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0. Introduction

This paper resolves a problem raised by the theory of interest rates for general term structure
models. Fix a time horizon T ′ and denote for each T ≤ T ′ by B(t, T ) the price at time t ≤ T
of a zero coupon bond with maturity T . Following Musiela/Rutkowski (1997a,b), we call
a strictly positive predictable process A of finite variation an implied savings account with
respect to Q for the term structure model B if we have

(0.1) B(t, T ) = EQ
[
At
AT

∣∣∣∣Ft
]

, 0 ≤ t ≤ T ≤ T ′

for some Q equivalent to the original probability measure P . If A is absolutely continuous
and of the form A = exp

(∫
ru du

)
, we recover the familiar formula

B(t, T ) = EQ
[

exp

(
−

T∫
t

ru du

)∣∣∣∣Ft
]

so that an implied savings account is a generalization of the classical savings account to
a situation where there is possibly no short rate r. This happens for instance in equilib-
rium models with agents having finite marginal utility from consumption at the origin; see
Karatzas/Lehoczky/Shreve (1991).

The problem we solve here is the uniqueness question for an implied savings account:
Can there be another pair (A′, Q′) generating B in the sense that we also have

(0.2) B(t, T ) = EQ
′
[
A′t
A′T

∣∣∣∣Ft
]

, 0 ≤ t ≤ T ≤ T ′ ?

This question first appeared in Rutkowski (1996) in the particular context of a HJM model.
We prove here that the answer quite generally is negative: If either A,A′ are of class (D)
under Q,Q′ respectively or if (0.1) and (0.2) hold with stopping times σ ≤ τ replacing the
deterministic times t ≤ T , then A and A′ are indistinguishable. This was already asserted
in Musiela/Rutkowski (1997a,b), but only for the case where the underlying filtration is
generated by a Brownian motion. Moreover, the arguments given in these references are not
clear and even contain gaps in some places. We provide here a complete rigorous proof that
works in full generality.

For the special case where Q and Q′ coincide, our two main theorems reduce to the
well-known uniqueness results for the multiplicative decomposition of supermartingales and
for the Doob-Meyer decomposition. In the multiplicative case, this was already pointed out
in Musiela/Rutkowski (1997a). It may be interesting to note that our method of proof takes
up an old argument due to Rao (1969).

The paper is structured as follows. Section 1 contains the main results. We present both
the above multiplicative and a similar additive uniqueness theorem and explain how these
can be viewed as generalizing the uniqueness of the Doob-Meyer decomposition. Section 2
gives an approximation result for processes of finite variation that is of independent interest.
Sections 3 and 4 contain the proofs of the additive and multiplicative uniqueness theorems
and section 5 concludes with some comments.
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1. Main results

Let
(
Ω,F , P, (Ft)0≤t≤T ′

)
be a filtered probability space satisfying the usual conditions and

T ′ ∈ (0,∞] a fixed time horizon. If Q is any probability measure, we denote by M+
1,loc(Q)

the set of strictly positive local Q-martingales M with M0 = 1 and by A+
1 the set of strictly

positive predictable RCLL processes A of finite variation with A0 = 1. For other notations
from the general theory of processes, see Dellacherie/Meyer (1982) or Protter (1990).

Let us first recall a well-known result. If A is an integrable increasing predictable process,
A generates a nonnegative supermartingale Z by

Zt := E [AT ′ −At|Ft] , 0 ≤ t ≤ T ′.

If A has no jump at T ′, the nonnegative supermartingale Z is even a potential on [0, T ′],
i.e., lim

t↗T ′
E[Zt] = 0. In this case, Z is called the potential generated by A. Conversely, the

potential Z determines A in the sense that if both A and A′ generate the same potential Z,
then A and A′ coincide. This well-known fact is slightly generalized in the following result
which is an immediate consequence of the uniqueness of the Doob-Meyer decomposition.

