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1 Introduction

At present their is much uncertainty in the choice of the right pricing measure
for the hedging of derivatives in incomplete markets. Incompleteness can arise
for instance in the presence of stochastic volatility as will be studied in the fol-
lowing. This paper provides comparative numerical results for probably the two
most important hedging methodologies, namely local risk minimisation and global
mean-variance hedging.

We first describe the theoretical framework that underpins these two approaches.
We then present some comparative studies on expected squared total costs and
the asymptotics of these costs, differences in prices and optimal hedge ratios. The
numerical results are obtained for variations of the Heston and the Stein-Stein
stochastic volatility models.

To produce accurate and reliable estimates combinations of partial differential equa-
tions and simulation techniques have been developed that are of independent inter-
est. The numerical work also includes explicit solutions for certain key quantities
that are required for mean-variance hedging. It turns out that mean-variance hedg-
ing is far more difficult to implement than what has been currently attempted for
most stochastic volatility models. In particular the mean-variance pricing measure
is in some cases difficult to identify and to characterise. Furthermore, the corre-
sponding optimal hedge, due to its global characterisation, no longer appears as
a simple combination of partial derivatives with respect to state variables. It has
more the character of an optimal control strategy.

The importance of the study is that it documents for some classes of stochastic
volatility models the typical quantitative differences that arise for two major hedg-
ing approaches. We conclude by drawing attention to certain observations that
have implications for the practical implementation of stochastic volatility models.

2 A Markovian Stochastic Volatility Framework

We consider a frictionless market in continuous time with a single primary asset
available for trade. We denote by S = {S;, 0 < t < T} the price process for
this asset defined on the filtered probability space (2, F, P) with filtration IF' =
(Fi)o<i<r satisfying the usual conditions for some fixed but arbitrary time horizon
T € (0,00).

We introduce the discounted price process X = {X; = %tt, 0 <t < T}, where
B ={B;, 0 <t < T} represents the savings account that accumulates interest at
the continuously compounding interest rate.



We consider a general two-factor stochastic volatility model of the form

dX, = X;(u(t,Y;)dt+Y,dW})

dY; = a(t,Yy)dt+b(t, V) (0dW, + /1 — 02 dW}) (2.1)

for 0 <t < T with given deterministic initial values X, € (0,00) and Y; € (0, c0).
Here the function p is a given appreciation rate. The volatility component Y
evolves according to a separate stochastic differential equation with drift function
a, diffusion function b and constant correlation o € [—1,1]. W' and W? denote
independent standard Wiener processes under P. The component Y allows for an
additional source of randomness but is not available as a traded asset.

To ensure that this Markovian framework provides a viable asset price model we
assume appropriate conditions hold for the functions pu, a, b and p so that the
system of stochastic differential equations (2.1) admits a unique strong continuous
solution for the vector process (X,Y) with a strictly positive discounted price
process X and strictly positive volatility process Y. We take the filtration ' to be
the natural filtration generated by W' and W?2, where F is the trivial o-algebra
(0,9},

In order to price and hedge derivatives in an arbitrage free manner we assume that
there exists an equivalent local martingale measure (ELMM) @ such that X is a
local Q-martingale. That is the probability measures ) and P have the same null
sets and

Eq(Xi| Fs) = X, (2.2)

for0<s<t<T.

We denote by IP the set of all ELMMs ). Our financial market is characterised
by the system (2.1) together with the filtration JF' and is called incomplete if IP
contains more than one element.

In this paper we are in principle interested in the hedging of European style con-
tingent claims with an Fpr-measurable square integrable random payoft H based
on the dynamics given by (2.1). A specific choice for H which we will use later on
for all numerical examples is the European put payoff given by

H = h(Xr) = (K — Xp)*. (2.3)

The requirement of Fr-measurability and square integrability for the payoff H
allows for many types of path dependent contingent claims and possibly even de-
pendence on the evolution of the volatility process Y.

Subject to certain restrictions on the functions u, a, b and parameter o we can
ensure, via an application of the Girsanov transformation, that there is an ELMM
@ such that X is a local (Q-martingale.



The condition that X should be a local Q-martingale fixes the effect of the Girsanov
transformation on W1 but allows for many different transformation effects on the
independent 2. Consequently if |g| < 1 the set IP contains more than one element
and our financial market is therefore incomplete.

