
14

Some new BSDE results for an infinite-horizon

stochastic control problem

Ying Hu1 and Martin Schweizer2,3
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0. Introduction

This paper studies a stochastic control problem arising in the context of ro-
bust utility maximisation, and proves new results via BSDE techniques. A
particular feature is that the problem is formulated and solved for an infi-
nite horizon and that we also obtain new results on a certain infinite-horizon
BSDE with quadratic generator.

In loose terms, the basic problem we should like to tackle has the form

find sup
π

inf
Q

U(π,Q),

where U is some utility functional, π runs through a set of investment and
consumption strategies, and Q through a set of models given by probability
measures. In a first step, we focus only on the inner minimisation problem;
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thus we think of π as being fixed and look for a worst-case model Q. The
functional U(π,Q) we consider has the form

U(π,Q) = EQ

[

Uδ
0,∞ + βRδ

0,∞(Q)
]

,

where Uδ
0,∞ = α

∞
∫

0

Sδ
sUs ds stands for a discounted utility term (whose de-

pendence on the fixed π is suppressed) and Rδ
0,∞(Q) =

∞
∫

0

Sδ
s logZ

Q
s ds is an

entropic penalty term. A precise formulation is given later.
The finite-horizon version of this problem has been studied in Bordigoni/

Matoussi/Schweizer [2], who have characterised the dynamic value process
V = V (T ) of the resulting stochastic control problem as the unique solution
of the BSDE

(0.1a) dYt = (δtYt − αUt) dt+
1

2β
d〈M〉t + dMt

with a final condition at time T . We generalise these results here to an infinite-
horizon setting with the terminal condition

(0.1b) lim
t→∞

Yt = 0.

In an unpublished PhD thesis, G. Bordigoni has already shown that V for the
infinite-horizon problem is a solution of the BSDE (0.1); but uniqueness and
the required integrability (and hence the characterisation of V by the BSDE)
remained open. We close this gap here.

In contrast to Bordigoni [1], our approach and main results here are on
the side of BSDE theory. Equation (0.1) is a quadratic BSDE in a continuous
filtration and has an unbounded generator (due to the presence of U) and
an infinite horizon. For the finite-horizon case, the classical results of Koby-
lanski [10] on existence and uniqueness of a bounded solution for quadratic
BSDEs in a Brownian filtration have been extended to unbounded solutions
in the Brownian setting by Briand/Hu [5, 6], and to bounded solutions in
a continuous filtration by Morlais [12]. In infinite-horizon settings, Briand/
Hu [4] and later Royer [13] have studied bounded solutions for BSDEs with a
Lipschitz generator, and Briand/Confortola [3] have extended these results to
bounded solutions for a quadratic generator. The methods in all these papers
rely on Girsanov techniques.

Our approach here is quite different. To prove existence of a solution to
(0.1), we have adapted the localisation method from Briand/Hu [5], while
for uniqueness, we have applied the θ-difference method from Briand/Hu [6].
Both these techniques have so far only been used in finite-horizon settings.

Finally, let us also mention two closely related papers from the finance
and economics literature. Schroder/Skiadas [14] study the same BSDE as
we do and obtain existence and uniqueness of unbounded solutions, but
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in a Brownian filtration and with a finite time horizon. Hansen/Sargent/
Turmuhambetova/Williams [9] study robustness aspects for infinite-horizon
utility maximisation problems; their main ideas and problems are similar to
ours, but the approach is rather heuristic, using Hamilton–Jacobi–Bellman
equations and formal manipulations in a Markovian setting. For a more de-
tailed discussion of additional references to the literature, we refer to Section
6 of Bordigoni/Matoussi/Schweizer [2].

The paper is structured as follows. After some preliminaries and notations
in Section 1, we study in Section 2 the BSDE on a finite horizon. This serves
as preparation for the infinite-horizon BSDE studied in Section 3 and gives
to that end fairly precise estimates for the solution Y . Section 3 establishes
existence and uniqueness of a solution (Y,M) for the infinite-horizon BSDE
(0.1) and gives a sufficient condition for E

(

− 1
βM

)

to be a martingale. In

Section 4, we prove by general arguments as in Bordigoni/Matoussi/Schweizer
[2] and Bordigoni [1] the existence of a solution to our stochastic control
problem and show that its value process V satisfies the boundary condition
lim
t→∞

Vt = 0. Finally, Section 5 uses the BSDE results to characterise V as

the unique solution, in a suitable space, for the BSDE (0.1), and in particular
establishes that V has the required good integrability properties.

1. Preliminaries and overview

In this section, we introduce all required notations, the basic BSDEs and the
basic optimisation problems. We start with a probability space (Ω,F , P ) and
a time horizon T ∈ (0,∞]. The filtration IF = (Ft)t≥0 satisfies the usual
conditions of right-continuity and P -completeness, F0 is P -trivial, and we set
F∞ :=

∨

t≥0

Ft. The basic ingredients for our optimisation problems are

– parameters α, α′ ∈ [0,∞) and β ∈ (0,∞);
– progressively measurable processes δ = (δt)t≥0 and U = (Ut)t≥0;
– an FT -measurable random variable U ′

T , with U ′
∞ := 0 for T = ∞.

With these, we can formulate the BSDEs studied here. On the one hand, for
a finite horizon T < ∞, we introduce the BSDE

(1.1) dYt = (δtYt − αUt) dt+
1

2β
d〈M〉t + dMt, YT = α′U ′

T .

On the other hand, for an infinite horizon T = ∞, the BSDE is

(1.2) dYt = (δtYt − αUt) dt+
1

2β
d〈M〉t + dMt, lim

t→∞
Yt = 0.

A solution of (1.1) or (1.2) is a pair (Y,M) satisfying (1.1) or (1.2), respec-
tively, where Y is a P -semimartingale and M is a locally P -square-integrable
local P -martingale null at 0.
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For the optimisation problems, we first define the discounting process

Sδ
t := exp

(

−
t
∫

0

δs ds
)

, t ≥ 0,

and for T < ∞ the auxiliary quantities, for 0 ≤ t ≤ T ,

Uδ
t,T := α

T
∫

t

Sδ
s

Sδ
t

Us ds+ α′S
δ
T

Sδ
t

U ′
T(1.3)

=

T
∫

t

αe−
R

s

t
δrdrUs ds+ α′e−

R

T

t
δrdrU ′

T ,

Rδ
t,T (Q) :=

T
∫

t

δs
Sδ
s

Sδ
t

log
ZQ
s

ZQ
t

ds+
Sδ
T

Sδ
t

log
ZQ
T

ZQ
t

,(1.4)

for Q ≪ P on FT with density process ZQ on [0, T ]. We consider the cost
functional

cT (Q) := Uδ
0,T + βRδ

0,T (Q),

and the basic stochastic control problem on a finite horizon is to minimise the
functional

Q 7→ ΓT (Q) := EQ[cT (Q)]

over a suitable class of probability measures Q ≪ P on FT . In a classical way,
we can choose an adapted RCLL process V = (Vt)0≤t≤T such that

Vt = ess inf
Q

EQ

[

Uδ
t,T + βRδ

t,T (Q)
∣

∣Ft

]

, 0 ≤ t ≤ T.

For T = ∞, we define similarly, for t ≥ 0,

Uδ
t,∞ := α

∞
∫

t

Sδ
s

Sδ
t

Us ds =

∞
∫

t

αe−
R

s

t
δrdrUs ds,

Rδ
t,∞(Q) :=

∞
∫

t

δs
Sδ
s

Sδ
t

log
ZQ
s

ZQ
t

ds,

for Q
loc
≪P with density process ZQ. We consider the cost functional

c∞(Q) := Uδ
0,∞ + βRδ

0,∞(Q)

and in principle want to minimise the functional

Q 7→ Γ∞(Q) := EQ[c∞(Q)]
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over a suitable class of probability measures Q
loc
≪P . (For the precise formula-

tion, we refer to Section 4.) In a similar manner as for T < ∞, we can choose
an adapted RCLL process V = (Vt)t≥0 which is again called the dynamic
value process of our stochastic control problem. Of course, to be accurate, we
should distinguish in notations between V (T ) and V (∞).

Our main results in this paper are

a) existence and uniqueness results for the above BSDEs (both with finite
and infinite horizon), and

b) a characterisation of the value process V = V (∞) for the infinite-horizon
setting as the solution of the BSDE (1.2).

2. The BSDE on a finite horizon

The main goal of this section is to prove the existence of a solution to the
finite-horizon BSDE under weak conditions. This slightly extends previous
work and above all serves as preparation for the infinite-horizon case. So we
fix T ∈ (0,∞) and view U and δ as processes on [0, T ].

Hypothesis 2.1. Throughout this section, we impose the standing
assumptions

IF is a continuous filtration, i.e. all local (P, IF )-martingales are(2.1a)

continuous.