Proposition 1. Let A,A′ be predictable integrable processes of finite variation with A0 =
A′0 = 1. If

(1.1) E[AT ′ −At|Ft] = E[A′T ′ −A′t|Ft] , 0 ≤ t ≤ T ′,

then A and A′ are indistinguishable.

Proof. By (1.1),

E[AT ′ |Ft]−At = E[A′T ′ |Ft]−A′t , 0 ≤ t ≤ T ′.

Since A,A′ are predictable and of finite variation, the assertion follows from the uniqueness
of the Doob-Meyer decomposition.

q.e.d.

Proposition 1 can be viewed as a uniqueness result for the additive decomposition of
special semimartingales. To formulate a multiplicative version, we recall the multiplicative
decomposition for strictly positive special semimartingales. The following well-known result
can be found in Jacod (1979), Propositions 6.19 and 6.20.

Proposition 2 (Multiplicative decomposition of semimartingales)

Let Q be a probability measure equivalent to P . Any strictly positive special Q-semimartin-
gale X satisfying X− > 0 and X0 = 1 admits a unique multiplicative decomposition

X = MA,

where M ∈ M+
1,loc(Q) and A ∈ A+

1 . Uniqueness means that if we have two such decomposi-
tions X = MA = M ′A′, then M and M ′ as well as A and A′ are indistinguishable.

The uniqueness statement in the above result leads immediately to a multiplicative
version of Proposition 1.
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Proposition 3. Let A,A′ ∈ A+
1 be integrable processes with A− > 0 or A′− > 0. If

(1.2) E

[
AT ′

At

∣∣∣∣Ft
]

= E

[
A′T ′
A′t

∣∣∣∣Ft
]

, 0 ≤ t ≤ T ′,

then A and A′ are indistinguishable.

Proof. Assume that A− > 0 and let

Xt :=
1

At
E [AT ′ |Ft] =

1

A′t
E [A′T ′ |Ft] , 0 ≤ t ≤ T ′.

As a predictable RCLL process, 1/A is locally bounded by VII.32 of Dellacherie/Meyer (1982);
this uses that A− > 0. Again by VII.32 of Dellacherie/Meyer (1982), X is hence a special
semimartingale. Moreover, X > 0 and since A− > 0, we also have X− > 0. The uniqueness
result in Proposition 2 then yields 1

A = 1
A′ and hence A and A′ coincide.

q.e.d.

The main results of this paper are generalizations of Proposition 1 and Proposition 3 to
the case where the expectations in (1.2) and (1.1) are taken under two different equivalent
measures Q and Q′. As explained above, this is directly motivated by a question from interest
rate theory. The precise results are as follows.

Theorem 4. Let A,A′ ∈ A+
1 and let Q,Q′ be equivalent probability measures. If

(1.3) EQ
[
Aτ
Aσ

∣∣∣∣Fσ
]

= EQ
′
[
A′τ
A′σ

∣∣∣∣Fσ
]

for all stopping times 0 ≤ σ ≤ τ ≤ T ′

or if A,A′ are of class (D) under Q,Q′ respectively and

(1.4) EQ
[
AT
At

∣∣∣∣Ft
]

= EQ
′
[
A′T
A′t

∣∣∣∣Ft
]

, 0 ≤ t ≤ T ≤ T ′,

then A and A′ are indistinguishable.

Theorem 5. Let A,A′ be predictable RCLL processes of finite variation with A0 = A′0 = 1
and let Q,Q′ be equivalent probability measures. If

(1.5) EQ[Aτ −Aσ|Fσ] = EQ
′
[A′τ −A′σ|Fσ]

for all stopping times 0 ≤ σ ≤ τ ≤ T ′ for which the conditional expectations in (1.5) are
well-defined, or if A,A′ are of class (D) under Q,Q′ respectively and

(1.6) EQ[AT −At|Ft] = EQ
′
[A′T −A′t|Ft] , 0 ≤ t ≤ T ≤ T ′,

then A and A′ are indistinguishable.