In order to price and hedge derivatives in this incomplete market setting we need
to somehow fix the ELMM (). Currently there is no general agreement on how to
choose a specific ELMM @ with a number of alternatives being considered in the
literature.

In this paper we will consider two quadratic approaches to hedging in incomplete
markets; these are local risk-minimisation and mean-variance hedging. For either
of these two approaches we require hedging strategies of the form ¢ = (19, 7), where
9 is a predictable X-integrable process and 7 is an adapted process such that the
value process V(p) = {Vi(p), 0 <t < T} with

Vile) = Xo +me (2.4)

is right-continuous for 0 < ¢ < T'. The hedging strategy ¢ = (J,17) means that we
form at time ¢ a portfolio with ¥, units of the traded risky asset X; and 7; units of
the savings account B;.

The cost process C(¢) = {Ci(p), 0 <t < T} is then given by

Culy) = Vity) ~ [ 0.4, (2.5)

0

for 0 <t < T and ¢ = (9¥,n). A hedging strategy ¢ is considered to be self-
financing if C'(¢) is P-a.s. constant over the time interval [0,7] and ¢ is called
mean self-financing if C(¢) is a P-martingale.

3 Local Risk-Minimisation

Intuitively the goal of local risk-minimisation is to minimise the local risk which
can be interpreted as the conditional second moment of cost increments under the
measure P at each time instant.

With local risk-minimisation we only consider hedging strategies which replicate
the contingent claim H at time 7'; that is we only allow hedging strategies ¢ such
that

Vr(p) =H P —as. (3.1)

Subject to certain technical conditions it can be shown that finding a local risk-
minimising strategy is equivalent to finding a decomposition of H in the form

T
H=Hr+ / erax, + Lk, (3.2)
0



where H(l)r is constant, §1r is a predictable square integrable process and o =
{L%r, 0 <t < T} is a square integrable P-martingale with L})r = 0 and the product
process LM is in addition a P-martingale. The representation (3.2) is usually
referred to as the Follmer-Schweizer decomposition of H (see Follmer & Schweizer
(1991)).

The local risk-minimising hedging strategy is then given by

o = €lr (3.3)
and
= Vi(o) — 9 X, (3.4)
where
t
V(o) = Cil™) + / o dX, (3.5)
0
with
Ci(¢") = HIF + LI (3.6)
for0<t<T.

As is shown in Féllmer & Schweizer (1991) and Schweizer (1995) there exists a
measure P, the so called minimal ELMM, such that

Vi(e") = Ep(H | ) (3.7)

for 0 < ¢t < T, where the conditional expectation in (3.7) is taken under P. The
measure P is identified, subject to certain integrability condition, by the Radon-
Nikodym derivative

dp 1
= 7x .
dP T (3 8)

1 Y\’ b (s, Y,
7 = exp (—5/0 (“(8{/ )) ds—/o “(S{/ )de) (3.9)

for0<t<T.

where

Assuming ZI' is a P-martingale, the Girsanov transformation can be used to show
that the processes W' and W?2 defined by

t
. Y,
W) =w} +/ M ds (3.10)
0

S



and
W2 =W? (3.11)

for 0 < ¢ <T are independent Wiener processes under P. Consequently using Wi
and W? the system of stochastic differential equations (2.1) becomes

dX, = X,Y,dW}
1y, = (a(t,m—é(bu)(t,m) dt
t

+b(t,Y;) <g AW} + /1 — g2 de) (3.12)
for0<t<T.

Taking contingent claims of the form H = h(X7r) for some given function A :
[0,00) — IR and using the Markov property we can rewrite (3.7) in the form

Vile") = Ep(h(Xr)|F)
— 0p(t, X, 1) (3.13)

for some function v (¢, z, y) defined on [0,7] x (0,00) x (0, 00). Subject to certain
regularity conditions we can show that v is the solution to the partial differential
equation

ovp obu\ vy 1 [ 5 5% 0% 0*vp
—_— - =+ = b 2 b =0 (3.14
8t+<a y)ay+2 TV g TV e TRV 505, (3.14)

on (0,7) x (0,00) x (0,00) with boundary condition
0p(T,2,) = h(z) (3.15)
for z,y € (0, 00).