δ ≥ 0 is uniformly bounded (by δ̄, say).(2.1b)

Precise assumptions on U,U ′
T will be specified below. Now we introduce the

quantities

B := α
T
∫

0

Sδ
sUs ds+ α′Sδ

TU
′
T = Uδ

0,T ,

B− := α
T
∫

0

Sδ
sU

−
s ds+ α′Sδ

T (U
′
T )

−,

B+ := α
T
∫

0

Sδ
sU

+
s ds+ α′Sδ

T (U
′
T )

+.

The BSDE (1.1) under study is

(2.2) dYt = (δtYt − αUt) dt+
1

2β
d〈M〉t + dMt, YT = α′U ′

T .

Definition 2.2. A solution of (2.2) is a pair of processes (Y,M) satisfying
(2.2), where Y is a P -semimartingale and M is a locally P -square-integrable
local P -martingale null at 0.
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Due to the standing assumption (2.1a), M and then Y are continuous for
any solution (Y,M) of (2.2). Our proof of existence applies the localisation
method originally developed in a Brownian setting by Briand/Hu [5]. To that
end, we need to establish precise a priori estimates in the bounded case. Note
that 1/Sδ = S−δ.

Proposition 2.3 (A priori estimates). Suppose that
T
∫

0

|Us| ds and U ′
T are

bounded random variables. Then there exists a unique solution (Y,M) to
(2.2) such that Y is a bounded process. Moreover, we have for 0 ≤ t ≤ T the
estimates

(2.3) S−δ
t Y t −

t
∫

0

αe
R

t

s
δrdrUs ds ≤ Yt ≤ S−δ

t Y t −

t
∫

0

αe
R

t

s
δrdrUs ds,

where

(2.4) Y t := −βe−δ̄T logE
[

e−
1
β
eδ̄TB

∣

∣

∣
Ft

]

and Y t := E[B|Ft].

Proof. Existence and uniqueness of a solution with Y bounded are immediate
from Theorems 2.5 and 2.6 of Morlais [12]. From the definitions of Y and Y
and Itô’s formula, it is clear that there exist M and M such that

dY t =
1

2β
eδ̄T d〈M〉t + dM t, Y T = B,(2.5)

dY t = dM t, Y T = B.(2.6)

If we first set Y 1
t := Sδ

t Yt and M1
t :=

t
∫

0

Sδ
s dMs, then the BSDE (2.2) is

transformed to

(2.7) dY 1
t = −αSδ

tUt dt+
1

2β
S−δ
t d〈M1〉t + dM1

t , Y 1
T = α′Sδ

TU
′
T .

If we next put Y 2
t := Y 1

t +
t
∫

0

αSδ
sUs ds and M2 := M1, the BSDE (2.7)

becomes

(2.8) dY 2
t =

1

2β
S−δ
t d〈M2〉t + dM2

t , Y 2
T = α′Sδ

TU
′
T + α

T
∫

0

Sδ
sUs ds = B.

Because 0 ≤ S−δ
t ≤ eδ̄T , we deduce by comparison of (2.5), (2.8) and (2.6)

that
Y t ≤ Y 2

t ≤ Y t, 0 ≤ t ≤ T.

Returning to Y by the formula Yt = S−δ
t Y 2

t −
t
∫

0

αe
R

t

s
δrdrUs ds, we conclude

the proof. ⊓⊔
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We now apply the localisation method to get the following existence result.

Theorem 2.4 (Existence of solution). Let us suppose that

(2.9) E
[

e
1
β
eδ̄TB−

]

+ E[B+] < ∞.

Then the BSDE (2.2) admits a solution (Y,M) which satisfies

(2.10) S−δ
t Y t −

t
∫

0

αe
R

t

s
δrdrUs ds ≤ Yt ≤ S−δ

t Y t −

t
∫

0

αe
R

t

s
δrdrUs ds

for 0 ≤ t ≤ T , with Y , Y given in (2.4).

Proof. 1) We first assume that U ′
T and U are nonnegative; then Y is also

nonnegative. For each n ∈ IN , we consider Un
t := Ut1{

R

t

0
Us ds≤n}, 0 ≤ t ≤ T ,

and U ′,n
T := U ′

T ∧ n. According to Proposition 2.3, the BSDE

dYt = (δtYt − αUn
t ) dt+

1

2β
d〈M〉t + dMt, YT = α′U ′,n

T

admits a unique solution (Y n,Mn) such that Y n is a bounded process, and
by (2.3), extended from U ′,n

T and Un to U ′
T and U thanks to nonnegativity,

−

t
∫

0

αe
R

t

s
δrdrUs ds ≤ Y n

t ≤ S−δ
t E[B|Ft].

Since U ′,n
T ≤ U ′,n+1

T and Un ≤ Un+1, the sequence (Y n) is nondecreasing by
a comparison result; this can be obtained similarly as in the proof of Theorem
8 in Mania/Schweizer [11]. For k ∈ IN , define the stopping times

τk := inf

{

t ∈ [0, T ] :

t
∫

0

αe
R

t

s
δrdrUs ds+ S−δ

t E[B|Ft] ≥ k

}

∧ T

and note that (τk)k∈IN increases to T stationarily. By construction, the
stopped processes Y n;k := (Y n)τk , n ∈ IN , are uniformly bounded by k.
Setting Mn;k := (Mn)τk , we have

Y n;k
t = Y n

τk
−

T
∫

t

1{s≤τk}(δsY
n;k
s − αUn

s ) ds−
T
∫

t

1
2β d〈Mn;k〉s −

T
∫

t

dMn;k
s .

We now take the supremum over n and apply the monotonic stability theorem
(

see e.g. Lemma 3.3 in Morlais [12]
)

to obtain, for each k, a solution (Y k,Mk)
to the BSDE
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Y k
t = ξk −

τk
∫

t

(δsY
k
s − αUs) ds−

τk
∫

t

1
2β d〈Mk〉s −

τk
∫

t

dMk
s , with ξk := sup

n∈IN
Y n
τk
.

More precisely, that result shows that as n → ∞, Mn;k
T converges to Mk

T in

L2, so that both Mn;k
t and 〈Mn;k〉t converge uniformly over t ∈ [0, T ] in prob-

ability to Mk
t and 〈Mk〉t, respectively. Moreover, τk ≤ τk+1 by construction;

hence Y n;k+1
t∧τk

= Y n;k
t and so we have the localisation property

Y k+1
t∧τk = Y k

t and Mk+1
t∧τk = Mk

t .

So if we set τ0 := 0 and define the processes Y and M on [0, T ] by

Yt := Y 1
0 +

∞
∑

k=1

Y k
t 1(τk−1,τk](t) and Mt :=

∞
∑

k=1

Mk
t 1(τk−1,τk](t),

the last BSDE can be rewritten as

Yt = ξk −
τk
∫

t

(δsYs − αUs) ds−
τk
∫

t

1
2β d〈M〉s −

τk
∫

t

dMs.

Finally we observe that P -a.s., τk = T for k large enough. This allows us to
send k → ∞ in the previous equation and hence to prove that (Y,M) is a
solution to (2.2). The inequality (2.10) is satisfied by the process Y since it
holds for each Y n in view of Proposition 2.3.

2) If U ′
T and U are not necessarily nonnegative, we use a double ap-

proximation by setting Un,p
t := U+

t 1{
R

t

0
|Us|ds≤n} − U−

t 1{
R

t

0
|Us|ds≤p} and

U ′,n,p
T := (U ′

T )
+∧n−(U ′

T )
−∧p. The condition (2.9) is used here to extend (2.3)

from the truncated to the general case and to ensure that Y , Y remain well-
defined. In some more detail, we define τk (with |U | and |B|) and Y n,p;k and
Mn,p;k analogously as before. Then Y n,p;k is increasing in n and decreasing in
p, and it remains bounded by k. Arguing as before, we set Y k := inf

p
sup
n

Y n,p;k

to get the existence of Mk such that lim
p→∞

lim
n→∞

Mn,p;k
s∧τk = Mk

s and (Y k,Mk)

still solves the BSDE. The rest of the proof is unchanged. ⊓⊔

In connection with the stochastic control problem, it will be important to
know when the stochastic exponential E

(

− 1
βM

)

is a true martingale, where

M comes from the solution of the BSDE (2.2).

Theorem 2.5. Suppose that there exists a constant λ > 1+ eδ̄T−1
eδ̄T

such that

(2.11) E
[

eλ
1
β
eδ̄TB+

]

+ E
[

eλ
1
β
eδ̄TB−

]

< ∞.

Then the stochastic exponential E
(

− 1
βM

)

is bounded in L logL(P ) and hence

a (uniformly integrable) martingale on [0, T ].
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Proof. Since (2.11) clearly implies (2.9), existence of a solution is ensured by
Theorem 2.4. For any stopping time τ with values in [0, T ], the BSDE (2.2)
gives

E
(

− 1
βM

)

τ
= exp

(

− 1
β

(

Mτ + 1
2β 〈M〉τ

)

)

= exp

(

− 1
β

(

Yτ − Y0 −
τ
∫

0

δsYs ds+ α
τ
∫

0

Us ds
)

)

.

