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Abstract: This paper discusses some properties of general asset prices in contin-

uous time. We introduce the concept of a martingale density which is a generaliza-

tion of an equivalent martingale measure, and we show that absence of arbitrage

plus some technical conditions implies the existence of a martingale density. This

is in turn already sufficient to derive a recent result of Back (1990) on local risk

premia for asset returns. As an application, we obtain a simple condition, valid

in arbitrary information structures, for the drift part of discounted security gains

to be absolutely continuous with respect to the variance process of the martingale

part.
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0. Introduction

Most papers on continuous-time finance rely on two basic assumptions: asset price

processes are continuous (or even Itô processes), and there exists an equivalent

martingale measure or risk-neutral probability measure which determines security

prices as expected discounted pay-outs. The purpose of this paper is to explore

the extent to which one can relax these assumptions while still preserving nice

properties of asset prices. An important step in this direction was recently taken

by Back (1990). He showed that one can allow security gains to be special semi-

martingales and still obtain a CAPM-like formula for local risk premia if one has

an equivalent martingale measure. In particular, continuity of asset prices can be

dispensed with. We generalize Back’s result by introducing the notion of a mar-

tingale density . Given a security gains process G, a martingale density for G is

a local martingale Z with Z0 = 1 such that the product of Z and the discounted

gains process G̃ is a local martingale. In the special case where Z is a strictly

positive martingale and the product is a true martingale, Z obviously determines

an equivalent martingale measure. We show that the existence of a strictly posi-

tive martingale density is already sufficient to obtain Back’s theorem, and we also

establish a converse result. Furthermore, we derive results on the structure of asset

prices satisfying a mild integrability condition and admitting a strict martingale

density.

The paper is structured as follows. In section 1, we describe the basic model

and introduce the concept of a martingale density. Using results of Ansel/Stricker

(1991), we show that a suitable formulation of absence of arbitrage implies that

security gains must be special semimartingales, a property which was simply as-

sumed by Back (1990). Under some additional nondegeneracy and integrability

assumptions, we then prove that a martingale density Ẑ for G exists. In fact, we

can even give a fairly explicit formula for Ẑ in terms of quantities related to the

semimartingale decomposition of G.

Section 2 then contains applications of martingale densities. Throughout that

section, we suppose that the gains process is a special semimartingale, the justifi-

cation being provided by the results in section 1. First we derive Back’s formula for

local risk premia from the assumption that G admits a strictly positive martingale

density. By systematically using Yoeurp’s lemma, we can also give a simplification

of the original proof and establish a converse result. This shows in particular that

Back’s formula can be interpreted as a characterization of martingale densities.

As an application, we prove that existence of a strictly positive martingale density

plus a weak integrability condition implies that asset prices must have a certain

structure: the drift part of the discounted gains process must be absolutely contin-

uous with respect to the variance process of the martingale part. For a Brownian

filtration, this means that discounted gains must be Itô processes if there exists
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a strictly positive martingale density. This is a generalization of results of Huang

(1985a, 1985b) who worked with an equivalent martingale measure. Finally, we

give a characterization of martingale densities Z in terms of an equation which Z

must satisfy. Under the same nondegeneracy and integrability assumptions used in

section 1, we furthermore provide a parametrization of all locally square-integrable

martingale densities by the set of all locally square-integrable local martingales R

which are orthogonal to M̃ , the martingale part of the discounted gains process

G̃. This extends previous results of several authors who only considered the case

of a Brownian filtration.

1. Existence of martingale densities

We start essentially from the same basic model for securities as in Back (1990).

This model was introduced by Harrison/Pliska (1981) and extended by Huang

(1985b) to include interim cash payments. We refer to Back (1990) for the under-

lying motivation and to Dellacherie/Meyer (1982), hereafter abbreviated as D/M,

for precise definitions of the probabilistic concepts. The uncertainty is described

by a probability space (Ω,F , P ) with a filtration IF = (Ft)0≤t≤T satisfying the

usual conditions of right-continuity and completeness. T > 0 denotes a fixed time

horizon. There are d + 1 securities. One of these, denoted by Y = (Yt)0≤t≤T ,

is assumed to be locally riskless in the sense that it has continuous paths of fi-

nite variation. Furthermore, Y is strictly positive and normalized to have Y0 = 1.

