
Dynamic mean-variance optimisation problems
with deterministic information

Martin Schweizer∗
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Universität Zürich, Center for Finance and Insurance, AND 2.41

Andreasstrasse 15, CH–8050 Zürich, Switzerland
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Abstract

We solve the problems of mean-variance hedging (MVH) and mean-variance

portfolio selection (MVPS) under restricted information. We work in a setting
where the underlying price process S is a semimartingale, but not adapted to the
filtration G which models the information available for constructing trading strate-

gies. We choose as G = Fdet the zero-information filtration and assume that S is a
time-dependent affine transformation of a square-integrable martingale. This class
of processes includes in particular arithmetic and exponential Lévy models with
suitable integrability. We give explicit solutions to the MVH and MVPS problems
in this setting, and we show for the Lévy case how they can be expressed in terms
of the Lévy triplet.
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1 Introduction

This paper is a case study on solving dynamic quadratic optimisation problems in financial

markets under restricted information. We start on [0, T ] with a discounted price process

S adapted to a filtration F. For an initial wealth c and a strategy ϑ from a set Θ, the

final wealth from self-financing trading according to (c, ϑ) is then

c+

∫ T

0

ϑt dSt = c+ ϑ·ST = c+GT (ϑ).

We can then study, for a time-T payoff H, the mean-variance hedging (MVH) problem,

minimise E
[(
H − c−GT (ϑ)

)2]
over (c, ϑ) ∈ R×Θ, (1.1)

and we can also consider the mean-variance portfolio selection (MVPS) problem,

maximise E[GT (ϑ)]− αVar[GT (ϑ)] over ϑ ∈ Θ, (1.2)

for a fixed risk-aversion parameter α > 0. Both S and ϑ should satisfy integrability con-

ditions to ensure that GT (Θ) is a subset of L2. In addition, ϑ should be predictable, to

avoid obvious issues with insiders or prophets and to ensure that the stochastic integral

ϑ·S =
∫
ϑ dS is well defined. (This also motivates why S is assumed to be a semimar-

tingale.) Usually, there is only one filtration F, and S is a semimartingale in F while

strategies are chosen F-predictable. Then there is a vast literature on (1.1) and (1.2); see

for instance [18] for a first impression of the scope and extent of it.

If we think of F as describing all the information in the market, F-predictability of ϑ

means that investors can and do use all available information to construct their trading

strategies. But in many situations, one naturally uses only a smaller information set; this

can be due to delays, cost aspects, practicality, or even personal choice. It therefore makes

sense to study (1.1) and (1.2), or more generally questions from mathematical finance, in

a setting where ϑ ∈ Θ is only allowed to be G-predictable for a subfiltration G ⊆ F.

When we study the problem (1.1) for G-predictable ϑ, the connection between G and

S plays a crucial role. If FS ⊆ G which means that S is G-adapted, then c + GT (ϑ) is

GT -measurable and setting H̃ := E[H | GT ], we can write the objective in (1.1) as

E
[(
H − c−GT (ϑ)

)2]
= ‖H − H̃‖2

L2 + ‖H̃ − c−GT (ϑ)‖2
L2 .

So we only need to minimise the second summand over (c, ϑ), and this is the classic

MVH problem in the filtration G for the GT -measurable payoff H̃. For different models

and with different techniques, this has been studied by Pham [16], Kohlmann et al. [12],

Makogin et al. [13], among others. An analogous reduction for (1.2) when FS = G is for

instance given in Xiong/Zhou [20], and related work for the different criterion of local

risk-minimisation, but still with FS ⊆ G, can be found in Ceci et al. [4, 3].
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Once we abandon the assumption FS ⊆ G so that S need no longer be G-adapted, the

literature becomes much more sparse. Nevertheless, this situation occurs very naturally,

for instance if we have delayed or time-discrete information. Probably the first paper in

this direction is due to Di Masi et al. [8] who studied (1.1) in a particular model where S

is a martingale. More precisely, they were looking for a risk-minimising strategy, in the

sense of Föllmer/Sondermann [9], with G-predictable strategies; but the resulting optimal

integrand is in the martingale case the same as for (1.1). The case where S is a general

locally square-integrable local martingale was subsequently solved by Schweizer [17], and

alternative presentations with extra applications appeared in Ceci et al. [5, 2], again in

the martingale case. The only work on (1.1) for an F-semimartingale S not adapted

to G seems due to Mania et al. [14, 15]. They were able to obtain results on (1.1) via

the martingale optimality principle and general BSDEs; but their assumptions are rather

restrictive and for instance already exclude the classic Black–Scholes model of geometric

Brownian motion. For (1.2) with S not G-adapted, the PhD thesis of M. Šikić [19] study

the special case where G models delayed information and S evolves as an additive or

multiplicative random walk in discrete time. Finally, Christiansen/Steffensen [6] study

(1.2) with geometric Brownian motion for S and with deterministic information and

strategies parametrised by proportions of wealth. They give a verification theorem for

the corresponding HJB equation, but do not prove the existence of a solution.

In this paper, we give explicit solutions to (1.1) and (1.2) under two assumptions:

G = Fdet is the zero-information filtration, meaning that all strategies must(1.3)

be deterministic functions.

This can be viewed as a worst case scenario because Fdet is the smallest possible filtra-

tion we can think of. Accordingly, the solutions to (1.1) and (1.2) for Fdet yield upper

respectively lower bounds on the hedging error respectively mean-variance performance

achievable with strategies from any filtration G. Note in particular that S is not adapted

to Fdet as soon as it contains some randomness; so FS 6⊆ Fdet.

S is a time-dependent affine function of a square-integrable martingale,(1.4)

meaning that St = S0 + f(t) + g(t)Yt, t ∈ [0, T ], for functions f, g with

f(0) = 0, g(0) = 1 and Y ∈M2
0. We call S a type (A) semimartingale.

It turns out that the interplay between Fdet and S of type (A) is just right for allowing us

to study (1.1) and (1.2) for Fdet. Interestingly, (1.4) also follows almost from (1.3) if we

add one of the key conditions in [14, 15] — S should have the form S = S0 +M+
∫
λ d〈M〉

with 〈M〉 and λ both adapted to G = Fdet. However, our techniques are quite different

from those in [14, 15] and strongly exploit the type (A) structure of S. Under (1.3) and

(1.4), we obtain the solution of (1.1) for ϑ ∈ Θ(dsdet) as an explicit transformation of

the integrand ΠH in the Galtchouk–Kunita–Watanabe decomposition of H with respect
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to the martingale part M of S. The solution of (1.2) for ϑ ∈ Θ(dsdet) is given explicitly

in terms of quantities one can compute from S in G.

The rest of the paper is structured as follows. After we fix some notation in the next

subsection, Section 2 studies type (A) semimartingales, introduces the relevant space

Θ(dsdet) of strategies and shows in Theorem 2.11 the key result that any stochastic

integral δ·ST with δ ∈ Θ(dsdet) can be written as the sum of a constant and a stochastic

integral ϑ·MT with respect to M , where the constant and the integrand ϑ ∈ Θ(dsdet) are

explicitly given in terms of δ. Moreover, the corresponding linear operator δ 7! A[δ] = ϑ

is a continuous and open bijection from Θ(dsdet) to itself. Section 3 first gives sufficient

conditions on S for the linear subspace GT (Θ(dsdet)) ⊆ L2 to be closed in L2, which

guarantees the existence of solutions to (1.1) and (1.2) for Θ = Θ(dsdet). Combining this

with the results on A yields the solutions to (1.1) and (1.2) in explicit form. Finally,

Section 4 shows that under suitable integrability, both arithmetic and exponential Lévy

models are type (A) semimartingales, and works out the explicit solutions from Section 3

in terms of the Lévy triplet.

1.1 Notation

We work with a time horizon T ∈ (0,∞) and on a probability space (Ω,F , P ) with a fil-

tration F = (Ft)t∈[0,T ] satisfying the usual conditions of right-continuity and completeness.

We also assume that F0 is trivial and for simplicity that F = FT . Stochastic processes

X = (Xt)t∈[0,T ] are denoted by Greek or by capital letters, and their time indices are

written as subscripts. In contrast, functions a : [0, T ] ! R are denoted by small letters,

with their time arguments in brackets, like t 7! a(t). We can, and often do, identify a

function a on [0, T ] with a process A via At(ω) := a(t) for (ω, t) ∈ Ω × [0, T ]. Finally,

X∗t := sup0≤s≤t |Xs|, t ∈ [0, T ], is the supremum process of X.

For a finite variation (FV) function a on [0, T ], we denote by |da| the variation measure

of the signed Lebesgue–Stieltjes (LS) measure associated to a, and by Lp(da) := Lp(|da|)
for p ∈ [1,∞) the Banach space of |da|-equivalence classes of Borel-measurable functions

h on [0, T ] with
∫ T

0
|h(t)|p|da(t)| < ∞. For an FV process A, we write dA and |dA| for

the ω-wise LS measures on [0, T ] of A and of the variation of A, respectively.