Hence it suffices to prove that there exists a constant λ1 > 1 such that

E

[

exp

(

−λ1
1
β

(

Yτ −
τ
∫

0

δsYs ds+ α
τ
∫

0

Us ds
)

)]

≤ C,

where C ∈ (0,∞) is a constant which is independent of τ .
From the estimate (2.10), we have

Yτ + α
τ
∫

0

Us ds−
τ
∫

0

δtYt dt ≥ S−δ
τ Y τ +

τ
∫

0

α
(

1− e
R

τ

s
δrdr

)

Us ds

−

τ
∫

0

δt

(

S−δ
t Y t −

t
∫

0

αe
R

t

s
δrdrUs ds

)

dt.

But Fubini’s theorem gives
τ
∫

0

δt
t
∫

0

αe
R

t

s
δrdrUs ds dt =

τ
∫

0

α
(

e
R

τ

s
δrdr − 1

)

Us ds,

and so we deduce that

(2.12) Yτ −
τ
∫

0

δsYs ds+ α
τ
∫

0

Us ds ≥ S−δ
τ Y τ −

τ
∫

0

δtS
−δ
t Y t dt.

Now pick p > 1 with λ > p > 1 + eδ̄T−1
eδ̄T

, and set λ1 = λ
p > 1. Using (2.12)

and (2.4) and setting L∗
t := sup

0≤s≤t
E[B+|Fs], we obtain with (2.1b) that

E

[

exp

(

−λ1
1
β

(

Yτ −
τ
∫

0

δsYs ds+ α
τ
∫

0

Us ds
)

)]

≤ E

[

exp

(

−λ1
1
β

(

S−δ
τ Y τ −

τ
∫

0

δtS
−δ
t Y t dt

)

)]

≤ E

[

exp
(

λ1 logE
[

e
1
β
eδ̄TB−

∣

∣

∣
Fτ

])

exp
(

λ1
1
βL

∗
T

T
∫

0

δtS
−δ
t dt

)

]

≤ E

[

(

E
[

e
1
β
eδ̄TB−

∣

∣

∣
Fτ

])λ1

e
λ1
β (eδ̄T−1)L∗

T

]

.

Finally, we set q := p
p−1 and r := (p−1) eδ̄T

eδ̄T−1
> 1 and use Hölder’s inequality,

λ1p = λ, Jensen’s inequality and Doob’s inequality in Lr to get
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E

[

exp

(

−λ1
1
β

(

Yτ −
τ
∫

0

δsYs ds+ α
τ
∫

0

Us ds
)

)]

≤ E

[

(

E
[

e
1
β
eδ̄TB−

∣

∣

∣
Fτ

])λ1p
]1/p

E
[

e
λ1q

β (eδ̄T−1)L∗

T

]1/q

≤ C′
rE

[

eλ
1
β
eδ̄TB−

]1/p

E
[

e
λ1qr

β (eδ̄T−1)B+

]
1
qr

= C < ∞,

because λ1qr
(

eδ̄T − 1
)

= λeδ̄T . ⊓⊔

3. The BSDE on an infinite horizon

In this section, we use BSDE techniques to prove the existence and uniqueness
of a solution to the infinite-horizon BSDE under suitable conditions.

Hypothesis 3.1. Throughout this section, we impose the standing
assumptions

IF is a continuous filtration, i.e. all local (P, IF )-martingales are(3.1a)

continuous.

δ ≥ 0 is uniformly bounded (by δ̄, say).(3.1b)

Again, the assumptions on U = (Ut)t≥0 will be specified later; U ′
T does not

appear here. The BSDE (1.2) under study is now

(3.2) dYt = (δtYt − αUt) dt+
1

2β
d〈M〉t + dMt, lim

t→∞
Yt = 0 P -a.s.,

and as before, a solution of (3.2) is a pair (Y,M) satisfying (3.2), where Y is a
P -semimartingale and M is a locally P -square-integrable local P -martingale
null at 0.

The first step in tackling (3.2) is to obtain a priori estimates for the finite-
horizon version with terminal condition YT = 0. But in contrast to Section
2, we now need the bounds to be uniform in T , and so we need stronger
assumptions on U .

Definition 3.2. We say that a random variable X is in Dexp if E
[

eλ|X|
]

< ∞
for all λ > 0. A progressively measurable process U = (Ut)t≥0 is in Dexp

1,T , for

T ∈ (0,∞], if
T
∫

0

|Us| ds is inDexp, and an RCLL process Y = (Yt)t≥0 is inDexp
0,T ,

for T ∈ (0,∞], if Y ∗
T := sup

0≤t≤T
|Yt| is in Dexp. (By convention, Y ∗

∞ := sup
t≥0

|Yt|.)

Let us now consider the BSDE
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(3.3) dYt = (δtYt − αUt) dt+
1

2β
d〈M〉t + dMt, YT = 0.

Proposition 3.3 (A priori estimates). Suppose that
T
∫

0

|Us| ds is a bounded

random variable. Then there exists a unique solution (Y,M) to (3.3) such that
Y is a bounded process. Moreover, we have the estimate

(3.4) |Yt| ≤ β logE
[

exp
(

1
β

T
∫

t

α|Us| ds
) ∣

∣

∣
Ft

]

, 0 ≤ t ≤ T.

Proof. Existence and uniqueness of a solution with Y bounded follow as for
Proposition 2.3 from Theorems 2.5 and 2.6 of Morlais [12]. Applying Tanaka’s
formula then first yields

d|Yt| = sign(Yt) dYt+dLt = sign(Yt)
(

(δtYt−αUt) dt+
1

2β
d〈M〉t+dMt

)

+dLt,

where L is the local time at 0 of the continuous semimartingale Y . Next, apply-

ing Itô’s formula to the bounded process Zt := exp

(

1
β

(

|Yt|+
t
∫

0

α|Us| ds
)

)

,

we obtain

dZt =
1

β
Zt sign(Yt)

(

(δtYt − αUt) dt+
1

2β
d〈M〉t + dMt

)

+
1

β
Zt dLt +

1

β
Ztα|Ut| dt+

1

2β2
Zt d〈M〉t

≥
1

β
Zt sign(Yt) dMt,

in the sense that the difference of the terms on the two sides of the inequality
is an increasing process. So Z is a submartingale, which gives

exp

(

1
β

(

|Yt|+
t
∫

0

α|Us| ds
)

)

≤ E
[

exp
(

1
β

T
∫

0

α|Us| ds
)
∣

∣

∣
Ft

]

since YT = 0, and (3.4) follows. ⊓⊔

From this a priori estimate and the localisation method, we obtain the
existence of a solution to the infinite-horizon BSDE (3.2).

Theorem 3.4 (Existence of solution). Let us suppose that

(3.5) E
[

exp
(

1
β

∞
∫

0

α|Us| ds
)]

< ∞, i.e. exp
(

1
β

∞
∫

0

α|Us| ds
)

∈ L1.

Then the BSDE (3.2) admits a solution (Y,M) which satisfies
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(3.6) |Yt| ≤ β logE
[

exp
(

1
β

∞
∫

t

α|Us| ds
) ∣

∣

∣
Ft

]

, t ≥ 0.

If exp
(

1
β

∞
∫

0

α|Us| ds
)

is in Lr for some r > 1, then so is exp
(

1
βY

∗
∞

)

. If

U ∈ Dexp
1,∞, then Y ∈ Dexp

0,∞.

Proof. 1) We first assume that U is nonnegative and set Un
t := Ut1{

R

t

0
Usds≤n}

for each n ∈ IN . According to Proposition 3.3, the BSDE

dYt = (δtYt − αUn
t ) dt+

1

2β
d〈M〉t + dMt, Yn = 0

on [0, n] admits a unique solution (Y n,Mn) with Y n bounded, and by (3.4),

|Y n
t | ≤ β logE

[

exp
(

1
β

∞
∫

t

α|Us| ds
) ∣

∣

∣
Ft

]

, t ∈ [0, n].

If we set Y n
t = 0 and Mn

t = Mn
n for t > n, then (Y n,Mn) also satisfies on

[0, n+ 1] the BSDE

dYt = (δtYt − α1{t≤n}U
n
t ) dt+

1

2β
d〈M〉t + dMt, Yn+1 = 0.

Because U is nonnegative, 1{t≤n}U
n
t ≤ Un+1

t for t ∈ [0, n + 1], and so the
sequence (Y n) is nondecreasing by the comparison theorem. For each k ∈ IN ,
we define the stopping time

τk := inf
{

t ≥ 0 : β logE
[

exp
(

1
β

∞
∫

t

α|Us| ds
) ∣

∣

∣
Ft

]

≥ k
}

∧ k.

Introducing the stopped processes Y n;k := (Y n)τk and Mn;k := (Mn)τk , we
can argue exactly as in the proof of Theorem 2.4 to construct processes Y and
M , now on [0,∞), satisfying for each T the BSDE

Yt = YT −
T
∫

t

(δsYs − αUs) ds−
T
∫

t

1
2β d〈M〉s −

T
∫

t

dMs.

Since each Y n satisfies the estimate (3.6) by Proposition 3.3, it follows from
the construction that so does Y , and this implies due to (3.5) that

lim
t→∞

Yt = 0 P -a.s.