Now it follows by application of the Ito formula together with (3.14) that

t
V(™) = Vo) + / o dX, + L, (3.16)
0
where
Ir avﬁ 0 81}13
= —L(t. X.,.Y, —L X.. Y, 1
o= S x v+ 55 (052 ) wox ) (3.17)
and

t R
Ll = /0 (b Vi@ 3;_;) (5, X, Yy) AW (3.18)



for0<t<T.

Using (3.6) and (3.18) we see that the conditional expected squared cost on the
interval [¢, T] for the locally risk-minimising strategy o' denoted by Rir, is given
by

B = E|(cn - )| 7]

- B _/tT (1- o) (b (%))2(5,)@,1@)@‘4 . (3.19)

4 Mean-Variance Hedging

In this section we consider an alternative approach to hedging in incomplete mar-
kets based on what is called mean-variance hedging. Intuitively the goal here is to
minimise the global risk over the entire time interval [0,7]. This contrasts with
local risk-minimisation which focuses on minimisation of the second moments of
cost increments.

With mean-variance hedging we allow strategies which do not fully replicate the
contingent claim H at time 7. However, we minimise the expected squared net
loss at time T given in the form

R = E ((H = Vr(9))*) (4.1)

over an appropriate choice of initiated value V; and hedge ratio ¥. The initial

value and hedge ratio which minimise this quantity is called the mean-variance

optimal strategy and is denoted by (Vy™V°,97*V°). For a more precise specification

of mean-variance hedging see Heath, Platen & Schweizer (ange).

Under suitable conditions it can be shown that there exists an ELMM P, the
so-called variance-optimal ELMM, such that the contingent claim H admits a de-
composition of the form

T
H = Hmvo 4 / £mvo gx, 4 [, (4.2)
0
where

H™° = Ep(H) (4.3)

and £™V° is a predictable square integrable process and L™V° is a square integrable
P-martingale with Li*V° = 0.

If we choose

t
o [ Lo, s
0



and
Ci@™°) = Hy™ (45)

for 0 <t < T, then with this interpretation we see that the cost process is constant.
In this sense our mean variance optimal strategy is self-financing. However, the
net loss at time 7' is given by

T
H - V(™) = H—HM™ -~ / IV dX,
0

= [mvo (4.6)

Under suitable conditions and with ¢ = 0 it can be shown that the variance optimal
measure P can be identified from its Radon-Nikodym derivative in the form

dpP __ rmvo
o5 =2, (4.7)
where
Zmvo exp (_ /t :U'(S’Y;) dWl _ /t Hvo dWZ
t 0 Y; s 0 s S
1/t M(S’Y:S’) 2+( mv0)2 d (4 8)
2 ), Y, Vg S .
with
vV =b(t,Y;) g—‘](t, Y;) (4.9)
Yy
and

J(t,y) = —log E

for t <t < T. Here we denote by Y'Y the volatility process that starts at time ¢
with value y and evolves according to the stochastic differential equation (2.1).

Applying the Feynman-Kac formula to the function exp(—.J) and using a transfor-
mation of variables back to the function J it can be shown that, under appropriate
conditions for a, b and pu, then J satisfies the partial differential equation

aJ  aJ 1,820 1.,[30J\° [(n\’
— ta— 4+ == —=p = Z) = 4.11
8t+a8y+2b o 2b (83/) + y 0 (4.11)

on (0,7) x (0,00) with boundary conditions

J(T,y) =0.

8



Assuming Z™V° is a P-martingale an application of the Girsanov transformation

shows that the processes W and W2 defined by

t
= Y
Wi =W} + / Hs ) o (4.12)
o Y
and
t
W2=WwW2+ / 9V ds (4.13)
0

for 0 <¢ < T, are independent Wiener processes under P. Hence with respect to
W1 and W? the system of stochastic differential equations (2.1) becomes

X, = X,Y,dW}

av, — [a(t, Y~ #(6,%) 52, Yo] at

+b(t,Y;) dW? (4.14)
for t <t <T. Note that we have assumed p = 0.