All our semimartingales X are with respect to P and F, real-valued and have RCLL

trajectories t 7! Xt(ω) for P -a.a. ω. In particular, FV functions are RCLL. We write

[S,X] for the quadratic covariation of two semimartingales S,X, and 〈M,N〉 for the

predictable quadratic covariation of two locally square-integrable local martingales M,N .

We set [X] := [X,X] and 〈M〉 := 〈M,M〉. If S is a special semimartingale, we write

S = S0 + M + A for its canonical decomposition into S0 ∈ R, local martingale part

M and predictable FV part A, both latter null at zero. We denote by M2
0 the set of all

square-integrable martingales null at zero. A semimartingale S is in S2 if it is special with

‖M∗
T‖L2 + ‖

∫ T
0
|dAt|‖L2 < ∞, and S2

0 := {S ∈ S2 : S0 = 0}. In particular, M2
0 ⊆ S2

0 .
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Finally, the notation · denotes stochastic integration; so ϑ·S =
∫
ϑ dS.

2 Type (A) semimartingales and deterministic inte-

grands

In this section, we introduce a particular class of semimartingales and study their integrals

of deterministic functions.

2.1 Basics

Definition 2.1. Let f, g : [0, T ]! R be FV functions with f(0) = 0 and g(0) = 1. Take

Y ∈M2
0 and S0 ∈ R. We call a stochastic process S = (St)t∈[0,T ] of the form

St = S0 + f(t) + g(t)Yt, t ∈ [0, T ], (2.1)

a semimartingale of type (A) or type (A) semimartingale. We sometimes write (2.1) as

S = S0 + f + gY , and we use the shorthand notation S =̂ (S0, f, g, Y ).

Remark 2.2. 1) The capital letter A stands for “affine function of a martingale”.

2) Section 4 shows that (suitably integrable) arithmetic and exponential Lévy pro-

cesses are type (A) semimartingales.

Our first simple result shows that type (A) semimartingales are square-integrable and

determines their canonical decomposition.

Lemma 2.3. Let S =̂ (S0, f, g, Y ) be a type (A) semimartingale. Then:

1) The product gY is in S2
0 with canonical decomposition

gY = g·Y + Y−·g. (2.2)

2) S is in S2, and its canonical decomposition S = S0 +M + A is given by

M = g·Y, (2.3)

A = f + Y−·g. (2.4)

Proof. 1) As a Borel function, g is F-predictable so that we obtain (2.2) directly from

Proposition I.4.49 b) in [11]. Any FV function is RCLL, hence uniformly (in t) bounded

on compact intervals, and so using Y ∈M2
0 gives

[g·Y ]T ≤ [Y ]T sup
t∈[0,T ]

|g(t)|2 ∈ L1,

∫ T

0

|Yt−||dg(t)| ≤ sup
t∈[0,T ]

|Yt|
∫ T

0

|dg(t)| ∈ L2.

In view of (2.2), this shows that gY ∈ S2
0 .

2) Because S = S0 +f +gY is the sum of S0 +gY ∈ S2 and the FV function f , it is in

S2. Moreover, part 1) gives (2.3) and (2.4) via S = S0+f+gY = S0+g·Y +f+Y−·g.
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Definition 2.4. The deterministic filtration Fdet = (Fdet
t )t∈[0,T ] is given by Fdet

t := σ(N ),

t ∈ [0, T ], where N denotes the collection of P -nullsets in FT .

It is easy to verify that each Fdet
t is P -trivial so that any Fdet

t -measurable random

variable is P -a.s. nonrandom. By approximating general nonnegative Fdet-predictable

processes pointwise by adapted left-continuous ones, and arguing for the latter via a

monotone class argument and dominated convergence, one can also verify the (unsurpris-

ing) fact that any Fdet-predictable process on Ω× [0, T ] is indistinguishable from a Borel

function on [0, T ]. We omit the details and refer to [21, Lemma 10.6].

The next result shows that for N ∈M2
0, the Fdet-compensator 〈N〉p,Fdet

of 〈N〉 can be

identified with the Borel function t 7! E[〈N〉t].

Lemma 2.5. 1) Fix Y ∈ M2
0 and define ydet(t) := E[〈Y 〉t] for t ∈ [0, T ]. For every

nonnegative Borel function δ on [0, T ], we then have

E

[∫ T

0

δ(t) d〈Y 〉t
]

=

∫ T

0

δ(t) dydet(t). (2.5)

2) For S =̂ (S0, f, g, Y ) with canonical decomposition S = S0 + M + A, the function

mdet(t) = E[〈M〉t], t ∈ [0, T ], is given by

dmdet(t) = g2(t) dydet(t), (2.6)

and for any Borel function δ ∈ L1(dmdet), we have

E

[∫ T

0

δ(t) d〈M〉t
]

=

∫ T

0

δ(t) dmdet(t). (2.7)

Proof. 1) Like 〈Y 〉, ydet is increasing and null at zero, hence of FV and RCLL. Next, (2.5)

holds by linearity for R-linear combinations δ of indicators 1(a,b] with 0 ≤ a < b ≤ T , and

it extends to nonnegative Borel functions by standard measure-theoretic induction and

monotone integration.

2) Because M = g·Y by (2.3), we have 〈M〉 = g2·〈Y 〉. As an FV function, g is

Borel-measurable, and so both (2.6) and (2.7) follow from part 1).

Definition 2.6. For M ∈M2
0, we set PM := P ⊗ 〈M〉 and denote by L2(M) the Hilbert

space of PM -equivalence classes of F-predictable processes Π = (Πt)t∈[0,T ] with

‖Π‖L2(M) := (EM [Π2])1/2 =

(
E

[∫ T

0

Π2
t d〈M〉t

])1/2

<∞.

The associated scalar product is denoted by ( · , · )L2(M). Similarly, L2(dmdet) is the Hilbert

space of dmdet-equivalence classes of Borel functions π on [0, T ] with

‖π‖L2(dmdet) :=

(∫ T

0

|π(t)|2 dmdet(t)

)1/2

<∞.

The corresponding scalar product is denoted by ( · , · )L2(dmdet).
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Because Fdet-predictable processes are indistinguishable from Borel functions and due

to (2.7), the space L2(dmdet) coincides with L2(M) ∩ P(Fdet), the space of equivalence

classes of Fdet-predictable π ∈ L2(M). Together with the usual Itô isometry in L2(M),

we thus obtain for π and ψ in L2(dmdet) the Fdet-Itô isometry

(π·MT , ψ·MT )L2 = E

[∫ T

0

π(t)ψ(t) d〈M〉t
]

=

∫ T

0

π(t)ψ(t) dmdet(t) = (π, ψ)L2(dmdet). (2.8)

2.2 The space Θ(dsdet)

For S ∈ S2 with canonical decomposition S = S0 +M+A, we denote by Θ(S) the Banach

space of equivalence classes of F-predictable processes Π = (Πt)t∈[0,T ] with

‖Π‖Θ(S) := ‖(Π·M)∗T‖L2 +

∥∥∥∥∫ T

0

|Πt||dAt|
∥∥∥∥
L2

<∞.

This implies that Π·S ∈ S2
0 . We then use the notation Θ(S) ∩ P(Fdet) for the Fdet-pre-

dictable members of Θ(S). While L2(M)∩P(Fdet) = L2(dmdet), the semimartingale case

needs a slightly different class of integrands than Θ(S) ∩ P(Fdet).

Definition 2.7. For S =̂ (S0, f, g, Y ), set dsdet := |df |+ |dg|+ dmdet and define by

Θ(dsdet) := L1(df) ∩ L1(dg) ∩ L2(dmdet)

the Banach space of dsdet-equivalence classes of Borel functions ϑ on [0, T ] such that

‖ϑ‖Θ(dsdet) := ‖ϑ‖L1(df) + ‖ϑ‖L1(dg) + ‖ϑ‖L2(dmdet) <∞.

Our next result compares the norms ‖ · ‖Θ(S) and ‖ · ‖Θ(dsdet) for Borel functions and

shows in particular that Θ(dsdet) ⊆ Θ(S) ∩ P(Fdet).

Remark 2.8. To be precise, both Θ(dsdet) and Θ(S)∩P(Fdet) are spaces not of stochastic

processes ϑ, but of equivalence classes [ϑ]. The above inclusion statement then means that

for any equivalence class [ϑ] ∈ Θ(dsdet), there is an equivalence class [ϑ′] ∈ Θ(S)∩P(Fdet)

such that [ϑ] ⊆ [ϑ′]. An analogous comment applies in the sequel to all statements of the

form Lp(µ) ⊆ Lq(ν).