2) In the general case where U need not be nonnegative, we use the dou-
ble approximation Un,p

t := U+
t 1{

R

t

0
|Us|ds≤n}1{t≤n} −U−

t 1{
R

t

0
|Us|ds≤p}1{t≤p},

t ≥ 0, and denote by (Y n,p,Mn,p) the solution to
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dYt = (δtYt − αUn,p
t ) dt+

1

2β
d〈M〉t + dMt, Yn∨p = 0.

Then the proof goes like for Theorem 2.4, using that Y n,p increases in n and
decreases in p.

3) The integrability assertions about Y follow from (3.6) and Doob’s in-
equality. ⊓⊔

To get a uniqueness result for the infinite-horizon BSDE (3.2), we need a
stronger assumption.

Theorem 3.5 (Uniqueness of solution). Suppose that U is in Dexp
1,∞. Then

the BSDE (3.2) admits a unique solution (Y,M) with Y ∈ Dexp
0,∞.

Proof. Existence is clear from Theorem 3.4. For uniqueness, let (Y,M) and
(Y ′,M ′) be two such solutions and note that the martingale part is always
unique by the uniqueness of the canonical decomposition of a special semi-
martingale. Fix θ ∈ (0, 1) and set Ŷ := Y − θY ′ and M̂ := M − θM ′. Then

(3.7) dŶt =
(

δtŶt − α(1 − θ)Ut

)

dt+
1

2β
d
(

〈M〉t − θ〈M ′〉t
)

+ dM̂t.

Noting that convexity gives

(3.8) d〈M〉t = d
〈

θM ′ + (1− θ)
M̂

1− θ

〉

t
≤ θ d〈M ′〉t +

1

1− θ
d〈M̂〉t,

we rewrite (3.7) as

dŶt =
(

δtŶt − α(1 − θ)Ut

)

dt+ dM̂t(3.9)

+
1

2β
d
(

〈M〉t − θ〈M ′〉t −
1

1− θ
〈M̂〉t

)

+
1

2β(1− θ)
d〈M̂〉t.

Now Tanaka’s formula yields dŶ −
t = −1{Ŷt≤0} dŶt +

1
2 dL̂t, where L̂ is the

local time at 0 of the process Ŷ . Applying next Itô’s formula to the process

Zt := exp

(

1
β(1−θ)

(

Ŷ −
t +

t
∫

0

α(1 − θ)|Us| ds
)

)

, t ≥ 0, we get

dZt =
1

β(1− θ)
Zt

(

− 1{Ŷt≤0} dŶt +
1

2
dL̂t + α(1 − θ)|Ut| dt

)

+
1

2β2(1 − θ)2
Zt1{Ŷt≤0} d〈M̂〉t

≥ −
1

β(1− θ)
Zt1{Ŷt≤0} dM̂t,

where the last inequality uses (3.9) and (3.8). Thus Z is a local submartingale,
and so there exists an increasing sequence of stopping times τn ր ∞ such that
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exp
(

1
β(1−θ) Ŷ

−
t∧τn

)

≤ E
[

exp
(

1
β(1−θ) Ŷ

−
T∧τn

+ 1
β

T∧τn
∫

t∧τn

α|Us| ds
)
∣

∣

∣
Ft

]

.

Because Ŷ ∈ Dexp
0,∞, U ∈ Dexp

1,∞ and lim
t→∞

Ŷt = 0, we obtain for n → ∞ and

T → ∞ that

exp
(

1
β(1−θ) Ŷ

−
t

)

≤ E
[

exp
(

1
β

∞
∫

t

α|Us| ds
)
∣

∣

∣
Ft

]

,

which is equivalent to

(Yt − θY ′
t )

− = Ŷ −
t ≤ β(1− θ) logE

[

exp
(

1
β

∞
∫

t

α|Us| ds
) ∣

∣

∣
Ft

]

.

Letting θ → 1, we deduce that Yt ≥ Y ′
t , and since a symmetrical argument

gives the reverse inequality, the proof is complete. ⊓⊔

As in Section 2, we again want to know when the stochastic exponential
E
(

− 1
βM

)

is a true martingale, where M now comes from the solution of the

BSDE (3.2). However, we only expect to obtain this here on the open interval
[0,∞), and the proof below shows why T = ∞ causes a difficulty.

Theorem 3.6. Suppose that U is in Dexp
1,∞ and denote by (Y,M) the solution

to (3.2) from Theorem 3.4. Then for every finite T and every r < ∞, the

stochastic exponential
(

E
(

− 1
βM

)

t

)

0≤t≤T
is bounded in Lr, and so E

(

− 1
βM

)

is a martingale on [0,∞).

Proof. Fix T ∈ (0,∞) and let τ be a stopping time with values in [0, T ]. As
in the proof of Theorem 2.5, the BSDE (3.2) gives

E
(

− 1
βM

)

τ
= exp

(

− 1
β

(

Yτ − Y0 −
τ
∫

0

δsYs ds+ α
τ
∫

0

Us ds
)

)

≤ exp
(

1
βY0

)

exp
(

1
βY

∗
T (1 + δ̄T ) + 1

β

∞
∫

0

α|Us| ds
)

,

and the conclusion follows from Theorem 3.4 because Y ∈ Dexp
0,∞. ⊓⊔

4. The stochastic control problem on an infinite horizon

In this section, we prove existence and uniqueness of a solution to the infinite-
horizon stochastic control problem.

Let us first give a precise formulation. We recall from Section 1 the un-
derlying filtered probability space (Ω,F , IF, P ) with IF = (Ft)0≤t≤∞, the
parameters α ≥ 0, β > 0 and the processes δ = (δt)t≥0 and U = (Ut)t≥0. We



14 Some infinite-horizon BSDE results 15

denote by Q the set of all probability measures Q
loc
≪P and by ZQ = (ZQ

t )t≥0

an RCLL version of the density process of Q with respect to P . Since F0 is
trivial, we have

{ZQ |Q ∈ Q}

⊆ {all RCLL P -martingales Z = (Zt)t≥0 with Z ≥ 0 and Z0 = 1} =: Z.

Now define for any t ≥ 0 and Z ∈ Z in analogy to (1.3) and (1.4)

Ũδ
t,∞(Z) := α

∞
∫

t

Sδ
s

Sδ
t

Zs

Zt
Us ds,

R̃δ
t,∞(Z) :=

∞
∫

t

δs
Sδ
s

Sδ
t

Zs

Zt
log

Zs

Zt
ds

and the cost functional

c̃∞(Z) := Ũδ
0,∞(Z) + βR̃δ

0,∞(Z).

The stochastic control problem studied here is to minimise the functional

Z 7→ Γ∞(Z) := EP [c̃∞(Z)]

over a subset Zf of Z, defined below. Note that by the minimum principle
for supermartingales, Z ∈ Z remains 0 if it ever hits 0; so both summands of
c̃∞(Z) are well-defined.

Hypothesis 4.1. Throughout this section, we impose the standing
assumptions

There exists some T0 ∈ (0,∞) such that for all γ > 0,(4.1a)

EP

[

exp
(

γ
T0
∫

0

|Us| ds
)]

+ EP

[ ∞
∫

T0

exp(γ|Us|)1{Us 6=0} ds
]

< ∞.

0 < δ ≤ δt ≤ δ̄ < ∞, uniformly in (t, ω), for constants δ, δ̄.(4.1b)

The first condition in (4.1a) says that U is in Dexp
1,T0

; we remark that the
indicator function in the second term fixes an obvious oversight in (4.4) of
Bordigoni [1]. The condition (4.1b) is natural for an infinite-horizon problem.
Note that we do not assume here that IF is a continuous filtration.

Definition 4.2. Zf denotes the set of all martingales Z ∈ Z satisfying

EP

[

R̃δ
0,∞(Z)

]

< ∞.

Our stochastic control problem is slightly more general than the one stud-
ied in Chapter 4 of Bordigoni [1] since we do not insist on working on the
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canonical (Skorohod) path space. The presentation here is linked to Bor-
digoni [1] and to the slightly different formulation in Section 1 as follows.
For any Q with ZQ ∈ Zf , we have under (4.1a) for any t ≥ 0

EP

[

R̃δ
t,∞(ZQ)

∣

∣Ft

]

= EP

[ ∞
∫

t

δs
Sδ
s

Sδ
t

ZQ
s

ZQ
t

log
ZQ
s

ZQ
t

ds

∣

∣

∣

∣

∣

Ft

]

= EQ

[

Rδ
t,∞(Q)

∣

∣Ft

]

,

EP

[

Ũδ
t,∞(ZQ)

∣

∣Ft

]

= EP

[ ∞
∫

t

Sδ
s

Sδ
t

ZQ
s

ZQ
t

Us ds

∣

∣

∣

∣

∣

Ft

]

= EQ

[

Uδ
t,∞

∣

∣Ft

]

;

this is proved in Lemma 4.6 and Remark 4.10 of Bordigoni [1], essentially by
using Bayes’ rule. In particular, this shows that

Γ∞(ZQ) := EP

[

c̃∞(ZQ)
]

= EQ[c∞(Q)] =: Γ∞(Q).