As in the case for local risk minimisation we consider European contingent claims of
the form H = h(Xr). For this type of payoff and again using the Markov property
we can express by (4.3) and (4.5) the initial value V5(¢™"°) in the form

VYo — HIWVO — E[H] = vj(0, Xo, Yo) (4.15)

for some function v3(t, z,y) defined on [0,7] x (0,00) x (0,00) such that
vp(t, X1, Ys) = Es[H | F. (4.16)

Subject to certain regularity conditions, it can be shown that v is the solution of
the partial differential equation

81)1—:, 2 oJ 61)13 1 9 2821)13 1 9 821)13
— b — | —= — —b =0 4.17
at+[“ ay] oy T2V a2 T3 5 (4.17)
on (0,7) x (0,00) x (0,00) with boundary condition
o5(T,2,) = h(z) (4.18)

for z,y € (0, 00).

Similar to the case for local risk minimisation we can apply the Ito formula com-
bined with (4.14) and (4.17) to obtain

t
vp(t, X0, Y3) = v(0, Xo, Yo) +/ gV g X, + LIVO, (4.19)
0



where

0vp
0= (5, X, V) (4.20)
and
mvo t ovp 7,9
L7 = — ) (s, X, Y5) AW (4.21)
0 Oy
fort <t <T.

Also, under suitable conditions, it can be shown that the conditional expected
squared net loss over the interval [¢, T, see (4.1), is given by

R™° =E /tT e (5:Ys) b’ (s,Y;) (%L;(S,Xs, Ys)>2 ds ‘ ft] . (4.22)
Furthermore, the mean variance optimal strategy (V3™V°,9™V°), is given by
Voo = v(0, Xo, Yo) (4.23)
and
oo = g+ BT (opte v - e - [omeax,). 2y

Thus in the case of mean variance hedging the optimal hedge ratio ¥™V° is in
general not equal to £™V° which is the integrand appearing in the decomposition
(4.2). This might not have been expected based on the results obtained for local
risk minimisation and is due to the fact that J9j"¥° has more the character of a
control variable.

Finally, in the case where P = P, so that vs = vp, and, again subject to certain
conditions, see Heath, Platen & Schweizer (ange), it can be shown that

RE =

T . 2
/ e 7Y (1 - %) (s,Ys) <88U—P(8,Xs, Ys)) ds ‘ ft] (4.25)
‘ )

which is similar to (4.22) but includes the case p # 0.

5 Some Specific Models

In this section we will consider the application of both local risk minimisation
and mean variance hedging to four stochastic volatility models. The purpose of
this study is to compare and also visualise results detained for the two hedging
approaches for the given models. This will provide insight into qualitative and
quantitative differences for the two quadratic hedging approaches.

10



Model Type Volatility Dynamics Y Appreciation Rate p

S1 Stein/Stein dY; =6 (8 — Y,) dt + k dW? ut,Y;) = AY,

S2 as above as above w(t,Yy) =7 Y2

dY? = k(0 — Y72) dt
H1 Heston +3Y, (0dW} p(t,Yy) = AY,

+ /1 — g2 dW}?)

dY? = k(0 — Y?) dt

\ p(t,Yy) = Y2
+ XY, dW;

H2 as above

Table 1: Model specifications.

The models which we examine are based on the Stein & Stein (1991) and Heston
(1993) type stochastic volatility models with two different specifications for the
appreciation rate function .

The four models with their specifications are summarised in Table 1. We assume
that the constants d, 3, k, k, #, ¥ are non-negative, with A and +y real valued and
o € [—1,1]. Note that non-zero correlation is allowed only for model H1. For the
Heston type models H1 and H2 a stochastic differential equation for the volatility
component Y can be obtained via Ito’s formula as follows:

4k(0—Y2) - X2 )
d}@:( at gyt) )dt—i-?(gthl—i-\/l—g?de). (5.1)
t

For models S1 and H1 it can be shown, see Heath, Platen & Schweizer (ange), that
P = P and that

J(t,y) = A*(T —t) (5.2)

for (¢t,y) € [0,T] x (0,00). Comparing (3.19) and (4.25) this means that

RM — E

0

T , 0V ?
[ a0 ey (a—;(s,xs, Ys)) ds]

> ¢ NTRE (5.3)

11



In addition it can be shown that the local risk minimising strategy is given by
(3.17).

In the next section we compute the local risk minimising strategies for both models
S1 and H1 based on the formulae (3.12), (3.14), (3.17), (3.19). We note that the
derivations and technical details provided in the papers Heath, Platen & Schweizer
(ange) and Schweizer (1991) do not fully cover the case of g # 0 for the model H1
that have also been included for comparative purposes in our study. However, the
numerical results obtained do not indicate any particular problems with this case.