For comments and relations to the literature, we refer to section 5.
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2. An auxiliary convergence result

The key result for our proofs of Theorem 5 and Theorem 4 is the following convergence result
of independent interest. For its formulation, we first have to introduce some notation.

Definition. Let s, t ∈ IR with s ≤ t. A partition of [s, t] is a finite family π = {t0, t1, . . . , tk}
with s = t0 ≤ t1 ≤ . . . ≤ tk ≤ t. A sequence (πn)n∈IN = ({tn0 , tn1 , . . . , tnkn})n∈IN of partitions
of [s, t] tends to the identity if lim

n→∞
tnkn = t and lim

n→∞
max

i=1,...,kn
(tni − tni−1) = 0. A sequence

(πn)n∈IN of partitions is called increasing if πn ⊆ πn+1 for each n.

Definition. Let % ≤ τ ≤ T ′ be stopping times. A random partition of [[%, τ ]] is a finite
family Π = {σ0, σ1, . . . , σk} of stopping times with % = σ0 ≤ σ1 ≤ . . . ≤ σk ≤ τ . A sequence
(Πn)n∈IN = ({σn0 , σn1 , . . . , σnkn})n∈IN of random partitions of [[%, τ ]] tends to the identity if
lim
n→∞

σnkn = τ P -a.s. and lim
n→∞

max
i=1,...,kn

(σni −σni−1) = 0 P -a.s. A sequence (Πn)n∈IN of random

partitions is called increasing if Πn ⊆ Πn+1 for each n.

Proposition 6. Suppose that the RCLL process A of finite variation is of class (D) under
P and that G is a bounded adapted RCLL process. Let (Πn)n∈IN be an arbitrary increasing
sequence of random partitions of [[0, T ′]] tending to the identity. If τ ≤ T ′ is any stopping
time such that Aτ is of P -integrable variation, then

(2.1) lim
n→∞

Yn := lim
n→∞

∑

σn
i
,σn
i+1
∈Πn

σn
i
≤τ

E
[
Gσn

i

(
Aσn

i+1
−Aσn

i

)∣∣∣Fσn
i

]
=

τ∫
0

Gs− dAps

weakly in L1(P ), where Ap denotes the dual predictable projection of A under P (which
exists at least on [[0, τ ]]).

Proof. Fix M ∈ L∞(Ω,FT ′ , P ) and an RCLL version of the martingale Mt := E[M |Ft],
0 ≤ t ≤ T ′. Fix an increasing sequence (Πn)n∈IN of random partitions of [[0, T ′]] tending to
the identity and set τn := σni+1 on the set {σni ≤ τ < σni+1} and τn := T ′ on {τ = T ′}.
Because {σni ≤ τ} is in Fσn

i
, conditioning on Fσn

i
yields

E [MYn] = E


 ∑

σn
i
,σn
i+1
∈Πn

ME
[
I{σn

i
≤τ}Gσni

(
Aσn

i+1
−Aσn

i

)∣∣∣Fσn
i

]

(2.2)

= E


 ∑

σn
i
,σn
i+1
∈Πn

I{σn
i
≤τ}Mσn

i
Gσn

i

(
Aσn

i+1
−Aσn

i

)



= E


 ∑

σn
i
,σn
i+1
∈Πn

I{σn
i
≤τ}Mσn

i
Gσn

i

(
Aτσn

i+1
−Aτσn

i

)

+
∑

σn
i
,σn
i+1
∈Πn

I{σn
i
≤τ<σn

i+1
}Mσn

i
Gσn

i

(
Aσn

i+1
−Aτ

)

 .
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Since M and G are bounded, the definition of τn yields

∣∣∣∣∣∣
E


 ∑

σn
i
,σn
i+1
∈Πn

I{σn
i
≤τ<σn

i+1
}Mσn

i
Gσn

i

(
Aσn

i+1
−Aτ

)


∣∣∣∣∣∣
≤ const. E

[
|Aτn −Aτ |

]
−→ 0

as n tends to infinity because A is an RCLL process of class (D) and τn decreases to τ . Hence
(2.2) implies that

(2.3) lim
n→∞

E [MYn] = lim
n→∞

E


 ∑

σn
i
,σn
i+1
∈Πn

Mσn
i
Gσn

i

(
Aτσn

i+1
−Aτσn

i

)

 .