Lemma 2.9. Fix S =̂ (S0, f, g, Y ). There exists a constant K ∈ (0,∞) such that

‖(ϑ·S)∗T‖L2 ≤ ‖ϑ‖Θ(S) ≤ K‖ϑ‖Θ(dsdet), ∀ϑ ∈ Θ(dsdet). (2.9)

(For Borel functions ϑ 6∈ Θ(dsdet), the right inequality holds trivially.)
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Proof. The left inequality is immediate from the definition of the norm ‖ · ‖Θ(S). For the

right one, we set |||ϑ|||Θ(S) := ‖
∫ T

0
|ϑ(s)||dAs|‖L2 + ‖ϑ‖L2(dmdet) and first note that for

any ϑ ∈ L2(dmdet) = L2(M) ∩ P(Fdet), the BDG inequality and (2.8) yield the estimate

‖(ϑ·M)∗T‖L2 ≤ K1‖ϑ‖L2(M) = K1‖ϑ‖L2(dmdet). We therefore obtain

‖ϑ‖Θ(S) ≤
∥∥∥∥∫ T

0

|ϑ(s)||dAs|
∥∥∥∥
L2

+K1‖ϑ‖L2(dmdet) ≤ max(1, K1)|||ϑ|||Θ(S).

On the other hand, using from Lemma 2.3 that S = S0 + M + A with M = g·Y and

A = f + Y−·g gives for ϑn := ϑ1{|ϑ|≤n} that∥∥∥∥∫ T

0

|ϑn(t)||dAt|
∥∥∥∥
L2

≤
∫ T

0

|ϑn(t)||df(t)|+ ‖Y ∗T ‖L2

∫ T

0

|ϑn(t)||dg(t)|

≤ K2(‖ϑn‖L1(df) + ‖ϑn‖L1(dg))

with K2 = max(1, ‖Y ∗T ‖L2). This implies |||ϑn|||Θ(S) ≤ max(K2, 1)‖ϑn‖Θ(dsdet), and letting

n ! ∞ yields |||ϑ|||Θ(S) ≤ max(K2, 1)‖ϑ‖Θ(dsdet), by monotone integration on the LHS

and due to ϑn
n!∞
−−−! ϑ in Θ(dsdet) on the RHS. Putting everything together gives (2.9).

2.3 The key results

This section contains the heart of all our subsequent results, which are all based on the

integration by parts formula: For two FV functions F,G : [0, T ]! R,

F (T )G(T )− F (t)G(t) =

∫ T

t

F (u) dG(u) +

∫ T

t

G(u−) dF (u), t ∈ [0, T ]. (2.10)

Proposition 2.10. Fix S =̂ (S0, f, g, Y ). For any δ ∈ Θ(dsdet), we have∫ T

0

δ(t) dSt =

∫ T

0

δ(t) df(t) +

∫ T

0

(
g(t)δ(t) +

∫ T

t

δ(u) dg(u)

)
dYt P -a.s. (2.11)

Proof. Fix δ ∈ Θ(dsdet) = L1(df) ∩ L1(dg) ∩ L2(dmdet). By Lemma 2.9, the LHS in

(2.11) is well defined. Because δ belongs to Θ(dsdet) = L1(df) ∩ L1(dg) ∩ L2(dmdet), the

function t 7!
∫ T
t
δ(u) dg(u) is of FV and hence bounded and Y -integrable. Finally, by

the associativity of stochastic integrals and the formula M = g·Y from Lemma 2.3, gδ is

Y -integrable if and only if δ is M -integrable. So the RHS in (2.11) is also well defined.

Because Lemma 2.3 gives dS = df + Y− dg + g dY , we now obtain∫ T

0

δ(t) dSt =

∫ T

0

δ(t) df(t) +

∫ T

0

Yt−δ(t) dg(t) +

∫ T

0

g(t)δ(t) dYt P -a.s. (2.12)

Again Lemma 2.3 gives for any G of FV that d(GY ) = G dY + Y− dG, and so we obtain

G(T )YT =
∫ T

0
G(t) dYt +

∫ T
0
Yt− dG(t) because Y0 = 0. Choosing G =

∫
δ dg yields∫ T

0

Yt−δ(t) dg(t) =

∫ T

0

(
G(T )−G(t)

)
dYt =

∫ T

0

(∫ T

t

δ(u) dg(u)

)
dYt,
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and plugging this back into (2.12) directly gives (2.11).

The crucial result in Proposition 2.10 is that any stochastic integral δ·ST of S with a

deterministic integrand δ can be written as the sum of a constant and a stochastic integral

ψ·YT of Y with another deterministic integrand ψ. Moreover, the constant
∫ T

0
δ(t) df(t)

and the integrand ψ(t) = g(t)δ(t) +
∫ T
t
δ(u) dg(u) are even given explicitly. However,

analysing the properties of ψ as a function of δ turns out to be rather difficult, and for the

question whether the space of all stochastic integrals
∫ T

0
δ(t) dSt is closed in L2, it is much

better to work with the martingale part M of S instead of with Y . Because M = g·Y by

Lemma 2.3, we can pass from the Y -integrand ψ to an M -integrand simply by dividing

by g, provided that g 6= 0. Doing that transformation automatically brings up the linear

operator A appearing in the next result.

Theorem 2.11. Fix S =̂ (S0, f, g, Y ) and assume that g satisfies

inf
t∈[0,T ]

|g(t)| > 0. (2.13)

For any δ ∈ Θ(dsdet), we define on [0, T ] the Borel functions

t 7! A[δ](t) := δ(t) +
1

g(t)

∫ T

t

δ(u) dg(u), (2.14)

t 7! A [δ](t) := δ(t)−
∫ T

t

δ(u)

g(u−)
dg(u). (2.15)

Then the following statements hold true:

1) A,A : Θ(dsdet)! Θ(dsdet) are well defined.

2) A ◦ A = Id, i.e., A is a right inverse of A on Θ(dsdet).

3) A ◦ A = Id, i.e., A is also a left inverse of A on Θ(dsdet). Together with 2),

this means that A is the inverse A−1 of A.

4) For any δ ∈ Θ(dsdet), we have∫ T

0

A−1[δ](t) df(t) =

∫ T

0

δ(t) da(t), (2.16)

where the FV function a : [0, T ]! R is given by

da(t) := df(t)− f(t−)

g(t−)
dg(t). (2.17)

5) For any δ ∈ Θ(dsdet), we have∫ T

0

δ(t) dSt =

∫ T

0

δ(t) df(t) +

∫ T

0

A[δ](t) dMt P -a.s. (2.18)
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Proof. Fix δ ∈ Θ(dsdet) = L1(df) ∩ L1(dg) ∩ L2(dmdet).

1) From (2.13), we get supt∈[0,T ] |1/g(t)| < ∞, and A[δ] = δ + (1/g)
∫ T

δ dg is the

sum of δ ∈ Θ(dsdet) and (1/g)
∫ T

δ dg. In the latter product, the first factor 1/g is

uniformly bounded, and because δ is in Θ(dsdet), the second factor
∫ T

δ dg is of FV and

hence bounded on [0, T ]. But all bounded Borel functions belong to Θ(dsdet), and so we

get (1/g)
∫ T

δ dg ∈ Θ(dsdet), and hence A[δ] ∈ Θ(dsdet), whenever δ ∈ Θ(dsdet). An

analogous argument shows that A [δ] ∈ Θ(dsdet) whenever δ ∈ Θ(dsdet); this also uses

(2.13), to deduce that δ/g− is in Θ(dsdet) like δ.

2) Inserting A[δ] = δ + (1/g)
∫ T

δ dg and A [δ] = δ −
∫ T

δ/g− dg yields

(A ◦ A )[δ](t)

= A [δ](t) +
1

g(t)

∫ T

t

A [δ](u) dg(u)

= δ(t)−
∫ T

t

δ(u)

g(u−)
dg(u) +

1

g(t)

∫ T

t

(
δ(u)−

∫ T

u

δ(z)

g(z−)
dg(z)

)
dg(u). (2.19)

Applying the integration by parts formula (2.10) to F (t) =
∫ T
t
δ(u)/g(u−) dg(u) and

G = g yields, after noting that F (T ) = 0,

−g(t)

∫ T

t

δ(u)

g(u−)
dg(u) = F (T )G(T )− F (t)G(t)

=

∫ T

t

(∫ T

u

δ(z)

g(z−)
dg(z)

)
dg(u)−

∫ T

t

δ(u) dg(u).

Dividing by g(t) and plugging the result back into (2.19) yields (A ◦ A )[δ] = δ.

3) Inserting A[δ] = δ + (1/g)
∫ T

δ dg and A [δ] = δ −
∫ T

δ(u)/g(u−) dg(u) yields

(A ◦ A)[δ](t) = A[δ](t)−
∫ T

t

A[δ](u)

g(u−)
dg(u)

= δ(t) +
1

g(t)

∫ T

t

δ(u) dg(u)

−
∫ T

t

1

g(u−)

(
δ(u) +

1

g(u)

∫ T

u

δ(z) dg(z)

)
dg(u). (2.20)

Applying the integration by parts formula (2.10) to F (t) =
∫ T
t
δ(u) dg(u) and the FV

function G = 1/g shows, with F (T ) = 0,

− 1

g(t)

∫ T

t

δ(u) dg(u) = F (T )G(T )− F (t)G(t)

=

∫ T

t

(∫ T

u

δ(z) dg(z)

)
d

(
1

g(u)

)
−
∫ T

t

δ(u)

g(u−)
dg(u).