For the models S2 and H2 it can be shown, see again Heath, Platen & Schweizer
(ange), that both the local risk minimising and mean-variance hedging strategies
exist for the case of a European put option. Note that for mean-variance hedging
existence of the optimal strategy is established only for a sufficiently small time
horizon 7T'. However in this case as well the numerical experiments have been
successfully performed for long time scales without apparent difficulties as will be
seen in the next section.

For the models S2 and H2 we have from (4.10) and Table 1 the function

Juw):—kgE[ap<~ﬁlqu?%%m>} (5.4)

Fortunately for both models this function can be computed explicitly, see again
Heath, Platen & Schweizer (ange). In the case of model S2 the function (5.4) here
denoted by the symbol Jg9 has the form

N

Tsa(t,y) = fo(T 1) + LT =) 7 + Ho(T ~1) 1. (5.5)
where
_ Ay e 2T
fZ(T) - by + = e 2nt )\’
1
= — -  ((2D-=D" —2mT __ 2D —2mT D
h(7) 1+2Amﬂ(( e ) + I

5 B (52 _1)) 2 D2 y(r)

2k2 \ 2 T 12090

52ﬂ 1 —-MT 1l —2mT 1l
+kv%<1+2w(r)<we _<D_5D)e )_ D+§D>>

with constants

_ 2
N Y 2 i W 7&D:%§(L—£>J7:é@<y—i)

2 7% k 71

folr) = %kgﬂ+2Awh»—<A+

12



and function

1—en7

wir) =~

The P dynamics for the volatility component Y can be obtained from (4.14) with
the formula

dJs2 fiT=t)  2f(T -1ty
—=(t,y) = : 5.6
S2,y) = 2O 22O (5.6
In model H2 the function (5.4) is denoted by Jyo and is given by the expression
Tra(t,y) = —log g(T —t) + (T — )" 7, (5.7)
where
2(ef" —1)

(T + k)(elr —1) + 2T’

N

T e 357 B
g(T) = ((F+/{,)(€FT—1)+2F) 3

' = /29232 + k2

Similarly the P dynamics for the volatility component Y can be obtained from

0Ju2

8—y(t’ y) = a(T —t) 2% y. (5.8)

For a justification of the approach using partial differential equations which is ap-
plied in the next section to all four combination of models, see (Heath & Schweizer
1998).

6 Computational Issues and Results

The purpose of this section is to compare actual numerical results for both hedging
approaches for the models previously introduced. Emphasis will be placed on ex-
periments which highlight differences in key quantities including prices, expected
squared total costs and hedge ratios. For the four models and two hedging frame-
works extensive experimentation has been performed with different parameter sets.
Only a small subset of these results can be covered in this paper. Nevertheless these
results indicate some crucial differences between the two approaches that might be
of more general interest. In total eight different hedging problems had to be solved
with corresponding numerical tools developed. For all numerical experiments con-
sidered here the contingent claim was taken to be a European put, see (2.3). This
ensures the payoff function A is bounded and avoids certain integrability problems.

13



To solve numerically the partial differential equations (3.14)—(3.15) and (4.17)—
(4.18) we employed finite difference approximations based on the Crank-Nicholson
scheme. Some experimentation was also performed using the fully implicit scheme.
To handle the two-dimensional structures appearing in (3.14) and (4.17) we used
the method of fractional steps or operator splitting. For a discussion on these and
related techniques, see Fletcher (1988) and Hoffman (1993).

Fractional step methods are usually easier to implement in the case where there
is no correlation in the diffusion terms, that is ¢ = 0, and thus the term in (3.14)

20~
corresponding to the cross-term partial derivative gw%’; is zero. In model H1 which
allows for non-zero correlation we obtained an orthogonalised system of equations

by introducing the transformation

U, = In(X,) — %yﬁ (6.1)

for 0<t<T and X > 0.