By Proposition II.21 of Protter (1990), we have

lim
n→∞

∑

σn
i
,σn
i+1
∈Πn

Mσn
i
Gσn

i

(
Aτσn

i+1
−Aτσn

i

)
=

T ′∫
0

Ms−Gs− dAτs =
τ∫
0

Ms−Gs− dAs

in probability. Since M and G are bounded and Aτ is of P -integrable variation, we therefore
obtain by the generalized Lebesgue convergence theorem

lim
n→∞

E


 ∑

σn
i
,σn
i+1
∈Πn

Mσn
i
Gσn

i

(
Aτσn

i+1
−Aτσn

i

)

 = E

[
τ∫
0

Ms−Gs− dAs

]
= E

[
τ∫
0

Ms−Gs− dAps

]

because
∫
M−G− d(A − Ap)τ is a P -martingale. Combining this with (2.3) and using first

Proposition VI.61 of Dellacherie/Meyer (1982) and then the optional stopping theorem yields

lim
n→∞

E [MYn] = E

[
τ∫
0

Ms−Gs− dAps

]
= E

[
Mτ

τ∫
0

Gs− dAps

]
= E

[
M

τ∫
0

Gs− dAps

]
.

This completes the proof.
q.e.d.

Remarks. 1) Proposition 6 is a variation of well-known results; see for instance Doléans
(1967), VII.21 of Dellacherie/Meyer (1982), Lemma 2.3 of Musiela/Rutkowski (1997a) or
Lemma 2.14 of Jacod (1984). But all these results are formulated for the case where one can
take τ = T ′ and the last assumes in addition that A is continuous.

2) If A in Proposition 6 is predictable, we have of course Ap = A. Our subsequent
arguments only need this special case.

3. Proof of Theorem 5

The idea for the proof is rather simple. We use Proposition 6 to approximate both A and A′

by sums of the conditional expectations of their increments. By assumption, the respective
summands in the two sums always agree and hence so must the limits. Note that since Q
and Q′ are equivalent, we have L∞(Q) = L∞(Q′) and can write L∞ for short.
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1) Suppose first that (1.5) holds. By VII.32 of Dellacherie/Meyer (1982), there exists
an increasing sequence of stopping times (τm)m∈IN converging stationarily to T ′ such that
τm∫
0

|dAu|+|dA′u| ∈ L∞. In particular, Aτm and (A′)τm are of class (D) underQ,Q′ respectively.

Fix t ∈ [0, T ′] and an increasing sequence (πn)n∈IN of partitions of [0, T ′] tending to the
identity. By Proposition 6 with P = Q, τ = t ∧ τm, G ≡ 1 and Aτm instead of A,

At∧τm −A0 = lim
n→∞

∑

tn
i
,tn
i+1
∈πn

tn
i
≤t∧τm

EQ
[
Aτmtn

i+1
−Aτmtn

i

∣∣∣Ftn
i

]
(3.1)

= lim
n→∞

∑

tn
i
,tn
i+1
∈πn

I{tni ≤t∧τm}E
Q
[
Atn

i+1
∧τm −Atni ∧τm

∣∣∣Ftn
i
∧τm

]
,

where the last equality uses the well-known fact that

(3.2) E[X|Fu] = E[X|Fu∧τm ] on {u ≤ τm}

for any X ∈ L1(Q) and any u ∈ [0, T ′]. The same arguments for Q′, A′ instead of Q,A yield

(3.3) A′t∧τm −A′0 = lim
n→∞

∑

tn
i
,tn
i+1
∈πn

tn
i
≤t∧τm

EQ
′ [
A′tn

i+1
∧τm −A′tni ∧τm

∣∣∣Ftn
i
∧τm

]
.