Inserting this back into (2.20) yields
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(A ◦ A)[δ](t) = δ(t)−
∫ T

t

(∫ T

u

δ(z) dg(z)

)(
d
( 1

g(u)

)
+

1

g(u)g(u−)
dg(u)

)
.

But now a careful application of the chain rule, including the jumps of g, shows that

d(1/g) = −1/(gg−) dg. So the last term vanishes and we obtain 3).

4) Choose G = f and F (t) =
∫ T
t
δ(u)/g(u−) dg(u), apply the integration by parts

formula (2.10) for t = 0 and use F (T ) = 0, G(0) = f(0) = 0 to obtain

0 =

∫ T

0

(∫ T

t

δ(u)

g(u−)
dg(u)

)
df(t)−

∫ T

0

f(t−)
δ(t)

g(t−)
dg(t).

This gives in view of 3) that∫ T

0

A [δ](t) df(t) =

∫ T

0

(
δ(t)−

∫ T

t

δ(u)

g(u−)
dg(u)

)
df(t)

=

∫ T

0

δ(t) df(t)−
∫ T

0

δ(t)
f(t−)

g(t−)
dg(t)

=

∫ T

0

δ(t) da(t),

by the definition of a.

5) Because dMt = g(t) dYt by Lemma 2.3, (2.18) follows directly from (2.11) and the

definition (2.14) of A[δ].

Remark 2.12. Using the product rule and again d(1/g) = −1/(gg−) dg, we can rewrite

da from (2.17) as

da(t) = g(t) d

(
f

g

)
(t). (2.21)

Theorem 2.11 shows that under the small extra condition (2.13) on g, the transforma-

tion from the S-integrand δ to the M -integrand A[δ] in the representation (2.18) is given

by an invertible linear operator on the space Θ(dsdet), and gives an explicit formula for

the operator. This is very useful in the subsequent analysis. In the sequel, whenever we

assume (2.13), we drop the notation A and simply write A−1.

3 Quadratic problems with deterministic integrands

This section has three parts. We always work with a type (A) semimartingale S and first

provide sufficient conditions on S for the space

GT

(
Θ(dsdet)

)
:= {ϑ·ST : ϑ ∈ Θ(dsdet)}

of stochastic integrals to be closed in L2. Combining these with the representation from

Theorem 2.11, we can then solve a quadratic hedging problem for general payoffs and

a mean-variance portfolio selection problem, both for zero-information (deterministic)

strategies.
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3.1 Closedness and weighted norm inequalities

We begin with an auxiliary result which does not need any extra condition on g.

Lemma 3.1. For S =̂ (S0, f, g, Y ), the following are equivalent:

a) Θ(dsdet) = L2(dmdet).

b) There exists a constant K ∈ (0,∞) such that

‖δ‖L1(df) + ‖δ‖L1(dg) ≤ K‖δ‖L2(dmdet), ∀δ ∈ L2(dmdet). (3.1)

c) |df |+ |dg| � dmdet with γ := (|df |+ |dg|)/dmdet ∈ L2(dmdet).

Proof. b) ⇒ a): The definition of Θ(dsdet) = L1(df) ∩ L1(dg) ∩ L2(dmdet) directly gives

the inclusion “⊆”, and “⊇” follows from (3.1). See also Remark 2.8.

c) ⇒ b): The Cauchy–Schwarz inequality gives for δ ∈ L2(dmdet) that

‖δ‖L1(df) + ‖δ‖L1(dg) =

∫ T

0

|δ(t)|γ(t) dmdet(t) ≤ ‖δ‖L2(dmdet)‖γ‖L2(dmdet).

This is (3.1) with K = ‖γ‖L2(dmdet).

a) ⇒ c): It is well known that for any finite measures µ, ν and any p, q ∈ [1,∞),

the inclusion Lp(ν) ⊆ Lq(µ) implies ν � µ. So with the definition of Θ(dsdet), a)

yields |df | � dmdet and |dg| � dmdet so that γ is well defined and in L1(dmdet). If

γ 6∈ L2(dmdet), then also γ + 1 = dsdet

dmdet 6∈ L2(dmdet), and by Cauchy–Schwarz, there must

then exist some β ∈ L2(dmdet) with (γ + 1)β 6∈ L1(dmdet). But now we can use the

definitions of γ + 1, dsdet and Θ(dsdet) together with Cauchy–Schwarz to compute

‖(γ + 1)β‖L1(dmdet) = ‖β‖L1(dsdet)

≤ ‖β‖L1(df) + ‖β‖L1(dg) + ‖β‖L2(dmdet)‖1‖L2(dmdet)

≤ max(1, ‖1‖L2(dmdet))‖β‖Θ(dsdet) <∞

because β is in L2(dmdet) = Θ(dsdet) by a). This contradiction shows that γ ∈ L2(dmdet).

Definition 3.2. We say that S =̂ (S0, f, g, Y ) satisfies D2(dsdet) if there exists a constant

K ∈ (0,∞) such that

‖δ‖L1(df) + ‖δ‖L1(dg) ≤ K‖δ‖L2(dmdet), ∀δ ∈ L2(dmdet).

Because the assumptions (2.13), i.e., inft∈[0,T ] |g(t)| > 0, and D2(dsdet) together fre-

quently occur in later results, we introduce the following definition.

Definition 3.3. We call S =̂ (S0, f, g, Y ) standard if both (2.13) and D2(dsdet) hold.

Corollary 3.4. If S =̂ (S0, f, g, Y ) is standard, then da/dmdet exists and is in Θ(dsdet).
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Proof. According to Lemma 3.1, γ := (|df |+|dg|)/dmdet is in L2(dmdet) because S satisfies

D2(dsdet). We can then rewrite da(t) from (2.17) as

da(t) =

(
df

dmdet
(t)− f(t−)

g(t−)

dg

dmdet
(t)

)
dmdet(t)

to see that da/dmdet exists dmdet-a.e. Thanks to (2.13), K = supt∈[0,T ] |f(t−)/g(t−)| <∞,

and so the triangle inequality implies

|da|
dmdet

(t) ≤ |df |
dmdet

(t) +

∣∣∣∣f(t−)

g(t−)

∣∣∣∣ |dg|dmdet
(t) ≤ max(1, K)γ(t) dmdet-a.e.

So da/dmdet is in L2(dmdet) = Θ(dsdet) by Lemma 3.1 again.

Theorem 3.5. Let S =̂ (S0, f, g, Y ) be standard. Then the linear operator A from (2.14)

is a continuous bijection with continuous inverse A−1 given by A from (2.15), and there

exists a constant K ∈ (0,∞) such that

1

K
‖ϑ‖L2(dmdet) ≤ ‖ϑ·ST‖L2 ≤ K‖ϑ‖L2(dmdet), ∀ϑ ∈ L2(dmdet). (3.2)

As a consequence, GT (Θ(dsdet)) = {ϑ·ST : ϑ ∈ Θ(dsdet)} is closed in L2.

Proof. First of all, D2(dsdet) implies by Lemma 3.1 that Θ(dsdet) = L2(dmdet). Next,

(2.14), (2.13), mdet(T ) <∞ and D2(dsdet) yield

‖A[δ]‖L2(dmdet) ≤ ‖δ‖L2(dmdet) +

∥∥∥∥1

g

∫ T

·
δ dg

∥∥∥∥
L2(dmdet)

≤ ‖δ‖L2(dmdet) +

(
sup
t∈[0,T ]

1

|g(t)|

)
‖δ‖L1(dg)m

det(T )

≤
(

1 +Kmdet(T ) sup
t∈[0,T ]

1

|g(t)|

)
‖δ‖L2(dmdet).

This shows that A : L2(dmdet) ! L2(dmdet) is continuous. But by Theorem 2.11, A is

invertible, hence surjective, and so the open mapping theorem implies that it is open and

its inverse A−1 is continuous as well.

For (3.2), the right inequality follows directly from Lemma 2.9. For the left one, we

write ϑ·ST =
∫ T

0
ϑ(t) df(t) + A[ϑ]·MT as in (2.11) and use the Fdet-Itô isometry (2.8)

and the continuity of A−1 to obtain

‖ϑ·ST‖2
L2 =

∣∣∣∣∫ T

0

ϑ(t) df(t)

∣∣∣∣2 + ‖A[ϑ]·MT‖2
L2 ≥ ‖A[ϑ]‖2

L2(dmdet) ≥ k‖ϑ‖2
L2(dmdet).