By Ito’s formula, together with (3.12) and (5.1) the evolution of U is governed by
the stochastic differential equation

) ) )
dU, = [(% - 5) Y2 - Qgﬂ] dt + Y, [(1 — ") dW} — 0/1 - QQde} (6.2)

for 0 <t < T. Using this transformation for a European put option with strike
price K, and subject to certain regularity conditions, we can apply the Kolmogorov
backward equation to obtain a transformed function u defined on [0, 7] x (0, 00) x
(0, 00) which is the solution of the partial differential equation

Oup N [(g/ﬁ 1)1@2_0’65] 5up+(4ﬁﬂ—22_my_gZA>%

ot X2 Dy oh 8y 2 2 oy
1 2 9 8u13 22 aula
——y*1-) =L +=F :

on (0,7) x (0,00) x (0,00) with boundary condition

ov*\\"
up(T, h,y) = <K — exp (h + ?)> ) (6.4)
In terms of the original pricing function vs we have the relation

2
oY
).

Uﬁ(t’l" y) = Up(t, ln(I) - Tay (65)

As noted previously for the model H1 we have P = P and the corresponding local
risk minimising and mean-variance prices are the same.

14



For the numerical experiments described in this paper the following default param-
eter values were used: X, = 100.0, Yy = 0.2, K =100.0, A = 0.5, v = 2.5, § = 5.0,
8=02,k=0.3, k=50 8=0.04, % =0.6 and o = 0.0.

To compute the expected squared costs on the interval [¢,T] given by (3.19) and
(4.22) respectively, we introduce the functions ¢I' and ¢™V° defined on [0,T] x
(0,00) x (0,00) given by

C(ty2,y) = (1— ) Bty ) (?j(t,x,w) (6.6)

and
mvo 2\ _—J(ty) 12 dvp ’
¢t x,y) = (1= 0°) e MY b2(t, y) 55@xw) (6.7)

for (¢t,z,y) € [0,T] x (0,00) x (0, 00).

Since R' = E ( ftT (s, X,,Y,) ds| .7-}) we can, assuming appropriate regularity

conditions, apply the Kolmogorov backward equation together with (2.1) to show
that there is a function 1" defined on [0, T] x (0, 00) x (0, 00) such that

r(t, X,,Y;) = BT

is the solution to the partial differential equation

arlr arlr 3T1r 1 ) o aQ,rlr aerr aerr 1
= b? 2zyb =0
ot TP Ty T \TY gz TV g Trvbeg g ) O
(6.8)
on (0,7) x (0,00) x (0,00) with boundary condition
rlr(T,x, y)=0 (6.9)

for (z,y) € (0,00) x (0,00). Since R{™° = FE (ftT ¢™O(s, X, Ys) ds | .7-',:) a com-

pletely analogous result holds for the function r™¥° with (™V° replacing ¢ in
(6.8).

Here we have used the system of equations (2.1) because for both hedging ap-
proaches the expected squared costs are computed under the real-world measure
P. Note that for numerical solvers applied to (6.8) together with (6.9) the solu-
tions to the pricing functions v and v need to be pre-computed or at least made
available at the current time step. For the model H1 with g # 0 the transformed
variable Uy, see (6.1), can be introduced to obtain orthogonalised equations for
both hedging approaches, as has been explained for the pricing function vp.

To illustrate the difference in expected squared costs (RI¥ — R0 over the time
interval [0, T'] we show in Figure 1 for the model H1 these differences using different
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Figure 1: Expected squared costs differences (RX — R™¥°) for the model HI.

values for the correlation parameter o and time to maturity 7. The absolute values
of expected squared costs increase as 71" increases. For 7" = 1.0 and o = 0.0 the
computed values for prices and expected squared costs were Vo(goh") = Vo(p™¥0) =
7.691, RY = 4.257 and R™° = 3.685. For T'= 1.0 and p = —0.5 the computed
values were Vo(¢!") = Vo(¢™¥°) = 10.662, RY = 4.429 and R™° = 3.836. Both
RY and R™° tend to zero as || tends to 1 as can be expected from equations
(3.19) and (4.24).

For increasing time to maturity 7" our numerical results indicate that R§*"° tends to
zero. This observation is highlighted in Figure 2 which displays both Ry and R§*"°
over the time interval [0,100]. In this sense the market can be considered as being
“asymptotically complete” with respect to the mean-variance criterion. Similar
results which raise important questions concerning asymptotic completeness are
obtained for the other models H1, S2 and H2.

For the models S2 and H2 the quadratic drift specifications, see Table 1, mean that
P # P and consequently different prices are usually obtained for the two distinct
measures and hedging strategies. Figure 3 illustrates these price differences for the
model H2 using different values for time to maturity 7' and moneyness In(32).