But by (1.6) the sequences on the right-hand sides of (3.1) and (3.3) coincide. Thus we have
a sequence converging at the same time to At∧τm − A0 weakly in L1(Q) and to A′t∧τm − A′0
weakly in L1(Q′), where Q is equivalent to Q′. Hence Lemma 7 below tells us that

At∧τm −A0 = A′t∧τm −A′0 , 0 ≤ t ≤ T ′

and so A and A′ coincide on [[0, τm]]. Letting m tend to infinity shows A = A′.
2) Suppose now that A,A′ are of class (D) under Q,Q′ respectively and that (1.6) holds.

Fix again an increasing sequence (πn)n∈IN of partitions of [0, T ′] tending to the identity.
Applying Proposition 6 with G ≡ 1 and a sequence (τm) of stopping times as in part 1) yields
for all t ∈ [0, T ′] and m ∈ IN

(3.4) At∧τm −A0 = lim
n→∞

∑

tn
i
,tn
i+1
∈πn

tn
i
≤t∧τm

EQ
[
Atn

i+1
−Atn

i

∣∣Ftn
i

]
weakly in L1(Q)

and

(3.5) A′t∧τm −A′0 = lim
n→∞

∑

tn
i
,tn
i+1
∈πn

tn
i
≤t∧τm

EQ
′[
A′tn

i+1
−A′tn

i

∣∣Ftn
i

]
weakly in L1(Q′).

Because of (1.6), the sequences on the right-hand sides of (3.4) and (3.5) coincide and so the
same arguments as in part 1) show that Aτm and (A′)τm must also coincide. Letting m tend
to infinity completes the proof.

q.e.d.
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In the above argument, we have used the following well-known result.

Lemma 7. If a sequence (un)n∈IN converges weakly in L1(Q) to u and weakly in L1(Q′) to
u′ where Q′ is equivalent to Q, then u = u′ Q-a.s. and Q′-a.s.

Proof. Let Z := dQ′

dQ and fix ϕ ∈ L∞(Q) and a ≥ 0. By definition of the weak convergence

σ(L1, L∞), we have

EQ
′ [
u′ϕI{Z≤a}

]
= lim
n→∞

EQ
′ [
unϕI{Z≤a}

]
= lim
n→∞

EQ
[
unϕZI{Z≤a}

]
= EQ

[
uϕZI{Z≤a}

]

because ZI{Z≤a} is bounded. Thus we have

EQ
[
uϕZI{Z≤a}

]
= EQ

[
u′ϕZI{Z≤a}

]
for all ϕ ∈ L∞(Q) and all a ≥ 0

and this implies the assertion.
q.e.d.

4. Proof of Theorem 4

The basic idea for this proof is again to use approximations via Proposition 6, but the complete
argument requires some care. We first show that

(4.1) A′− dA = A− dA
′

which implies that A and A′ must coincide at least until either A− or A′− hits zero. We then
prove that neither does.

As in the last proof, VII.32 of Dellacherie/Meyer (1982) gives us an increasing sequence

of stopping times (τm)m∈IN converging stationarily to T ′ such that
τm∫
0

|dAu| + |dA′u| ∈ L∞.

Fix an increasing sequence (πn)n∈IN of partitions of [0, T ′] tending to the identity.
1) Suppose first that (1.3) holds. By Proposition 6 with P = Q, τ = t∧ τm, G = (A′)τm−

and Aτm instead of A,

(4.2) lim
n→∞

Un(t) =
t∧τm∫

0

(A′)τms− dA
τm
s =

t∧τm∫
0

A′s− dAs weakly in L1(Q)

for each t, where

Un(t) :=
∑

tn
i
,tn
i+1
∈πn

tn
i
≤t∧τm

EQ
[
(A′)τmtn

i

(
Aτmtn

i+1
−Aτmtn

i

)∣∣∣Ftn
i

]