Finally, (3.2) shows that the linear subspace GT (Θ(dsdet)) ⊆ L2 is norm-equivalent to the

Hilbert space L2(dmdet), and therefore it is closed in L2.

With the above results, we can now solve our two quadratic optimisation problems.
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3.2 Mean-variance hedging

In this section, we solve the mean-variance hedging problem (MVH)

minimise ‖H − c− ϑ·ST‖L2 over (c, ϑ) ∈ R×Θ(dsdet). (3.3)

In other words, we want to find a zero-information (because ϑ must be deterministic)

self-financing strategy (c, ϑ) with initial capital c which minimises the mean squared error

between the final wealth c+ ϑ·ST and a given time-T financial payoff H ∈ L2. We recall

from Section 2.1 that L2(dmdet) ⊆ L2(M) and ‖ · ‖L2(dmdet) = ‖ · ‖L2(M) on L2(dmdet). We

also recall that F0 is trivial and F = FT .

To prepare for the main result, fix H ∈ L2 and denote by

H = E[H] + ΠH·MT + LHT P -a.s. (3.4)

its Galtchouk–Kunita–Watanabe (GKW) decomposition with respect to M , where ΠH is

in L2(M) and L ∈M2
0 is strongly orthogonal to M . Recall that 〈N〉p,Fdet

is the Fdet-pre-

dictable dual projection of the quadratic variation process of N ∈M2
0 and define

πH := EM [ΠH | P(Fdet)] =
d(
∫

ΠH d〈M〉)p,Fdet

d〈M〉p,Fdet dmdet-a.e.; (3.5)

the representation in terms of a Radon–Nikodým derivative follows from Section 4.3 in

Schweizer [17]. We identify πH with a Borel function on [0, T ]. As a conditional expecta-

tion, πH is the unique element in L2(M) ∩ P(Fdet) = L2(dmdet) such that

(ΠH − πH , δ)L2(M) = 0, ∀δ ∈ L2(dmdet). (3.6)

We also recall from (2.17) and (2.15) the formulas for da and A , respectively.

Note that πH is by construction always in L2(dmdet), but could fail to lie in the smaller

space Θ(dsdet). The first main result of this section is the following theorem. We postpone

its proof until the end of the proof of Theorem 3.8 below.

Theorem 3.6. Suppose S =̂ (S0, f, g, Y ) satisfies (2.13). If πH = EM [ΠH | P(Fdet)] is

in Θ(dsdet), then the solution (cH , ϑH) to the MVH problem for H ∈ L2 exists and is

given by

cH = E[H]−
∫ T

0

πH(t) da(t), (3.7)

ϑH = A−1[πH ] dsdet-a.e. (3.8)

Corollary 3.7. If S =̂ (S0, f, g, Y ) is standard, then the MVH problem admits a solution

for every H ∈ L2, and the solution is then given by (3.7) and (3.8).

Proof. If S is standard, it satisfies (2.13) and L2(dmdet) = Θ(dsdet) by Lemma 3.1. Thus

πH ∈ Θ(dsdet) and Theorem 3.6 is directly applicable.
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If πH = EM [ΠH | P(Fdet)] does not belong to Θ(dsdet), we can still construct ε-optimal

solutions of the MVH problem. For that purpose, we introduce

distS(H) := inf
(c,ϑ)∈R×Θ(dsdet)

‖H − c− ϑ·ST‖2
L2 .

Theorem 3.8. Suppose S =̂ (S0, f, g, Y ) satisfies (2.13) and fix H ∈ L2. Then we have

distS(H) = ‖ΠH − πH‖2
L2(M) + ‖LHT ‖2

L2 , (3.9)

and for any ε > 0, there exists N = N(ε) such that (cε, ϑε) defined by

cε := E[H]−
∫ T

0

πH(t)1{|πH(t)|≤N} da(t),

ϑε := A−1[πH1{|πH |≤N}]

is in R×Θ(dsdet) with ‖H − cε − ϑε·ST‖2
L2 ≤ distS(H) + ε.

Proof. Fix (c, ϑ) ∈ R ×Θ(dsdet). Using H = E[H] + ΠH·MT + LHT from (3.4) together

with ϑ·ST =
∫ T

0
ϑ(t) df(t) +A[ϑ]·MT from (2.11), we obtain that P -a.s.,

H− c−ϑ·ST =

(
E[H]− c−

∫ T

0

ϑ(t) df(t)

)
+ (πH −A[ϑ])·MT + (ΠH −πH)·MT +LHT .

By Theorem 2.11, πH −A[ϑ] is in L2(dmdet) ⊆ L2(M). Using (3.6), the strong orthogo-

nality of LH and M and the Itô isometry implies

‖H − c− ϑ·ST‖2
L2 =

∣∣∣∣E[H]− c−
∫ T

0

ϑ(t) df(t)

∣∣∣∣2 + ‖πH −A[ϑ]‖2
L2(dmdet)

+ ‖ΠH − πH‖2
L2(M) + ‖LHT ‖2

L2

≥ ‖ΠH − πH‖2
L2(M) + ‖LHT ‖2

L2 . (3.10)

Because (c, ϑ) was arbitrary, this shows distS(H) ≥ ‖ΠH − πH‖2
L2(M) + ‖LHT ‖2

L2 .

To prove the converse inequality and show the existence of ε-optimal pairs, we con-

struct (cn, ϑn)n∈N ⊆ R×Θ(dsdet) with

‖H − cn − ϑn·ST‖2
L2

n!∞
−−−! ‖ΠH − πH‖2

L2(M) + ‖LHT ‖2
L2 .

To that end, we set

πHn := πH1{|πH |≤n}, cHn := E[H]−
∫ T

0

πHn (t) da(t), ϑn := A−1[πHn ]. (3.11)

Then πHn is bounded, hence in Θ(dsdet), and (cn, ϑn) ∈ R × Θ(dsdet). Theorem 2.11

therefore implies that ϑHn = A−1[πHn ] ∈ Θ(dsdet) and
∫ T

0
ϑHn (t) df(t) =

∫ T
0
πHn (t) da(t) by

(2.16). So we obtain

cHn = E[H]−
∫ T

0

ϑHn (t) df(t), (3.12)
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and we also have ϑHn ·ST =
∫ T

0
ϑHn (t) df(t)+A[ϑHn ]·MT P -a.s. from (2.11) in Theorem 2.11.

Combining this with (3.4), (3.12), A[ϑHn ] = πHn and the definition of πHn thus yields

H − cHn − ϑHn ·ST =

(
E[H]− cHn −

∫ T

0

ϑHn (t) df(t)

)
+ (ΠH −A[ϑHn ])·MT + LHT

= (ΠH − πH)·MT + LHT + (πH1{|πH |>n})·MT P -a.s.

Because (ΠH−πH , πH1{|πH |>n})L2(M) = 0 by (3.6) and LH and M are strongly orthogonal,

the Itô isometry then yields

‖H − cn − ϑn·ST‖2
L2 = ‖ΠH − πH‖2

L2(M) + ‖LHT ‖2
L2 + ‖πH1{|πH |>n}‖2

L2(dmdet).

But πH ∈ L2(dmdet) implies that πH1{|πH |>n}
n!∞
−−−! 0 in L2(dmdet) and therefore

‖H − cn − ϑn·ST‖2
L2

n!∞
−−−! ‖ΠH − πH‖2

L2(M) + ‖LHT ‖2
L2 .

This shows that distS(H) ≤ ‖ΠH − πH‖2
L2(M) + ‖LHT ‖2

L2 and thus proves (3.9). Finally,

choosing (cε, ϑε) with N = N(ε) such that ‖πH1{|πH |>N}‖2
L2(dmdet)

≤ ε gives via (3.11) an

ε-optimal solution.

We can now use part of the previous proof to argue Theorem 3.6.

Proof of Theorem 3.6. If πH is in Θ(dsdet), then ϑH = A−1[πH ] is in Θ(dsdet) by Theo-

rem 2.11. Thus we may choose cH as in (3.7), and inserting (c, ϑ) = (cH , ϑH) in (3.10)

yields ‖H − cH − ϑH·ST‖2
L2 = distS(H) by (3.9). This shows optimality of (cH , ϑH).

3.3 Mean-variance portfolio selection

In this section, we solve for α > 0 the mean-variance portfolio selection (MVPS) problem

maximise E[ϑ·ST ]− αVar[ϑ·ST ] over ϑ ∈ Θ(dsdet) (3.13)

with corresponding value function

MVα := sup
ϑ∈Θ(dsdet)

(E[ϑ·ST ]− αVar[ϑ·ST ]).

We write ϑMV for its solution if that exists.