For at the money options typical price differences of the order of 2-3% were ob-
tained. For example, with input values 7' = 1.0 and Xy = K = 100.0 the computed
prices were Vy(¢l') = 7.6945 and Vp(¢™¥°) = 7.892. However for T = 1.0 and
In(£2) = 0.3 the estimated prices were Vo(¢) = 0.764 and Vy(¢™°) = 0.848. For
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all data points computed local risk minimisation prices were less than correspond-
ing mean-variance prices, hence the differences shown in Figure 3 are negative.
This means that for the parameter set and model considered there is no obvious
best candidate when choosing between the two hedging approaches. Mean-variance
hedging delivers lower expected squared costs but it also results in higher prices.

We will now consider the computation of hedge ratios 9" and 9™ for local risk
minimising and mean-variance hedging given by (3.17) and (4.23), respectively.
Our aim will be to obtain approximate hedge ratios at equi-spaced discrete times
0=ty <ty <...<ty =T with step size t; — t;_; = % fori € {1,...,N} using
simulation techniques. Noting the form of (3.17) and (4.23) it is apparent that
the price functions v and vp need to be pre-computed in order to calculate hedge
ratios.

Once vp and vp are determined, say on a discrete grid by a numerical solver, the
partial derivatives appearing in (3.17) and (4.23) can be approximated using finite
differences.

To simulate via a Monte-Carlo method a given sample path for the vector (X,Y)
under the measure P, an order 1.0 weak predictor-corrector numerical scheme, see
Kloeden & Platen (1999), was applied to the system of equations (2.1) to obtain
a set of estimates (X;,,Y;,) for (X;,,Y;,) for i € {0,...,N} with X; = X, and
Y, = Y,. From these a set of approximate values for the hedge ratio 191r and

integrand Emvo, i € {0,..., N} which correspond to 191r and £V respectlvely, can
be obtained. One problem w1th this procedure is that the set of points (¢;, X4, V3,)
for i € {0,..., N} may not lie on the grid used to compute vs and vp. This
difficulty can be overcome by the application of multi-dimensional interpolation

methods.

The estimates 9"V°, i € {0,..., N} for the mean variance hedge ratio can now be
obtained from the Euler type approximation scheme

> -1

: (i, Vi, o _

IO — FIvO 7)% Ytg) (vls(ti,Xti,Yt)—vP (0, Xo, Yo) — § EO(Xy,,, — th)>
i Tt

(6.10)

for i € {1,...,N}. In the case of the models $2 and H2 we have P # P. In
general thls means that vp # vp and BUP #* a;f and consequently it follows from

(3.17), (4.20) and (4.23) with p =0 that for the initial hedge ratios Jif # 9gV°. For
models S1 and H1, since vp = v, we then get equal initial hedge ratios 19}{ = 9§e.
This equality does not in general hold for t € (0,T).

Figure 4 and 5 plot the linearly interpolated hedge ratios 19}/{ and 192“’0, i €
{0,..., N} for a European put option for model S2. Figure 4 displays hedge ratios
for a sample path ending in-the-money whereas Figure 5 shows hedge ratios for
a different sample path ending out-of-the-money. The trajectories for X /100 and
Y for both sample paths are illustrated in Figure 6. Note that the mean variance
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hedge ratio takes values in the interval (0, —1) at maturity. This indicates that
there is no full replication of the contingent claim.

In the case of the linear drift models S1 and H1 the factor “)%7%5) appearing in
(6.10) becomes 2. This factor becomes <L~ for the quadratic drift models S2

X: Yi X:
and H2. For the gizven default parameter set the approximate volatility values
Y, i € {0,...,N} can become quite small. Consequently for the linear drift
models large fluctuations in the mean variance (compared to local risk) hedge
ratios can occur. Simulation experiments have shown that these differences are not
so apparent for the quadratic drift models.

7 Conclusion

This paper documents some of the differences between local risk minimisation and
mean variance hedging for some specific stochastic volatility models. Over long
time periods it seems that the mean variance criterion leads to a form of asymptotic
completeness which is not the case for local risk minimisation. For the models S2
and H2 mean variance hedging delivered lower expected squared costs but high
prices. The results described in this paper raise a number of interesting theoretical
and practical questions for future research.
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