Expressing everything under P and working with martingales Z ∈ Zf turns

out to be a bit more flexible than working with probability measures Q
loc
≪P .

From now on, all expectations without subscript are under P .

Remark 4.3. Under (4.1b),
∞
∫

t

δsS
δ
s ds = Sδ

t for every t ≥ 0 and hence also

E

[ ∞
∫

t

δs
Sδ
s

Sδ
t

Zs

Zt
ds

∣

∣

∣

∣

∣

Ft

]

= 1 for every t ≥ 0 and any Z ∈ Z.

⋄

We start with some auxiliary estimates. These are true for any Z ∈ Z,
with the understanding that we set E

[

R̃δ
0,∞(Z)

]

= +∞ for Z ∈ Z \ Zf .

Lemma 4.4. For every Z ∈ Z and every T ∈ (0,∞),

E[ZT logZT ] ≤
1

δ
eδ̄(T+1)

(

E
[

R̃δ
0,∞(Z)

]

+ e−1
)

.

Proof. Since t 7→ E[Zt logZt] is increasing and z log z ≥ −e−1, Fubini and
(4.1b) give

E[ZT logZT ] ≤ E

[ T+1
∫

T

δs
δ
Sδ
se

δ̄s(Zs logZs + e−1) ds

]

≤
1

δ
eδ̄(T+1)E

[ ∞
∫

0

δsS
δ
s (Zs logZs + e−1) ds

]

=
1

δ
eδ̄(T+1)

(

E
[

R̃δ
0,∞(Z)

]

+ e−1
)

by Remark 4.3. ⊓⊔
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Proposition 4.5. There is a constant C < ∞ such that for every Z ∈ Z,

(4.2) E
[ ∞
∫

0

Sδ
sZs|Us| ds

]

≤ C
(

1 + E
[

R̃δ
0,∞(Z)

])

≤ C
(

1 + Γ∞(Z)
)

.

Proof. This is a simplified version of the proofs for Lemma 4.9 and Proposition
4.11 in Bordigoni [1]. We use several times below the elementary inequality
xy ≤ ex + y log y for x ∈ IR, y ≥ 0, typically applied to xy = γx 1

γ y. Starting

with c̃∞(Z), we split Ũδ
0,∞(Z) into an integral from 0 to T0 and another from

T0 to ∞ to write first

E
[ T0
∫

0

Sδ
sZs|Us| ds

]

≤ E
[

ZT0

T0
∫

0

|Us| ds
]

(4.3)

≤ E
[

exp
(

γ
T0
∫

0

|Us| ds
)]

+
1

γ
E [ZT0

(logZT0
+ | log γ|)] .

Next, we have due to Sδ ≤ 1 and Remark 4.3 that

E
[

∞
∫

T0

Sδ
sZs|Us| ds

]

(4.4)

≤ E
[ ∞
∫

T0

eγ|Us|1{Us 6=0} ds
]

+ E
[ ∞
∫

T0

1
γS

δ
sZs log(

1
γS

δ
sZs)1{Us 6=0} ds

]

≤ E
[ ∞
∫

T0

eγ|Us|1{Us 6=0} ds
]

+ 1
γE

[ ∞
∫

0

δs
δ S

δ
s (Zs logZs + e−1) ds

]

+
1

γ
| log γ|E

[ ∞
∫

0

δs
δ S

δ
sZs ds

]

= E
[ ∞
∫

T0

eγ|Us|1{Us 6=0} ds
]

+
1

γδ

(

E
[

R̃δ
0,∞(Z)

]

+ e−1 + | log γ|
)

.

Combining (4.3) with Lemma 4.4 and (4.4) gives the left inequality in (4.2)
in the form

(4.5) E
[ ∞
∫

0

Sδ
sZs|Us| ds

]

≤ C + E
[

R̃δ
0,∞(Z)

] 1

γδ

(

eδ̄(T0+1) + 1
)

,

where the constant C depends on γ and also on U via (4.1a). By definition,
then,

Γ∞(Z) = E
[

Ũδ
0,∞(Z)

]

+ βE
[

R̃δ
0,∞(Z)

]

≥ −αE
[ ∞
∫

0

Sδ
sZs|Us| ds

]

+ βE
[

R̃δ
0,∞(Z)

]

≥ −αC + E
[

R̃δ
0,∞(Z)

]

(

β −
α

γδ

(

1 + eδ̄(T0+1)
)

)

,
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and so the right inequality in (4.2) follows by taking γ large enough and
choosing a new constant appropriately. ⊓⊔

The above argument also shows that Γ∞(Z) ≤ C
(

1+E
[

R̃δ
0,∞(Z)

])

for all
Z ∈ Z, with a suitable constant. Another direct consequence is the following
result that will be used later.

Corollary 4.6. For every T ≥ T0, every Z ∈ Z and every γ > 0,

E
[ ∞
∫

T

Sδ
sZsUs ds

]

≤ E
[ ∞
∫

T

eγ|Us|1{Us 6=0} ds
]

+
1

γδ

(

E
[

R̃δ
0,∞(Z)

]

+e−1+ | log γ|
)

.

With these preparations, we are ready to prove existence and uniqueness
of a solution to our stochastic control problem.

Theorem 4.7. Under Hypothesis 4.1, there exists a unique Z∗ ∈ Zf that
minimises the cost functional Z 7→ Γ∞(Z) over all Z ∈ Zf .

Proof. This again follows closely the arguments in Bordigoni [1]; see there the
proof of Theorem 4.15. Since we optimise over Z instead of Q, we need not
work on path space and can simplify some arguments.

First of all, uniqueness is clear because Z 7→ Γ∞(Z) is strictly convex like
z 7→ z log z. Existence is proved in several steps.

1) Since Z ≡ 1 is in Zf and E
[

R̃δ
0,∞(1)

]

= 0, (4.1a) and Proposition 4.5
imply that −∞ < inf

Z∈Zf

Γ∞(Z) < ∞. So we can take a sequence (Zn)n∈IN in

Zf such that Γ∞(Zn) decreases to inf
Z∈Zf

Γ∞(Z) as n → ∞. Combining the

well-known Komlós-type result in Lemma A1.1 in Delbaen/Schachermayer
[7] with a diagonalisation argument produces a sequence (Z̄n)n∈IN with
Z̄n ∈ conv(Zn, Zn+1, . . . ) for all n and such that with probability 1,

lim
n→∞

Z̄n
r =: Z̄∞

r exists in [0,∞] for all r ∈ IQ+.

Since each Z̄n is like the Zn a martingale ≥ 0 with expectation 1, Fatou’s
lemma yields that each Z̄∞

r is integrable and (Z̄∞
r )r∈IQ+ is a supermartingale.

By a standard argument (see Dellacherie/Meyer [8], Theorem VI.2), we can
therefore extend (Z̄∞

r )r∈IQ+ to a process Z∗ = (Z∗
t )t≥0 with RCLL trajectories

and such that Z∗ is a supermartingale ≥ 0 (now over [0,∞) instead of IQ+).
In fact, we can take Z∗

t := lim
rցt, r∈IQ+

Z̄∞
r .

2) In order to show that Z∗ is even a martingale and in Zf , we first use
Lemma 4.4 to obtain for each r ∈ IQ+ that

sup
n∈IN

E
[

Z̄n
r log Z̄n

r

]

≤
1

δ
eδ̄(r+1)

(

sup
n∈IN

E
[

R̃δ
0,∞(Z̄n)

]

+ e−1
)

< ∞,

because by Proposition 4.5 and convexity of Z 7→ Γ∞(Z),
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E
[

R̃δ
0,∞(Z̄n)

]

≤ C
(

1 + Γ∞(Z̄n)
)

≤ C
(

1 + sup
m≥n

Γ∞(Zm)
)

≤ C
(

1 + Γ∞(Z1)
)

< ∞.

So (Z̄n
r )n∈IN is uniformly integrable for each r ∈ IQ+, and this implies

E
[

Z̄∞
r

]

= lim
n→∞

E
[

Z̄n
r

]

= 1 for all r ∈ IQ+,

which means that the supermartingale Z̄∞ is a martingale (over IQ+). Using
Doob’s maximal inequality and the fact that (Z̄n

m)n∈IN converges to Z∗
m in L1

for everym ∈ IN next shows that with probability 1, (Z̄n)n∈IN converges to Z∗

uniformly on compact subsets of [0,∞), and the same uniform integrability
argument as above then yields that also Z∗ is a martingale

(

over [0,∞)
)

,
hence in Z. Finally, Fatou’s lemma, Remark 4.3 and Proposition 4.5 give

E
[

R̃δ
0,∞(Z∗)

]

= E
[

∞
∫

0

δsS
δ
sZ

∗
s logZ

∗
s ds

]

≤ lim inf
n→∞

E
[

R̃δ
0,∞(Z̄n)

]

≤ sup
n∈IN

C
(

1 + Γ∞(Z̄n)
)

< ∞

so that Z∗ is in Zf .
3) To show that Z∗ is optimal, we want to prove that Z 7→ Γ∞(Z) is

lower semicontinuous along the sequence (Z̄n)n∈IN , because we then get by
convexity

Γ∞(Z∗) ≤ lim inf
n→∞

Γ∞(Z̄n) ≤ lim inf
n→∞

Γ∞(Zn) = inf
Z∈Zf

Γ∞(Z).