=
∑

tn
i
,tn
i+1
∈πn

tn
i
≤t∧τm

EQ
[
A′tn

i
∧τm

(
Atn

i+1
∧τm −Atni ∧τm

)∣∣∣Ftn
i
∧τm

]
;

the last equality is due to (3.2). Reversing the roles of A,Q and A′, Q′ shows in the same
way that we also have

(4.3) lim
n→∞

U ′n(t) =
t∧τm∫

0

As− dA′s weakly in L1(Q′)
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for each t, where

U ′n(t) :=
∑

tn
i
,tn
i+1
∈πn

tn
i
≤t∧τm

EQ
′ [
Atn

i
∧τm

(
A′tn

i+1
∧τm −A′tni ∧τm

)∣∣∣Ftn
i
∧τm

]
.

But due to (1.3), we have Un(t) = U ′n(t) a.s. for all n, t and so (4.2) and (4.3) show that
we have one sequence of random variables converging at the same time weakly in L1(Q) and
weakly in L1(Q′), where Q is equivalent to Q′. This implies that the limits must coincide
a.s. and so we obtain

t∧τm∫
0

A′s− dAs =
t∧τm∫

0

As− dA′s a.s. for all t,m.

Letting m tend to infinity yields A′− dA = A− dA′.
2) Suppose now that A,A′ are of class (D) under Q,Q′ respectively and that (1.4) holds.

Then Proposition 6 with P = Q, τ = t ∧ τm and G = A′− yields

lim
n→∞

Vn(t) =
t∧τm∫

0

A′s− dAs weakly in L1(Q)

for each t, where

Vn(t) :=
∑

tn
i
,tn
i+1
∈πn

tn
i
≤t∧τm

EQ
[
A′tn

i

(
Atn

i+1
−Atn

i

)∣∣∣Ftn
i

]
.

Again reversing the roles of A,Q and A′, Q′ also gives

lim
n→∞

V ′n(t) =
t∧τm∫

0

As− dA′s weakly in L1(Q′)

for each t, where

V ′n(t) :=
∑

tn
i
,tn
i+1
∈πn

tn
i
≤t∧τm

EQ
′ [
Atn

i

(
A′tn

i+1
−A′tn

i

)∣∣∣Ftn
i

]
.

But Vn(t) = V ′n(t) a.s. for all n, t by (1.4) and so the same arguments as in part 1) show that
A′− dA = A− dA′.

3) Now let % < T ′ be a random variable such that A% = A′%. Because A and A′ are both
right-continuous and strictly positive, there exists a random variable σ > % such that A− > 0
and A′− > 0 on ]]%, σ]] and so (4.1) is on ]]%, σ]] equivalent to

dA

A−
=
dA′

A′−
, A% = A′%.

By the uniqueness of the stochastic exponential, A and A′ therefore coincide on [[%, σ]]. So if
we define

τ := inf
{
t ∈ [0, T ′]

∣∣At 6= A′t
}
∧ T ′,

the above argument shows that

Aτ 6= A′τ if τ < T ′.
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4) To complete the proof, we now show that Aτ = A′τ . This would be obvious if A and
A′ were left-continuous, but since they are only predictable, we have to use (1.3) or (1.4).
We denote by ∆At := At − At−, 0 ≤ t ≤ T ′, the process of the jumps of A. The stopping
time τ is in general not predictable, but by Theorem B in the complements to chapter IV
in Dellacherie/Meyer (1982), there exists a sequence (σn)n∈IN of predictable stopping times
such that {

(ω, t)
∣∣∆At(ω) 6= 0 or ∆A′t(ω) 6= 0

}
=
⋃

n∈IN
[[σn]].

Since each σn is a predictable stopping time, there exists for every n a strictly increasing
sequence of stopping times (σpn)p∈IN tending to σn.

If (1.3) holds, we have

EQ
[
Aσn

∣∣Fσpn
]

= EQ
′ [
A′σn

∣∣Fσpn
]

on the set Cpn := {A = A′ on [[0, σpn]]}.