It is well known that the MVPS problem is closely linked to the optimisation problem

minimise ‖1− ϑ·ST‖L2 over ϑ ∈ Θ(dsdet) (3.14)

with solution ϑ◦ (if that exists). This is true quite generally, and one can in fact in

(3.13) and (3.14) replace GT (Θ(dsdet)) and ϑ·ST with ϑ ∈ Θ(dsdet) by an abstract linear
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subspace G ⊆ L2 and g ∈ G; see Fontana/Schweizer [10]. In their framework, we take

G = GT (Θ(dsdet)), Y ≡ 0, γ = 1/α and note that 1− π(1) = g1 = ϑ◦·ST . If we define

dist◦S(1) := inf
ϑ∈Θ(dsdet)

‖1− ϑ·ST‖2
L2 ,

then E[π(1)] = E[(π(1))2] = ‖1− g1‖2
L2 = dist◦S(1), and [10, Remark 3.4 (4)] shows that

MVα <∞ ⇐⇒ dist◦S(1) > 0.

So (3.13) is only meaningful if dist◦S(1) > 0 or, equivalently, 1 is not in the L2-closure of

GT (Θ(dsdet)). The link between ϑMV and ϑ◦ is then by [10, Proposition 3.4] as follows.

Lemma 3.9. Suppose dist◦S(1) > 0 and (3.14) has a solution ϑ◦ ∈ Θ(dsdet). Then

ϑMV =
1

2αdist◦S(1)
ϑ◦,

MVα =
1

4α

(
1

dist◦S(1)
− 1

)
.

To study ϑ◦ and dist◦S(1), we begin with the following result.

Lemma 3.10. Suppose S =̂ (S0, f, g, Y ) satisfies (2.13) and denote by da = daa + das

the Lebesgue decomposition of da with respect to dmdet. For any ϑ and δ in Θ(dsdet), we

then have the formula

(1−ϑ·ST , δ·ST )L2 =

∫ T

0

(
Dϑ

daa

dmdet
(t)−A[ϑ](t)

)
A[δ](t) dmdet(t)+Dϑ

∫ T

0

A[δ](t) das(t),

where Dϑ := 1−
∫ T

0
A[ϑ](t) da(t).

Proof. Using (2.18) and (2.16) from Theorem 2.11, multiplying out and using (2.8) gives

(1− ϑ·ST , δ·ST )L2 =

(
1−

∫ T

0

ϑ(t) df(t)

)∫ T

0

δ(t) df(t)− (A[ϑ]·MT ,A[δ]·MT )L2

=

(
1−

∫ T

0

A[ϑ](t) da(t)

)∫ T

0

A[δ](t) da(t)

−
∫ T

0

A[ϑ](t)A[δ](t) dmdet(t).

Plugging in Dϑ and the Lebesgue decomposition of da then yields the result.

To exploit Lemma 3.10, we recall that a strategy ϑ ∈ Θ(dsdet) is a solution to (3.14)

if and only if it satisfies the first order condition

(1− ϑ·ST , δ·ST )L2 = 0, ∀δ ∈ Θ(dsdet). (3.15)
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Theorem 3.11. Suppose S =̂ (S0, f, g, Y ) satisfies (2.13), and assume that dist◦S(1) > 0

and dsdet � dmdet. Then there exists a solution ϑ◦ ∈ Θ(dsdet) to (3.14) if and only if

da� dmdet with
da

dmdet
∈ Θ(dsdet).

In that case, we have the explicit formulas

ϑ◦ = D◦A−1

[
da

dmdet

]
dmdet-a.e., (3.16)

D◦ :=

(
1 +

∥∥∥∥ da

dmdet

∥∥∥∥2

L2(dmdet)

)−1

= dist◦S(1) ∈ (0,∞). (3.17)

In particular, if S is standard, then ϑ◦ always exists and is given by (3.16) and (3.17).

Proof. As in Lemma 3.10, da = daa+das is the Lebesgue decomposition of da with respect

to dmdet. Because A : Θ(dsdet)! Θ(dsdet) is bijective by Theorem 2.11, combining (3.15)

and Lemma 3.10 shows that a given ϑ ∈ Θ(dsdet) solves (3.14) if and only if

Dϑ
daa

dmdet
−A[ϑ] = 0 dmdet-a.e. and Ddas = 0, (3.18)

where Dϑ = 1−
∫ T

0
A[ϑ](t) da(t).

Suppose first that ϑ ∈ Θ(dsdet) solves (3.14). Using dist◦S(1) = E[π(1)] = E[1 − g1]

together with (2.18) and (2.16) from Theorem 2.11, we obtain

dist◦S(1) = E[1− ϑ·ST ] = 1−
∫ T

0

ϑ(t) df(t) = 1−
∫ T

0

A[ϑ](t) da(t) = Dϑ.

Because dist◦S(1) > 0 by assumption, (3.18) implies das = 0, hence da� dmdet, and

Dϑ
da

dmdet
−A[ϑ] = 0 dmdet-a.e. (3.19)

But dmdet � dsdet = |df | + |dg| + dmdet, and so the assumption dsdet � dmdet implies

that dsdet ≈ dmdet. So (3.19) also holds dsdet-a.e. and implies that A[ϑ] is in Θ(dsdet)

like ϑ itself. Therefore da/dmdet belongs to Θ(dsdet) as well.

For the converse statement, we define D◦ and ϑ◦ via (3.17) and (3.16) and claim

that ϑ◦ then solves (3.14). First, da/dmdet ∈ Θ(dsdet) implies by Theorem 2.11 that

A−1[da/dmdet] ∈ Θ(dsdet) and ‖da/dmdet‖L2(dmdet) ≤ ‖da/dmdet‖Θ(dsdet) < ∞ so that

D◦ ∈ (0,∞) is well defined by (3.17). As a consequence, ϑ◦ = D◦A−1[da/dmdet] from

(3.16) is in Θ(dsdet); this uses again that dsdet ≈ dmdet. Next, da � dmdet implies
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das = 0, and combining the definitions of ϑ◦ and D◦ with (2.16) shows that

Dϑ◦ = 1−D◦
∫ T

0

A−1

[
da

dmdet

]
(t) df(t)

= 1−D◦
∫ T

0

da

dmdet
(t) da(t)

= 1−D◦
∫ T

0

(
da

dmdet
(t)

)2

dmdet(t)

=

(
1 +

∥∥∥∥ da

dmdet

∥∥∥∥2

L2(dmdet)

)−1

= D◦.

But this means that ϑ◦ ∈ Θ(dsdet) satisfies (3.18), and so ϑ◦ is a solution to (3.14).

Finally, the last statement follows either from Corollary 3.4 or from the closedness

result in Theorem 3.5, in each case combined with the first part of the present theorem.

The solution to the MVPS problem (3.13) is now given as follows.

Theorem 3.12. Suppose S =̂ (S0, f, g, Y ) is standard, dist◦S(1) > 0 and dsdet � dmdet.

Then

ϑMV =
1

2α
A−1

[
da

dmdet

]
,

MVα =
1

4α

∥∥∥∥ da

dmdet

∥∥∥∥2

L2(dmdet)

.

Proof. This follows directly from combining Theorem 3.11 with Lemma 3.9.

4 Examples

In this section, we work out the preceding theory in two classes of examples: arithmetic

and exponential Lévy processes. Before starting, we need a small extra result for the

MVH problem. Fix a payoff H ∈ L2 and denote by H = E[H] + ΠH·MT + LHT P -a.s. its

GKW decomposition with respect to a given M ∈M2
0. In view of Theorem 3.6 and (3.5),

πH = EM [ΠH | P(Fdet)] =
d(
∫

ΠH d〈M〉)p,Fdet

d〈M〉p,Fdet (4.1)

is an important ingredient for the solution of the MVH problem (3.3).

Lemma 4.1. Suppose that M ∈ M2
0 with d〈M〉t = Ψ2

t dt for some F-predictable process

Ψ. Then for any H ∈ L2,

πH(t) =
E[ΠH

t Ψ2
t ]

E[Ψ2
t ]

dt-a.e. (4.2)
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Proof. Using d〈M〉t = Ψ2
t dt and the Kunita–Watanabe inequality implies

E

[∫ T

0

|ΠH
t |Ψ2

t dt

]
= E

[∫ T

0

|ΠH
t | d〈M〉t

]
≤ ‖〈M〉1/2T ‖L2‖ΠH‖L2(M) <∞.

By Fubini’s theorem, t 7! E[|ΠH
t |Ψ2

t ] is thus dt-integrable on [0, T ] and so E[|ΠH
t |Ψ2

t ] <∞
for dt-a.a. t ∈ [0, T ]. On the other hand, as 〈M〉 =

∫
Ψ2
t dt is integrable, t 7! E[Ψ2

t ] is

dt-integrable and E[Ψ2
t ] < ∞ for dt-a.a. t ∈ [0, T ]. If we set 0/0 := 1, the quotient

E[ΠH
t Ψ2

t ]/E[Ψ2
t ] is therefore well defined for dt-a.a. t ∈ [0, T ]. Using dominated conver-

gence and Fubini’s theorem gives for all bounded Borel functions δ that

E

[∫ T

0

δ(t)ΠH
t d〈M〉t

]
= lim

n!∞
E

[∫ T

0

δ(t)ΠH
t Ψ2

t1{|ΠH
t |Ψ2

t≤n} dt

]
= lim

n!∞

∫ T

0

E[δ(t)ΠH
t Ψ2

t1{|ΠH
t |Ψ2

t≤n}] dt

=

∫ T

0

δ(t)E[ΠH
t Ψ2

t ] dt.