We have just seen in step 2) that E
[

R̃δ
0,∞(Z∗)

]

≤ lim inf
n→∞

E
[

R̃δ
0,∞(Z̄n)

]

so that

it only remains to prove the analogous inequality for the part with Ũδ
0,∞(Z).

Now U ∈ Dexp
1,T0

by (4.1a), and so we can use the finite-horizon results in
Bordigoni/Matoussi/Schweizer [2] to obtain

E
[ T0
∫

0

Sδ
sZ

∗
sUs ds

]

= E
[

Z∗
T0

T0
∫

0

Sδ
sUs ds

]

≤ lim inf
n→∞

E
[

Z̄n
T0

T0
∫

0

Sδ
sUs ds

]

= lim inf
n→∞

E
[ T0
∫

0

Sδ
s Z̄

n
s Us ds

]

;

see step 4) in the proof of Theorem 9 in Bordigoni/Matoussi/Schweizer [2].
We then split the remaining integral from T0 to ∞ into one integral from T0 to
T ≥ T0 and another from T to ∞. The integral over the finite interval (T0, T ]
is again treated as above, using that (4.1a) also gives U ∈ Dexp

1,T by Jensen’s
inequality. Finally, Corollary 4.6 gives

E
[ ∞
∫

T

Sδ
s Z̄

n
s Us ds

]

≤ E
[ ∞
∫

T

eγ|Us|1{Us 6=0} ds
]

+
1

γδ

(

sup
n∈IN

E
[

R̃δ
0,∞(Z̄n)

]

+ e−1 + | log γ|
)
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for all γ > 0 and all n ∈ IN , and the same estimate holds for Z∗ instead of Z̄n

as well. Choosing first γ large to make the second summand above small and
then, using (4.1a), T large to get the first summand small as well, we deduce
that

lim
T→∞

sup
{

E
[ ∞
∫

T

Sδ
sZsUs ds

]

: Z = Z∗ or Z = Z̄n for some n ∈ IN
}

= 0,

and so we obtain after putting everything together that

E
[ ∞
∫

0

Sδ
sZ

∗
sUs ds

]

≤ lim inf
n→∞

E
[ ∞
∫

0

Sδ
s Z̄

n
s Us ds

]

.

This completes the proof. ⊓⊔

As in the finite-horizon case treated in Bordigoni/Matoussi/Schweizer [2],
one can show that the optimal Z∗ from Theorem 4.7 is strictly positive. If
there exists Q∗ with density process Z∗ (e.g. as in Bordigoni [1] if one works on

path space), this translates into saying that Q∗ loc
≈ P . The proof of positivity

can be found in Bordigoni [1], Theorem 4.18, and largely parallels that of
Theorem 12 in Bordigoni/Matoussi/Schweizer [2].

Also as in Bordigoni/Matoussi/Schweizer [2], one can show that the mar-

tingale optimality principle holds in our setting; see Proposition 4.19 and
Corollary 4.20 in Bordigoni [1] for details of this standard argument. As a
consequence, the optimal Z∗ from Theorem 4.7 is also conditionally optimal
at any time t or even stopping time τ . To properly formulate this, we denote
by V = (Vt)t≥0 an RCLL version of the process

(4.6) Vt := ess inf
Z∈Zf

E
[

Ũδ
t,∞(Z) + βR̃δ

t,∞(Z)
∣

∣Ft

]

=: ess inf
Z∈Zf

Jt(Z), t ≥ 0.

Then conditional optimality says that

Vt = Jt(Z
∗) P -a.s. for all t ≥ 0,

and we now use this to describe the behaviour of Vt as t → ∞.

Proposition 4.8. Under Hypothesis 4.1,

lim
t→∞

Vt = 0 P -a.s.

Proof. This is analogous to the proof of Lemma 4.22 in Bordigoni [1]. Since
Z ≡ 1 is in Zf , S

δ is decreasing and E
[

R̃δ
t,∞(Z)

∣

∣Ft

]

≥ 0, we have

Vt = Jt(Z
∗) ≤ Jt(1) ≤ αE

[ ∞
∫

t

|Us| ds
∣

∣

∣
Ft

]
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which yields lim sup
t→∞

Vt ≤ 0 due to (4.1a). To get a lower bound for Vt, we use

analogous arguments as in the proof of Proposition 4.5 to first obtain

∣

∣

∣

∣

∣

E

[ ∞
∫

t

Sδ
s

Sδ
t

Z∗
s

Z∗
t

Us ds

∣

∣

∣

∣

∣

Ft

]∣

∣

∣

∣

∣

≤ E
[ ∞
∫

t

eγ|Us|1{Us 6=0} ds
∣

∣

∣
Ft

]

+
1

γδ

(

E
[

R̃δ
t,∞(Z∗)

∣

∣Ft

]

+ e−1 + | log γ|
)

.

Hence

Vt = Jt(Z
∗) ≥ −αE

[ ∞
∫

t

eγ|Us|1{Us 6=0} ds
∣

∣

∣
Ft

]

−
α

γδ
(e−1 + | log γ|) +

(

β −
α

γδ

)

E
[

R̃δ
t,∞(Z∗)

∣

∣Ft

]

,

and taking γ so large that β− α
γδ ≥ 0, we get from E

[

R̃δ
t,∞(Z∗)

∣

∣Ft

]

≥ 0 and

(4.1a) that

lim inf
t→∞

Vt ≥ −
α

γδ
(e−1 + | log γ|) P -a.s.

Since γ is arbitrary, we conclude that lim inf
t→∞

Vt ≥ 0 P -a.s., which completes

the proof. ⊓⊔

All results in this section so far hold for a general filtration. If IF is contin-
uous, one can in addition show as in Bordigoni/Matoussi/Schweizer [2] that
V obeys the dynamics

dVt = (δtVt − αUt) dt+
1

2β
d〈M〉t + dMt

for some (continuous) local martingale M ; see Theorem 4.27 in Bordigoni [1]
for a detailed proof. Together with Proposition 4.8, this explains where the
infinite-horizon BSDE (1.2) comes from. Since the above derivation uses no
essential new ideas in comparison with Bordigoni/Matoussi/Schweizer [2], we
refrain from giving more details.

5. Solving the stochastic control problem via the BSDE

Our goal in this section is to use the results on the infinite-horizon BSDE (3.2)
for a characterisation of the dynamic value process V for the stochastic control
problem from Section 4. As just mentioned, we could have shown that V solves
(3.2), but this is not enough: The uniqueness result in Theorem 3.5 only holds
for solutions (Y,M) with Y ∈ Dexp

0,∞, and we do not know at this point how
to argue directly that V from the control problem is in Dexp

0,∞. The BSDE
techniques developed so far will enable us to prove this. To that end, we now
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show how one can construct from a (particular) solution to the BSDE (3.2) a
(and actually the, by uniqueness) solution for the infinite-horizon stochastic
control problem.

Hypothesis 5.1. Throughout this section, we impose the standing
assumptions

IF is a continuous filtration, i.e. all local (P, IF )-martingales are(5.1a)

continuous.

0 < δ ≤ δt ≤ δ̄ < ∞, uniformly in (t, ω), for constants δ, δ̄.(5.1b)

Conditions on U will be specified below, when we successively treat three
cases.

Our arguments rely substantially on the finite-horizon results proved in
Bordigoni/Matoussi/Schweizer [2] so that we very briefly recall these here.
Fix T < ∞ and consider on [0, T ] the BSDE

(2.2) dYt = (δtYt − αUt) dt+
1

2β
d〈M〉t + dMt, YT = α′U ′

T .

Recall from (1.3) and (1.4) the definitions of Uδ
t,T and Rδ

t,T , and assume that
U (as a process on [0, T ]) is in Dexp

1,T and U ′
T is in Dexp. Then Theorem 17

of Bordigoni/Matoussi/Schweizer [2] states that (2.2) has a unique solution
(Y,M) in Dexp

0,T × M0,loc(P ), that Z̄ := E
(

− 1
βM

)

is a martingale on [0, T ]

with E
[

Z̄T log Z̄T

]

< ∞, and that for any martingale Z ≥ 0 on [0, T ] with
Z0 = 1 and E[ZT logZT ] < ∞, we have for any stopping time τ ≤ T that

Yτ = E

[

Z̄T

Z̄τ
Uδ
τ,T + βR̃δ

τ,T (Z̄)

∣

∣

∣

∣

Fτ

]

≤ E

[

ZT

Zτ
Uδ
τ,T + βR̃δ

τ,T (Z)

∣

∣

∣

∣

Fτ

]

.

(

This reformulates the statement that the dynamic value process of the finite-

horizon stochastic control problem is the unique solution of (2.2).
)

For τ ≡ 0,
this reduces to

Y0 ≤ E
[

ZT α
T
∫

0

Sδ
sUs ds+ ZT α′Sδ

TU
′
T

]

(5.2)

+ βE
[

T
∫

0

δsS
δ
sZs logZs ds+ Sδ

TZT logZT

]

,

with equality for Z = Z̄.