Letting p tend to infinity and using that A,A′ are predictable yields

(4.4) Aσn = EQ
[
Aσn

∣∣Fσn−
]

= EQ
′ [
A′σn

∣∣Fσn−
]

= A′σn on the set Cn :=
⋂
p∈IN

Cpn.

By the definition of τ , we have A = A′ on [[0, τ [[ and therefore Aτ− = A′τ−. This implies that

{Aτ 6= A′τ} ⊆ {∆Aτ 6= 0 or ∆A′τ 6= 0} ⊆
⋃

n∈IN
{τ = σn}

since the sequence (σn) exhausts the jumps of A and A′. So for any ω ∈ {Aτ 6= A′τ} we have
τ(ω) = σn(ω) for some n and therefore At(ω) = A′t(ω) for any t ≤ σpn(ω) and all p, because(
σpn(ω)

)
p∈IN increases strictly to σn(ω) = τ(ω) and A = A′ on [[0, τ [[. Hence ω ∈ Cn for the

above n and therefore Aτ (ω) = Aσn(ω) = A′σn(ω) = A′τ (ω) by (4.4), contradicting the fact
that ω ∈ {Aτ 6= A′τ}. Thus we conclude that Aτ = A′τ .

Suppose now that A,A′ are of class (D) under Q,Q′ respectively and that (1.4) holds.
Fix t ∈ [0, T ′] and use (1.4) to obtain

ϕ(u) :=
EQ[At|Fu∧t]

Au∧t
=
EQ

′
[A′t|Fu∧t]
A′u∧t

=: ϕ′(u) , 0 ≤ u ≤ T ′.

Applying the optional stopping theorem, we get ϕ(σpn) = ϕ′(σpn) for all n and p. Letting p
tend to infinity then yields

(4.5) EQ
[
At
∣∣Fσn−

]
= EQ

′ [
A′t
∣∣Fσn−

]
on Cn ∩ {t ≥ σn}.

For all k ∈ IN , we set τmn := k+1
2m if k

2m ≤ σn < k+1
2m . Then (4.5) implies

EQ
[
Aτmn

∣∣Fσn−
]

= EQ
′ [
A′τmn

∣∣Fσn−
]

on Cn

by the definition of τmn . Letting m tend to infinity and using that A,A′ are right-continuous
and of class (D) under Q,Q′ respectively, we again obtain (4.4) and hence Aτ = A′τ by the
same argument as above. This completes the proof of Theorem 4.

q.e.d.
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5. Comments and conclusion

The main contribution of this paper is a complete and general proof for the uniqueness of an
implied savings account under clearly specified (and very weak) assumptions. Proposition 6
and in particular Theorem 4 improve Lemma 2.3 and Proposition 2.3 in Musiela/Rutkowski
(1997a) in two directions. They are more general because we work with an arbitrary filtration
which need not be generated by a Brownian motion. They are also more precise because
Musiela/Rutkowski (1997a) apply their Lemma 2.3 in a situation where its assumptions are
not satisfied. By exploiting the symmetry between Q and Q′, we have in addition simplified
the structure of the argument originally proposed by Musiela/Rutkowski (1997a).

The generalization in Theorem 4 of the uniqueness of the multiplicative decomposition
yields as direct application that implied savings accounts are unique. We have at present
no direct use for the additive counterpart in Theorem 5, but we hope to see this appear
in a problem from finance or elsewhere. We remark that the crucial convergence result in
Proposition 6 has also been used by Döberlein/Schweizer (1999) to replicate a continuous
implied savings account by a roll-over strategy in just maturing bonds.

Finally, let us briefly comment on the assumptions in Theorem 4. Of course, (1.4) is
just the condition that (A,Q) and (A′, Q′) generate via (0.1) the same term structure model.
The class (D) assumption imposes a weak integrability property that allows us to interchange
limits and expectations. Condition (1.3) on the other hand is more intuitive. If we compare
it to (0.1), it tells us that we should also consider bonds with random maturities τ which are
stopping times and that the prices of such bonds should also be generated by both (A,Q)
and (A′, Q′).
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