Because δ was arbitrary, this yields (
∫

ΠH d〈M〉)p,Fdet
=
∫
E[ΠH

t Ψ2
t ] dt, and we find anal-

ogously that 〈M〉p,Fdet
=
∫
E[Ψ2

t ] dt. In view of (4.1), this implies (4.2).

4.1 Arithmetic Lévy models

Both our example classes are built on Lévy processes. We recall (see e.g. [7, Theorem 3.1])

that the Lévy triplet (b,Σ, ν) of a Lévy process L = (Lt)t∈[0,T ] is given by the Lévy–

Khinchine representation E[eizLt ] = etψ(z) for z ∈ R, with characteristic exponent

ψ(z) := ibz − 1

2
Σz2 +

∫
R
(eizx − 1− izx1{|x|≤1}) ν(dx). (4.3)

We also need some integrability properties which are summarised in the next result. This

is a combination of [7, Propositions 3.13, 3.18 and 3.17].

Proposition 4.2. Let L = (Lt)t∈[0,T ] be a Lévy process with Lévy triplet (b,Σ, ν) such

that
∫
{|x|≥1} x

2 ν(dx) <∞. Then the following statements hold:

1) E[Lt] = (b+
∫
{|x|≥1} x ν(dx))t, t ∈ [0, T ].

2) L is a martingale if and only if b+
∫
{|x|≥1} x ν(dx) = 0.

3) If L is a martingale, then (L2
t − E[L2

t ])t∈[0,T ] is a martingale as well, and we have

E[L2
t ] = (Σ +

∫
R x

2 ν(dx))t, t ∈ [0, T ].

In the rest of this subsection, we consider a Lévy process as in Proposition 4.2 and

define S := S0 + L with S0 ∈ R. We also define the two constants

µa := b+

∫
{|x|≥1}

x ν(dx), (4.4)

σ2
a := Σ +

∫
R
x2 ν(dx), (4.5)

20



where the subscript a is mnemonic for “arithmetic Lévy”.

Lemma 4.3. Suppose L is as in Proposition 4.2 and define the functions f, g : [0, T ]! R
and the process Y = (Yt)t∈[0,T ] by

f(t) := µat, g(t) := 1, Yt := Lt − µat. (4.6)

Then the following statements hold:

1) Y ∈M2
0 with d〈Y 〉t = σ2

a dt.

2) S = S0 +L is a type (A) semimartingale with quadruplet (S0, f, g, Y ) given by (4.6),

and its canonical decomposition S = S0 +M + A is given by

Mt := Yt, At := µat, for t ∈ [0, T ].

In particular, we have

d〈M〉t = d〈Y 〉t = σ2
a dt. (4.7)

3) We have da(t) = µa dt and dmdet(t) = σ2
a dt, and if σ2

a 6= 0, then

da

dmdet
≡ µa

σ2
a

. (4.8)

Proof. Clearly Y is a Lévy process with Lévy triplet (b−µa,Σ, ν) and hence a martingale

by (4.4) and Proposition 4.2, 2). By Proposition 4.2, 3) and (4.5), (Y 2
t −σat)t∈[0,T ] is then

also a martingale which proves 1). Writing S as

St = S0 + µat+ (Lt − µat) = S0 + f(t) + g(t)Yt, t ∈ [0, T ],

hence immediately gives 2), and 3) follows from Lemma 2.5 and by inserting f(t) = µat

and g ≡ 1 into the formula (2.21) for da(t).

Lemma 4.4. Suppose L is as in Proposition 4.2. If σ2
a 6= 0, then S = S0 +L is standard

with Θ(dsdet) = L2(dmdet) = L2(dt), and for any H ∈ L2, we have πHt = E[ΠH
t ] dt-a.e.

Proof. (4.6) gives ‖ · ‖L1(df) = |µa|‖ · ‖L1(dt) and ‖ · ‖L1(dg) ≡ 0. Moreover, (4.7) yields

dmdet(t) = σ2
a dt so that for δ bounded Borel, using σ2

a 6= 0 gives

‖δ‖L1(df) + ‖δ‖L1(dg) = |µa|‖δ‖L1(dt) ≤
|µa|
√
T

|σa|
‖δ‖L2(dmdet).

Hence D2(dsdet) is satisfied and so Θ(dsdet) = L2(dmdet) by Lemma 3.1. Because g ≡ 1

satisfies (2.13), S is standard, and again using σ2
a 6= 0 gives L2(dmdet) = L2(dt). Finally,

because σ2
a 6= 0, the formula for πH(t) follows directly from Lemma 4.1.

The solutions of our two quadratic optimisation problems in the arithmetic Lévy

setting now look as follows.
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Theorem 4.5. Suppose L is as in Proposition 4.2, σ2
a 6= 0 and S = S0 + L. Then:

1) For each H ∈ L2, the solution (cH , ϑH) to the MVH problem (3.3) exists and is

given by

cH = E[H]− µa

∫ T

0

E[ΠH
t ] dt, ϑH(t) = E[ΠH

t ] dt-a.e.

2) The solution to the MVPS problem (3.13) exists and is given by

ϑMV ≡ 1

2α

µa

σ2
a

, with value MVα =
1

4α

µ2
a

σ2
a

T .

Proof. 1) Because S is standard by Lemma 4.4, (cH , ϑH) exists for every H ∈ L2 by Corol-

lary 3.7 and is given by (3.7), (3.8). Next, πH(t) = E[ΠH
t ] dt-a.e. by Lemma 4.4, and the

formula for cH follows by inserting da(t) = µa dt in (3.7). Finally, plugging f and g into

the definition (2.14) shows A[δ] = δ, hence A−1 = A = Id, and so (3.8) yields ϑH = πH .

2) Again using that S is standard, the formulas for ϑMV and MVα follow directly from

Theorem 3.12, A−1 = Id and (4.8).

Remark 4.6. If ν ≡ 0 is the zero measure, we recover for St = S0 + µat + σaWt,

t ∈ [0, T ], the Bachelier model of arithmetic Brownian motion with drift µa = b and

volatility σa =
√

Σ.

Remark 4.7. Let L be as in Proposition 4.2 and λ > 0. The Lévy Ornstein–Uhlenbeck

process S (see [1]) is then defined as

St = e−λt
(
S0 +

∫ t

0

eλs dLs

)
, t ∈ [0, T ], (4.9)

and we claim that this is also a type (A) semimartingale. Indeed, defining L̃t := Lt− µat

with µa from (4.4) allows us to write the dL-integral in (4.9) as∫ t

0

eλs dLs =

∫ t

0

eλs dL̃s + µa

∫ t

0

eλs ds, t ∈ [0, T ],

which is clearly the canonical decomposition of
∫
eλs dLs. Moreover,

∫
eλs dL̃s is in M2

0

because Lemma 4.3, 1) implies 〈
∫
eλs dL̃s〉T = σ2

a

∫ T
0
e2λs ds P -a.s., which is nonrandom

and hence integrable. Thus we can write S as

St = S0 + S0(e−λt − 1) + µae
−λt
∫ t

0

eλs ds+ e−λt
∫ t

0

eλs dL̃s, t ∈ [0, T ], P -a.s.,

and read off the quadruplet (S0, f, g, Y ) as

f(t) = S0(e−λt − 1) + µa
1− e−λt

λ
, g(t) = e−λt, Yt =

∫ t

0

eλs dL̃s.

This allows us to do more computations, but we do not give further details here.
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4.2 Exponential Lévy models

For our second class of examples, we again first collect some integrability properties.

These are from [7, Propositions 3.18, 3.14 and 8.20].

Proposition 4.8. Let L = (Lt)t∈[0,T ] be a Lévy process with Lévy triplet (b,Σ, ν) such

that
∫
{|x|≥1} e

2x ν(dx) <∞. Then the following statements hold:

1) eL is a martingale if and only if b+ 1
2
Σ +

∫
R(ex − 1− x1{|x|≤1}) ν(dx) = 0.

2) We have E[e2Lt ] <∞ and E[e2Lt ] = etψ(−2i), where ψ is from (4.3).

3) eL is special with canonical decomposition eL = 1 +N +B given by

Nt :=
√

Σ

∫ t

0

eLs− dWs +

∫
(0,t]×R

eLs−(ex − 1) J̃L(ds, dx), t ∈ [0, T ],

where W is a Brownian motion, J̃L(ds, dx) denotes the compensated Poisson random

measure of L, and

Bt :=

(
b+

1

2
Σ +

∫
R
(ex − 1− x1{|x|≤1}) ν(dx)

)∫ t

0

eLs− ds, t ∈ [0, T ].