5.1. The bounded case

Let us now first study the case where
∞
∫

0

|Us| ds is bounded. This is of course

a restrictive assumption, but it allows fairly simple arguments and provides a
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basic building block. We shall see that the proofs in more general cases follow
the same scheme.

Proposition 5.2. Suppose that
∞
∫

0

|Us| ds is a bounded random variable. For

any solution (Y,M) to the infinite-horizon BSDE (3.2) with Y bounded, we
then have for any t ≥ 0

Yt = ess inf
Z∈Zf

E
[

Ũδ
t,∞(Z) + βR̃δ

t,∞(Z)
∣

∣Ft

]

.

Proof. Without loss of generality, we prove the result for t = 0.
1) Let us start by arguing that for any Z ∈ Zf , we have

(5.3) Y0 ≤ E
[

Ũδ
0,∞(Z) + βR̃δ

0,∞(Z)
]

.

We first note that the nonnegative function g(s) := E[δsS
δ
s (Zs logZs + e−1)]

satisfies, by Remark 4.3 and Fubini,

∞
∫

0

g(s) ds = E
[ ∞
∫

0

δsS
δ
s (Zs logZs + e−1) ds

]

= E
[

R̃δ
0,∞(Z)

]

+ e−1 < ∞.

This implies that there exists a sequence of deterministic times Tn ր ∞ such
that

lim
n→∞

E
[

Sδ
Tn

(ZTn
logZTn

+ e−1)
]

≤ lim
n→∞

1
δ g(Tn) = 0

and therefore also

(5.4) lim
n→∞

E[Sδ
Tn

ZTn
logZTn

] = 0,

since Sδ
Tn

≤ e−δTn → 0. Moreover, because Y is bounded and Z ≥ 0 is a
martingale, we have

(5.5) lim
n→∞

∣

∣E[Sδ
Tn

ZTn
YTn

]
∣

∣ ≤ lim
n→∞

e−δTn‖Y ‖∞E[ZTn
] = 0.

Now Y is bounded, hence in Dexp
0,Tn

, and satisfies the finite-horizon BSDE (2.2)
with final value α′U ′

Tn
:= YTn

. Moreover, Z ∈ Zf verifies E[ZTn
logZTn

] < ∞
due to Lemma 4.4, and so the finite-horizon results tell us that

Y0 ≤ E
[

α
Tn
∫

0

Sδ
sZsUs ds+ Sδ

Tn
ZTn

YTn

]

(5.6)

+ βE
[ Tn
∫

0

δsS
δ
sZs logZs ds+ Sδ

Tn
ZTn

logZTn

]

.

On the right-hand side, the second and the fourth summand tend to 0 as
n → ∞ by (5.5) and (5.4), respectively. Next, Fatou’s lemma yields
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E
[ ∞
∫

0

Sδ
sZs|Us| ds

]

≤ lim inf
n→∞

E
[

ZTn

Tn
∫

0

Sδ
s |Us| ds

]

≤ lim inf
n→∞

E
[

ZTn

∞
∫

0

|Us| ds
]

< ∞

since
∞
∫

0

|Us| ds is bounded and Z ≥ 0 is a martingale. From dominated

convergence, we thus deduce that the first summand in (5.6) converges to

E
[

α
∞
∫

0

Sδ
sZsUs ds

]

= E
[

Ũδ
0,∞(Z)

]

as n → ∞. Finally,

Tn
∫

0

δsS
δ
sZs logZs ds =

Tn
∫

0

δsS
δ
s (Zs logZs + e−1) ds− e−1(1− Sδ

Tn
)

implies via monotone integration and by using
∞
∫

0

δsS
δ
s ds = 1 that the third

summand in (5.6) converges to βE
[ ∞
∫

0

δsS
δ
sZs logZs ds

]

= βE
[

R̃δ
0,∞(Z)

]

as

n → ∞. Putting everything together gives (5.3).

2) Now define Z̄ := E
(

− 1
βM

)

. Since
∞
∫

0

|Us| ds is bounded, U is in Dexp
1,∞;

and since (Y,M) solves (3.2), Theorem 3.6 tells us that Z̄ is a martingale on
[0,∞) so that Z̄ ∈ Z. We want to prove that Z̄ is even in Zf . To that end,
we apply the finite-horizon results to write

Y0 = E
[

Z̄Tn
α

Tn
∫

0

Sδ
sUs ds+ Sδ

Tn
Z̄Tn

YTn

]

+ βE
[ Tn
∫

0

δsS
δ
s Z̄s log Z̄s ds+ Sδ

Tn
Z̄Tn

log Z̄Tn

]

.

Using Fatou’s lemma and z log z ≥ −e−1 therefore gives

βE
[

R̃δ
0,∞(Z̄)

]

= βE
[ ∞
∫

0

δsS
δ
s Z̄s log Z̄s ds

]

≤ lim inf
n→∞

βE
[ Tn
∫

0

δsS
δ
s Z̄s log Z̄s ds

]

= lim inf
n→∞

(

Y0 − βE
[

Sδ
Tn

Z̄Tn
log Z̄Tn

]

− E
[

Z̄Tn
α

Tn
∫

0

Sδ
sUs ds+ Sδ

Tn
Z̄Tn

YTn

])

≤ lim inf
n→∞

(

Y0 + βe−1 + α
∥

∥

∥

∞
∫

0

|Us| ds
∥

∥

∥

L∞

E
[

Z̄Tn

]

+ ‖Y ∗
∞‖L∞E

[

Z̄Tn

]

)

< ∞

because Y and
∞
∫

0

|Us| ds are bounded and Z̄ ≥ 0 is a martingale. Hence Z̄ is

indeed in Zf .
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3) Since Z̄ is in Zf by step 2) and satisfies (5.2) with equality, the same
argument as in step 1) shows that the inequality in (5.3) becomes an equality
for Z = Z̄. Hence Z̄ attains the infimum, and the proof is complete. ⊓⊔

5.2. The positive case

We now turn to the case where U is nonnegative and satisfies some integra-
bility condition. Note that U ≥ 0 is a fairly natural assumption. Indeed, if we
think of a full-fledged robust control problem for utility maximisation, then
Ut typically represents the utility U(ct) from consumption at time t, where
we still optimise over c in a second step. As a consumption rate, ct ≥ 0;
so Ut = U(ct) ≥ 0 for any nonnegative utility function U on [0,∞), like
e.g. power utility U(x) = 1

γx
γ for γ ∈ (0, 1).

Theorem 5.3. Suppose that U ≥ 0 and U is in Dexp
1,∞. For the solution (Y,M)

to (3.2) from Theorem 3.4, we then have for any t ≥ 0

Yt = ess inf
Z∈Zf

E
[

Ũδ
t,∞(Z) + βR̃δ

t,∞(Z)
∣

∣Ft

]

.

Proof. Without loss of generality, we again argue for t = 0. The overall struc-
ture of the proof is like for Proposition 5.2, but we first need to recall the
construction of (Y,M). For each n ∈ IN , set Un

t := Ut1{
R

t

0
Usds≤n} and de-

note by (Y n,Mn) with Y n bounded the solution to the BSDE

dYt = (δtYt − αUn
t ) dt+

1

2β
d〈M〉t + dMt, Yn = 0

on [0, n]. Extending (Y n,Mn) to [0,∞) by setting Y n
t = 0, Mn

t = Mn
n for

t > n, we then get on [0,∞) a solution (Y n,Mn) to the BSDE

(5.7) dYt = (δtYt − α1{t≤n}U
n
t ) dt+

1

2β
d〈M〉t + dMt, lim

t→∞
Yt = 0,

and Yt =ր - lim
n→∞

Y n
t for all t ≥ 0. We first prove that for any Z ∈ Zf ,

(5.8) Y0 ≤ E
[

Ũδ
0,∞(Z) + βR̃δ

0,∞(Z)
]

.

Indeed, applying Proposition 5.2 to the process
(

1{t≤n}U
n
t

)

t≥0
and the solu-

tion to (5.7) gives

Y n
0 ≤ E

[

α
∞
∫

0

Sδ
sZs1{s≤n}U

n
s ds+ β

∞
∫

0

δsS
δ
sZs logZs ds

]

,

and (5.8) follows by monotone integration since U ≥ 0.
Now set Z̄ := E

(

− 1
βM

)

so that Z̄ ∈ Z by Theorem 3.6; this uses the

integrability assumption on U . To prove that Z̄ is even in Zf , we first note
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that by Proposition 5.2 and its proof, we have equality in (5.8) for the choice
Z = Z̄n := E

(

− 1
βM

n
)

so that

Y n
0 = E

[

α
∞
∫

0

Sδ
s Z̄

n
s 1{s≤n}U

n
s ds+ β

∞
∫

0

δsS
δ
s Z̄

n
s log Z̄n

s ds
]

.

