first sight seems to contradict our non-
monotonic example, and closer inspection reveals that it crucially depends
on fixing some parameter called § in [8] while varying p. But this exactly
corresponds to our fixing P in Proposition 3 while varying p, and it has
in both cases a very natural financial interpretation. In fact, the standard
viewpoint in financial theory is that the instantaneous Sharpe ratio § of the
nontraded asset Z in (4.3) is not fixed exogenously, but related with A via
the correlation p. This tacit assumption is usually not spelt out explicitly
in the finance literature, and the point of our counterexample is to illustrate
that monotonicity may fail in its absence. o

6 The multidimensional case

In this section, we extend our main results to the case of more than two
Brownian motions. Since most arguments are straightforward generaliza-
tions, we only sketch the main differences.

The probabilistic framework consists of an n-dimensional (G, P)-Brown-
ian motion Y and an m-dimensional (G, P)-Brownian motion W, each having
P-independent components. Instantaneous correlations are now given by a

w, and we choose R to be G-

matrix R = (pij);zll,...,n, with p¥ = ==

J=L4...,m
predictable. It can be shown that the symmetric positive semidefinite matrix
RR" has nonnegative eigenvalues which are all at most 1. We assume that
all eigenvalues are bounded away from one uniformly on Q x [¢,T], i.e.,

there exists ¢ < 1 such that spectral radius(RRT) <c a.e. on ) x[t,T].

Recall that ¢ € [0, 7] is fixed. There are m traded risky assets S = (57);21. _m
with dynamics

dS) = Siulds+ Y SlolFdWl, 0<s<T, S§>0, j=1,...,m:
k=1
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..........

are G-predictable. We assume that ¢ is invertible, A := o' is bounded
uniformly (in s and w) and that there exists a constant C' such that

1
CB'p>p"o0" 3> 56Tﬁ on 2 x [0, 7] for all g € R™.
(In other words, o is uniformly both bounded and elliptic.) The processes

W::W+/)\ds and Y::Y—I—/R/\ds

are Brownian motions under the minimal martingale measure P given by

j—f, =& (— Ik /\dI/V)0 o All other definitions and model assumptions of Sec-
tions 2.1 and 3.1 can be easily translated to this setting and we do not detail

this. The multidimensional version of Theorem 1 then reads as follows.

Theorem 4. Under the above assumptions, denote by minEV(RsRI) and
maxEV (R,R]) = spectral radius(R,R,) the smallest and largest eigenval-

ues of R,R!, and define §, and &, by

1 —
0; == su

1
inf N ) . p
se(t.1] |1 — minEV(RsR])|| 1< se[tT]

0= 1 — maxEV(R,R])

L

) (6.1)
Then there exists a Gi-measurable random variable 58 with values in [ét,gt]
such that

—Vté(w) = (Eﬁ [exp(B)% ﬂt} (w))6 (6.2)

6=6p ()

for almost all w € €.

Outline of the proof. This goes similarly to Theorem 1 via analogues of Prop-
ositions 1 and 2, and we only point out where significant changes occur. The

analogue to (3.8) is, for t < s < T,
20 =MD exp( L [ (15, — 6RIC)P + 8T (5(1 - R,RT) — 1)¢, ) d
s T TS p2t<7Ty yCy|+Cy(( yy) )Cy>y
(6.3)
with M@ = &([ ¢ dy — ffrdW) like in (3.7) and ¢; := Ep[exp(B/é) |7:{t]
like in (3.5). In (6.3), I denotes the (n x n)-identity matrix. As in the proof of

Proposition 1, the key point is that the integrand in (6.3) with ¢ := 0, is non-
negative for every m € A;. To see this, one must prove that d; (I — RyR;r ) —1
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is positive semidefinite or, equivalently, that all its eigenvalues are nonnega-
tive. But if « is such an eigenvalue, then 1 — (a + 1) / d0; is an eigenvalue of

R,R]; this implies 1 — (a 4+ 1) /§; <1 —1/8; by (6.1), and hence a > 0.

y ly o
For the analogue of Proposition 2, one defines, for t < s < T,

72 1= ORI, 4+ /0,6T (1= 81 = RED)G, (10,07, (64)

where ¢ is now defined in (3.5), (3.6) with 6 := ¢, and (1,0,...,0) € R™.
Using (6.1) and a similar reasoning as above, one sees that the expression
under the square root in (6.4) is nonnegative, and (6.3) simplifies for 7 = 7*
and § = 9, like (3.12) to Z{) = c%Mt(;r*), t < s <T. As in the proof
of Proposition 2, one can show that M (") is a (G, P)-martingale and that
e A,

Finally, (6.2) is proved from the analogues of Propositions 1 and 2 simi-
larly as in the two-dimensional case. This concludes the proof outline. [

Using Theorem 4, one can of course obtain results like Theorems 2 and 3
also in the multidimensional case. We refrain from giving details because
the procedure goes essentially along the same lines as in Section 4. However,
we emphasize that it is important to assume that the rank of the volatility
matrix o equals the dimension m of W. (In particular, we typically want at
least m risky assets.) This condition, implied by the assumption that o is
invertible, is required to show that the sets A, and A, fit together; compare
ii) in the proofs of Theorems 2 and 3.
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