In the rest of this subsection, we consider a Lévy process as in Proposition 4.8 and

define S := S0e
L, where S0 > 0. We also define the three constants

µe := b+
1

2
Σ +

∫
R
(ex − 1− x1{|x|≤1}) ν(dx), (4.10)

σ2
e := Σ +

∫
R
(ex − 1)2 ν(dx), (4.11)

λe := 2b+ 2Σ +

∫
R
(e2x − 1− 2x1{|x|≤1}) ν(dx), (4.12)

where the subscript e is mnemonic for “exponential Lévy”. We remark for later use that

one can show that λe = logE[e2L1 ] so that E[e2Lt ] = eλet.

Lemma 4.9. Suppose L is as in Proposition 4.8 and define the functions f, g : [0, T ]! R
and the process Y = (Yt)t∈[0,T ] by

f(t) := S0(eµet − 1), g(t) := eµet, Yt := S0(eLt−µet − 1). (4.13)

Then the following statements hold:

1) Y ∈M2
0 with d〈Y 〉t = S2

0σ
2
ee

2(Lt−µet) dt.

2) S = S0e
L with S0 > 0 is a type (A) semimartingale with quadruplet (S0, f, g, Y )

given by (4.13), and its canonical decomposition S = S0 +M + A is given by

Mt =

∫ t

0

eµes dYs, At = µe

∫ t

0

Ss ds, for t ∈ [0, T ]. (4.14)
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In particular, we have

d〈M〉t = σ2
eS

2
t dt. (4.15)

3) We have da(t) = µeS0 dt and dmdet(t) = S2
0σ

2
ee
λet dt, and if σ2

e 6= 0, then

da

dmdet
(t) =

1

S0

µe

σ2
e

e−λet, t ∈ [0, T ]. (4.16)

Proof. 1) The process L̃t = Lt − µet, t ∈ [0, T ], is a Lévy process with Lévy triplet

(b − µe,Σ, ν). Hence Ỹ := eL̃ is an exponential Lévy process. Proposition 4.8, 1) and

2) and the definition of µe in (4.10) then imply that Ỹ , and hence Y = S0(Ỹ − 1), is a

martingale with YT ∈ L2 so that Y ∈M2
0. According to Proposition 4.8, 3), applied to L̃

instead of L, we can alternatively write Ỹ as

Ỹt = eL̃t = 1 +
√

Σ

∫ t

0

eL̃s− dWs +

∫
(0,t]×R

eL̃s−(ex − 1) J̃L(ds, dx); (4.17)

note that J̃L̃ = J̃L and the FV part vanishes due to the definition of µe in (4.10). But

(4.17) is also the decomposition of Ỹ into its continuous and purely discontinuous local

martingale parts, and so the two processes on the RHS of (4.17) are strongly orthogonal.

Using (4.11), (1/S2
0)〈Y 〉 = 〈Ỹ 〉 is therefore given by

1

S2
0

〈Y 〉t = Σ

∫ t

0

e2L̃s− ds+

∫
R
(ex − 1)2 ν(dx)

∫ t

0

e2L̃s− ds = σ2
e

∫ t

0

e2L̃s ds P -a.s. (4.18)

Note that we can replace eL̃s− by eL̃s in the ds-integral because L̃ is RCLL so that P -a.s.,

we have L̃s− 6= L̃s for at most countably many s ∈ [0, T ], which form a ds-nullset.

2) The identities L̃t = Lt − µet and

St = S0e
Lt = S0 + S0(eµet − 1) + eµetS0(eL̃t − 1) = S0 + f(t) + g(t)Yt, t ∈ [0, T ],

show that S is a type (A) semimartingale. By Lemma 2.3, its canonical decomposition is

given by M = g·Y and A = f + Y−·g, and plugging in f, g, Y from (4.13) yields (4.14);

note that we can again can replace Y− by Y , hence also S− by S, in the ds-integral. Using

M = g·Y , (4.13), (4.18) and S0e
µeteL̃t = S0e

Lt = St finally gives (4.15) via

d〈M〉t = g2(t) d〈Y 〉t = e2µetS2
0σ

2
ee

2L̃t dt = σ2
eS

2
t dt.

3) Inserting f and g from (4.13) into the defining formula (2.17) for da(t) easily gives

da(t) = µeS0 dt. On the other hand, mdet(t) = E[〈M〉t] from Lemma 2.5 and (4.15) yield

dmdet(t) = σ2
eE[S2

t ] dt via Fubini’s theorem. To calculate E[S2
t ], we use S = S0e

L and the

definition (4.12) of λe to obtain E[S2
t ] = S2

0e
λet. This gives the formula for dmdet(t) and

then also (4.16), proving 3).
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Lemma 4.10. Suppose L is as in Proposition 4.8 and S = S0e
L with S0 > 0. If σ2

e 6= 0,

then S is standard with Θ(dsdet) = L2(dmdet) = L2(dt), and for every H ∈ L2, we have

πH(t) =
E[ΠH

t S
2
t ]

E[S2
t ]

= ER[ΠH
t ] dt-a.e., (4.19)

where R ≈ P is defined by dR/dP := eL̂T with L̂t := 2Lt − λet, t ∈ [0, T ].

Proof. For any bounded Borel function δ, (4.13) gives

‖δ‖L1(df) = S0‖δ‖L1(dg) = S0|µe|
∫ T

0

|δ(t)|eµet dt.

On the other hand, using the expression for dmdet(t) from Lemma 4.9, 3) to compute

‖1‖2
L2(dmdet)

= S2
0σ

2
e(eλeT − 1)/λe gives via Cauchy–Schwarz that

‖δ‖L1(dg) =
|µe|
S2

0σ
2
e

∫ T

0

|δ(t)|e(µe−λe)t dmdet(t) ≤ |µe|λe max(1, e(µe−λe)T )

S0σe(eλeT − 1)
‖δ‖L2(dmdet).

This implies that D2(dsdet) is satisfied and hence Θ(dsdet) = L2(dmdet) by Lemma 3.1.

Moreover, g from (4.13) clearly satisfies (2.13) so that S is standard. Finally, the density

t 7! dmdet

dt
(t) = S2

0σ
2
ee
λet is bounded away from 0 (because σ2

e 6= 0) and∞ on [0, T ] so that

we get L2(dmdet) = L2(dt).

For H ∈ L2, the first equality in (4.19) follows directly from (4.15) and Lemma 4.1.

For the second, Step 3) in the proof of Lemma 4.9 gives E[S2
t ] = S2

0e
λet so that

S2
t

E[S2
t ]

= e2Lt−λet =: eL̂t , t ∈ [0, T ].

Clearly, L̂ is a Lévy process, and eL̂ is integrable by Proposition 4.8, 2), with E[eL̂t ] ≡ 1

by construction. Hence eL̂ is a martingale, and πH can be rewritten as

πH(t) =
E[ΠH

t S
2
t ]

E[S2
t ]

= E[ΠH
t e

L̂t ] = E[ΠH
t e

L̂T ] = ER[ΠH
t ] dt-a.e.

because ΠH
t is Ft-measurable.

After the preceding preparations, we can now present the solutions of our two quadratic

optimisation problems in the exponential Lévy setting.

Theorem 4.11. If L is as in Proposition 4.8, σ2
e 6= 0 and S = S0e

L with S0 > 0, then:

1) For each H ∈ L2, the solution (cH , ϑH) to the MVH problem (3.3) exists and is

given by

cH = E[H]− µeS0

∫ T

0

πH(t) dt, ϑH(t) = πH(t)− µe

∫ T

t

πH(u) du dt-a.e.
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2) The solution to the MVPS problem (3.13) exists and is given by

ϑMV (t) =
1

2α

µee
−λeT

S0λeσ2
e

(
µe + (λe − µe)eλe(T−t)) dt-a.e.,

MVα =
1

4α

µ2
e

σ2
e

1− e−λeT

λe

.

Proof. This argument parallels the proof of Theorem 4.5, and so we only point out the

differences. In view of Lemma 4.10, computing πH(t) = ER[ΠH
t ] from ΠH

t depends via R

also on the model for L or S. The formula for cH follows from (3.7) via da(t) = µeS0 dt.

Plugging f and g into the definition (2.15) of A−1 = A yields

A−1[δ](t) = δ(t)− µe

∫ T

t

δ(u) du, t ∈ [0, T ],

so that the formula for ϑH follows from (3.8). The formulas for ϑMV and MVα use

Theorem 3.12, the expression for A−1, (4.16) and dmdet(t) = S2
0σ

2
ee
λet dt, together with

some straightforward computations.

Remark 4.12. If ν ≡ 0 is the zero measure, we recover for St = S0e
Lt = S0e

bt+
√

ΣWt by

Proposition 4.8, 3) via dSt =
√

ΣSt dWt + µeSt dt the Black–Scholes model of geometric

Brownian motion with volatility σe =
√

Σ and drift µe = b+ 1
2
σ2

e.
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