But by construction, (Y n
0 )n∈IN increases to Y0, and (Mn)n∈IN and (〈Mn〉)n∈IN

converge to M and 〈M〉 locally uniformly in probability so that also Z̄n → Z̄
locally uniformly in probability as n → ∞. Hence Fatou’s lemma yields

Y0 ≥ E
[

α
∞
∫

0

Sδ
s Z̄sUs ds+ β

∞
∫

0

δsS
δ
s Z̄s log Z̄s ds

]

= E
[

Ũδ
0,∞(Z̄) + βR̃δ

0,∞(Z̄)
]

,

and so Z̄ ∈ Zf because U ≥ 0. Since (5.8) gives the converse inequality, we
actually have equality in (5.8) for Z = Z̄, and this completes the proof. ⊓⊔

5.3. The general case

Finally, we study a situation where U can be real-valued. Then we need slightly
stronger integrability assumptions.

Theorem 5.4. Suppose that U is in Dexp
1,∞ and that U also satisfies (4.1a),

i.e. there exists some T0 ∈ (0,∞) such that for all γ > 0,

EP

[

exp
(

γ
T0
∫

0

|Us| ds
)]

+ EP

[ ∞
∫

T0

exp(γ|Us|)1{Us 6=0} ds
]

< ∞.

For the solution (Y,M) to (3.2) from Theorem 3.4, we then have for any t ≥ 0

Yt = ess inf
Z∈Zf

E
[

Ũδ
t,∞(Z) + βR̃δ

t,∞(Z)
∣

∣Ft

]

.

Proof. As already in the last proof, we argue for t = 0 without loss of gener-
ality and again first recall from the proof of Theorem 3.4 the construction of
(Y,M). For n, p ∈ IN , set

Un,p
t := U+

t 1{
R

t

0
|Us|ds≤n}1{t≤n} − U−

t 1{
R

t

0
|Us|ds≤p}1{t≤p}

and denote by (Y n,p,Mn,p) with Y n,p bounded the solution to the BSDE

dYt = (δtYt − αUt) dt+
1

2β
d〈M〉t + dMt, Yn∨p = 0

on [0, n ∨ p]. We extend (Y n,p,Mn,p) to [0,∞) by setting Y n,p
t = 0 and

Mn,p
t = Mn,p

n∨p for t > n ∨ p to get on [0,∞) a solution to the BSDE

(5.9) dYt = (δtYt − α1{t≤n∨p}U
n,p
t ) dt+

1

2β
d〈M〉t + dMt, lim

t→∞
Yt = 0.
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Then Yt =ր - lim
n→∞

ց - lim
p→∞

Y n,p
t and Mt = lim

n→∞
lim
p→∞

Mn,p
t . We proceed on

a familiar path.
1) First we prove that for any Z ∈ Zf ,

(5.10) Y0 ≤ E
[

Ũδ
0,∞(Z) + βR̃δ

0,∞(Z)
]

.

Like in Section 5.2, using Proposition 5.2 gives

Y n,p
0 ≤ E

[

α
∞
∫

0

Sδ
sZs1{s≤n∨p}U

n,p
s ds+ β

∞
∫

0

δsS
δ
sZs logZs ds

]

,

and (5.10) follows by letting p → ∞ and then n → ∞, provided we can use
dominated convergence. But this is ensured by the first estimate in Proposition

4.5; indeed, (4.1a) yields E
[ ∞
∫

0

Sδ
sZs|Us| ds

]

< ∞ for Z ∈ Zf .

2) Thanks to the first integrability assumption on U , Theorem 3.6 implies
that the process Z̄ := E

(

− 1
βM

)

is in Z. To show it is even in Zf , we use

Proposition 5.2 for Z̄n,p := E
(

− 1
βM

n,p
)

to get

(5.11) Y n,p
0 = E

[

α
∞
∫

0

Sδ
s Z̄

n,p
s 1{s≤n∨p}U

n,p
s ds+ β

∞
∫

0

δsS
δ
s Z̄

n,p
s log Z̄n,p

s ds
]

.

But (4.5) in the proof of Proposition 4.5 gives

∣

∣

∣
E
[

α
∞
∫

0

Sδ
s Z̄

n,p
s 1{s≤n∨p}U

n,p
s ds

]∣

∣

∣
≤ E

[

α
∞
∫

0

Sδ
s Z̄

n,p
s |Us| ds

]

≤ Cγ,U + E
[

R̃δ
0,∞

(

Z̄n,p
)] 1

γδ

(

eδ̄(T0+1) + 1
)

,

where the constant Cγ,U depends on γ and U via (4.1a), but not on n and p.
Plugging this estimate with a minus sign into (5.11) and taking γ big enough
yields

(5.12) sup
n,p∈IN

E
[

R̃δ
0,∞

(

Z̄n,p
)]

≤ C
(

1 + sup
n,p∈IN

Y n,p
0

)

< ∞,

because applying the a priori estimate (3.6) from Theorem 3.4 to (5.9) tells
us that

|Y n,p
0 | ≤ β logE

[

exp
(

1
β

∞
∫

0

α|Us| ds
)]

< ∞

for all n and p, by using the definition of Un,p. As n → ∞ and p → ∞, we
have locally uniformly in probability Mn,p → M and 〈Mn,p〉 → 〈M〉, hence
also Z̄n,p → Z̄, and so Z̄ ∈ Zf because E

[

R̃δ
0,∞(Z̄)

]

< ∞ by Fatou’s lemma
and (5.12).

3) To prove that we have equality in (5.10) for Z = Z̄, we start from
the equality in (5.11). As n → ∞ and p → ∞, Y n,p

0 tends to Y0 and
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lim inf
n→∞

lim inf
p→∞

E
[

R̃δ
0,∞

(

Z̄n,p
)]

≥ E
[

R̃δ
0,∞(Z̄)

]

by Fatou’s lemma. Because

Z 7→ E
[

R̃δ
0,∞(Z)

]

is bounded along the sequence
(

Z̄n,p
)

n,p∈IN
by (5.12),

almost the same argument as in step 3) of the proof of Theorem 4.7 gives

lim inf
n→∞

lim inf
p→∞

E
[

α
∞
∫

0

Sδ
s Z̄

n,p
s 1{s≤n∨p}U

n,p
s ds

]

≥ E
[

α

∞
∫

0

Sδ
s Z̄sUs ds

]

= E
[

Ũδ
0,∞(Z̄)

]

.

Note that this exploits the integrability assumption (4.1a). Therefore (5.11)
implies that Y0 ≥ E

[

Ũδ
0,∞(Z̄) + βR̃δ

0,∞(Z̄)
]

, and so we must have equality due

to (5.10) since Z̄ ∈ Zf . This completes the proof. ⊓⊔

5.4. Consequences for the stochastic control problem

As in (4.6), denote by V = (Vt)t≥0 the dynamic value process of the infinite-
horizon stochastic control problem. We already mentioned at the end of Sec-
tion 4 that if IF is continuous, then V satisfies the infinite-horizon BSDE
(3.2). For the proof, we referred to Bordigoni [1]; let us just note here that the
required assumptions are Hypothesis 4.1 plus continuity of IF , i.e. Hypothesis
5.1 plus (4.1a). Under a slightly stronger condition, we can now even prove a
BSDE characterisation for V .

Theorem 5.5. Assume Hypothesis 5.1 and that U is in Dexp
1,∞. If in addition

either U ≥ 0 or U satisfies (4.1a), then V is the first component of the unique
solution in Dexp

0,∞×M0,loc(P ) to the infinite-horizon BSDE (3.2). In particular,
V ∈ Dexp

0,∞.

Proof. By Theorem 3.5, (3.2) has a unique solution (Y,M) with Y ∈ Dexp
0,∞;

and by the definition of V in (4.6) and either Theorem 5.3 or Theorem 5.4,
Y coincides with V . ⊓⊔

Remark 5.6. 1) The second case of Theorem 5.5 is the infinite-horizon ana-
logue to the finite-horizon Theorem 17 in Bordigoni/Matoussi/Schweizer [2],
with assumptions and conclusions almost exactly parallel. The only difference
lies in the conditions on U : In (4.1a), we need U ∈ Dexp

1,T0
, but also an exponen-

tial moment control over U on the infinite time interval [T0,∞). See Remark
4.28 in Bordigoni [1] for a more detailed comment on this point. The result
for U ≥ 0 has no precedent.

2) Our approach for T = ∞ here is different from Bordigoni [1] in that we
show for the solution of the BSDE (3.2) that it satisfies the defining property
(4.6) of the value process V . As a bonus, we are able to deduce that V is
indeed in Dexp

0,∞; this was conjectured, but not proved in Bordigoni [1].
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3) Again in remarkable analogy to the finite-horizon results in Bordigoni/
Matoussi/Schweizer [2], we obtain existence of a solution to the stochastic
control problem for a general filtration IF . But the integrability property
V ∈ Dexp

0,∞ is only known for continuous IF , since its proof exploits the BSDE
results. Like in Bordigoni/Matoussi/Schweizer [2], we do not know if V ∈ Dexp

0,∞

also holds for general IF . ⋄
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