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similar values of a for different k even though the silent-site distributions looked quite different
for k 2, 4. On the other hand, the distribution of site configurations at nonsilent sites was
significantly different. A confidence interval for the number of nonsilent sites that could
be selectively neutral was found. When equal deleterious selection against rare bases at all
nonsilent sites was assumed and the estimate of a from the more common silent sites used,
the average amount of selection acting against variant enzymes could also be estimated. The
average amount of selection necessary to explain the observed enzyme polymorphisms was
found to be quite small in both data sets.

SEMIMARTINGALES AND HEDGING IN INCOMPLETE MARKETS
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Introduction. Consider a stochastic process (Xt) which models the price evolution of
a risk asset (e.g., a stock). Let the random variable H describe a payoff to be made at a
fixed time T > 0 (e.g., a call option or stop-loss contract H (XT K)+). Two important
questions in such a setting are:

1) What is a fair price (or insurance premium) for H at time 07
2) What is a good hedging strategy (or insurance policy)?
We present here an approach to answering 2) in a very general framework with respect

to a sort of mean-variance criterion. It may be worth mentioning that 1) is an open problem
in this general case.

1. The hedging problem. We assume that the price process X X0 + M + A of
our stock is a special semimartingale. A trading strategy is a pair of processes (t), (}t),
where is predictable and describes the number of shares we hold at time t and /is adapted
and gives the amount held in some riskless asset whose value per unit is normalized to one.
Such a strategy induces a wealth process Vt tXt + }t and a process of cumulative hedging
costs Ct Vt fu dXu, wealth minus gains from trade. To measure the riskiness of a

strategy, we introduce the process Rt :-- E[(CT-Ct)21Yt]. The hedging problem for a given
contingent claim H can then be loosely formulated as

(HP) Find a strategy (, }) with terminal wealth VT H which has minimal local
variances.

An exact statement is provided by the following
DEFINITION. A strategy o (, r/) is called optimal if VT H P-a.s. and if

linm__.inf (R,(o + A](,,t,+l] R,())I(,,,+,]/E[(M)t,+ -(M),]:F,] >= 0
ti z’n

holds P x (M)-a.e. on f/ [0, T], for all small perturbations A and for every increasing
sequence (rn) of partitions of [0, T] with Irnl --. 0. For additional details and motivation, see

2. Characterizing optimal strategies.
THEOREM. Assume that M is square-integrable,A is continuous,A << (M) and that

dA/d(M) E log+ (P (M)). Then the following statements are equivalent.
1) (, }) is an optimal strategy for H.
2) The cost process C(, l) is a martingale and orthogonal to M.
3) C(, }) is a martingale,and satisfies the optimality equation + #,A #H. (Here,

#H and #,A denote respectively the integrands of the projections ofH and fu dAu on the
stable subspace generated by M.)
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Sketch of the proof (see [5] for details).
a) If C is not a martingale, one can construct a better strategy, using the fact that R is

a conditional mean squared error. As a consequence, r/is determined by , and it will suffice
to vary .

b) If we compare to some - 5, we obtain an expression of the form

Dividing by {M) and using a technical differentiation argument for semimartingales (see
[4]) leads to the condition C f 5dM O, thus proving orthogonality.

For the purpose of actually finding optimal strategies (or equivalently for solving the
optimality equation), the following formulation, is more useful. See [1] for a proof.

LEMMA. H admits an optimal strategy if and only if it has a decomposition

(D) H Ho + uH dXu + L,

where the martingale LH is orthogonal to M. The optimal strategy is then determined by
H and C Ho + LH.
Remark. There are two cases where a decomposition (D) is immediately available. The

first is a so-called complete model, where every random variable has a representation as a
stochastic integral of X; see [3]. The second is the case where X M is a martingale,
since (D) is then provided by the Kunita-Watanabe projection theorem; see [2]. The general
incomplete semimartingale case is more difficult, and we shall sketch two possible lines of
approach in the next sections.

3. The minimal martingale measure. The first idea is to try to get back to a
martingale situation. Let P* P be any martingale measure for X and consider the Kunita-
Watanabe decomposition of H under P*"

H N + dXu + L,

where the P*-martingales X and L* are P*-orthogonal. Then we can make two observations:
(i) If L* is also a P-martingale and P-orthogonal to M, we obviously have the existence

of a decomposition (D).
(ii) If every P-martingale L which is P-orthogonal to M is also a P*-martingale and

P*-orthogonal to X, we obtain uniqueness for the decomposition (D), since the Kunita-
Watanabe decomposition is unique.

Thus, the problem is to find a martingale measure P P satisfying (i) and (ii). Such
a P will be called a minimal martingale measure. Intuitively, P is that martingale measure
for X which is closest to the original measure P. The following result is proved in [1].

THEOREM 1. If X is continuous, this approach works. Furthermore,P is uniquely de-
termined and can be found by minimizing a certain functional involving the relative entropy
H(.IP).

4. Incomplete information. A second idea is to examine claims H which are stochas-
tic integrals with respect to some larger filtration F _D F. Let us assume that H has the
form

H Ho + u dXu

for some -predictable integrand . Since our strategies have to be F-predictable, cannot
serve as an admissible strategy. However, one has the following result (see [1] and [6]).
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THEOREM 2. Assume that the decomposition X Xo + M + A is the same under both

filtrations F and , and that (M)F (M)F. Then every H of the above ]orm admits a

decom,osition (D), and the corresponding optimal strategy H can be obtained by projec-

tion:" EM [1P(F)], where EM denotes expectation under the measure P (M), and
7(F) is the predictable a-field associated to F.

Intuitively, the conditions of the theorem say that the first and second-order structure of
X is not changed by enlarging the filtration from F to F. This is sufficient since we essentially
use a mean-variance criterion. The preceding method can for example be used to study a
Black-Scholes type model with a random variance. See [1] for details of this application.
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THE SUPERCRITICAL VARYING-ENVIRONMENT
GALTON-WATSON PROCESS

J. c. D’SOUZA AND J. D. BIGGINS

In a varying-environment Galton-Watson process, the offspring distribution depends on
the generation number. Let Zn be the amount of offspring in the nth generation; then

Zn

Zn+l
i-1

(n >__ 0),

where Xn,i, 1, 2, are independent and identically distributed copies of Xn and the
distribution of Xn depends on the generation number n. We assume that there is a single
initial ancestor, i.e., Z0 1, and that the mean number of offspring is always finite and
nonzero, i.e., 0 < E(Xn) < oo.

Let un E(Zn) and mn E(Zn); then it is clear that

n-1

ran-: H lj
j=0

and that (Zn/mn} is a non-negative martingale. We denote its limit by W as n --- x.
In the homogeneous case, when {Xn} are all distributed as X, it is well known that the
conditions 1 < E(X) and EX log+ X < x) are sufficient (and indeed necessary) for W to
be nondegenerate. Furthermore, when W is nondegenerate, EW 1 and (W > 0}
(Zn c} a.s. The main result here (Theorem 1) gives sufficient conditions for the same
conclusions in the process in varying environments; these conditions include the classical ones
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