The remaining d risky securities are described by their ex-dividend price processes

Si = (Sit)0≤t≤T and their cumulative cash pay-outs Di = (Di
t)0≤t≤T . We assume

that both S and D are adapted processes with right-continuous trajectories having

left limits. The corresponding gains process is then G = S+D and the discounted

gains process G̃ is given by

G̃t =
St
Yt

+

t∫

0

1

Yu
dDu , 0 ≤ t ≤ T. (1.1)

We remark that the second term in (1.1) is defined by partial integration as

t∫

0

1

Yu
dDu :=

Dt

Yt
−D0 +

t∫

0

Du−
Y 2
u

dYu (1.2)

and thus requires no additional assumptions on D. Note also that (1.1) and

(1.2) imply that G is a (special) semimartingale if and only if G̃ is a (special)

semimartingale.
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It is well known that the absence of arbitrage opportunities is essentially equiv-

alent to the existence of an equivalent martingale measure Q for G̃. We say “essen-

tially” because this statement depends on the precise definition of an arbitrage op-

portunity; see Kreps (1981), Back/Pliska (1991), Dalang/Morton/Willinger

(1990), Stricker (1990) for more detailed discussions of this problem. An equiva-

lent martingale measure Q for G̃ is a probability measure which is equivalent to

P (i.e., Q and P have the same null sets), satisfies Q = P on F0 and has the

property that G̃ is a martingale with respect to Q. The equivalence of Q and P

implies that the Radon-Nikodym derivative ZT := dQ
dP exists and defines a strictly

positive martingale Z with Z0 = 1 by

Zt := E[ZT |Ft] =
dQ

dP

∣∣∣∣
Ft

, 0 ≤ t ≤ T.

The martingale property of G̃ under Q is then equivalent to saying that the product

G̃Z is a P -martingale. The process % = Z
Y is called a state price density . This

discussion motivates the following

Definition. A local P -martingale Z with Z0 = 1 is called a martingale density

for G̃ if the process G̃Z is a local P -martingale. Z is called a strict martingale

density if, in addition, Z is strictly positive. In both cases, the process % := Z
Y is

called a generalized state price density .

Remarks. 1) Being a nonnegative local martingale, a strict martingale density

Z is always a supermartingale. It is a (uniformly integrable) martingale if and

only if E[ZT ] = 1. There are quite general results on sufficient conditions for this

(see Jacod (1979), chapter VIII-2), but these conditions are often rather restrictive

or hard to verify. Furthermore, there are quite natural situations where one has

a strict martingale density, but no equivalent martingale measure. For instance,

Cheng (1991) and Elliott/Kopp (1991) study this problem for Brownian bridge

processes. Another class of examples is provided by models with an infinite time

horizon; see Foldes (1989).

2) Let Z be a strict martingale density and set dQ = ZT dP . Then Q is

obviously a measure with the same null sets as P . In general, however, Q is only

a sub-probability, i.e., Q[Ω] ≤ 1; Q is a probability if and only if Z is a uniformly

integrable martingale. But many properties with respect to Q can be reformulated

in terms of Z and P alone, and these formulations still make sense for Q[Ω] < 1.

For instance, we have just seen that the (local) martingale property of G̃ under Q

corresponds to G̃Z being a (local) P -martingale. We shall illustrate in section 2

how the use of martingale densities instead of martingale measures leads to very

general and yet quite elegant formulations.

3) Notice that in contrast to Back (1990), we do not assume so far that G

(or S, or D) is a semimartingale. We shall see in Proposition 1 that this property
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follows for G from a no-arbitrage condition. For S and D, however, no specific

assumptions (except adaptedness and right-continuous trajectories with left limits)

will be required in the paper. It is also worth pointing out that the existence of

a strict martingale density Z for G implies that G is a semimartingale. In fact,

this follows immediately from the fact that G̃Z is a local martingale and 1
Z is a

semimartingale.

Our goal is now to show that the absence of arbitrage opportunities, combined

with a technical condition on G, implies the existence of a martingale density Z for

G. To make this more precise, we need some notation. Following Ansel/Stricker

(1991), we define an elementary predictable process H = (Ht)0≤t≤T to be a process

of the form

Ht =

n−1∑

i=0

ξiI(ti,ti+1](t)

for some n ∈ IN , where 0 ≤ t0 < t1 < . . . < tn ≤ T and each ξi is an IRd-

valued Fti -measurable random variable. Intuitively, H corresponds to a trading

strategy which consists of holding the portfolio ξi during the time interval (ti, ti+1].

The discounted trading gains generated by this strategy are then given by the

“elementary stochastic integral”

(
H · G̃

)
T

:=
n−1∑

i=0

(
ξi, G̃ti+1

− G̃ti
)

where we write (·, ·) for the scalar product in IRd. We denote by K the set of all

random variables
(
H · G̃

)
T

where H runs over all bounded elementary predictable

processes and by K the closure of K in L1(P ). Finally, L1
+(P ) is the set of all

nonnegative integrable random variables on (Ω,F , P ).

Definition. We say that G admits no arbitrage opportunities if

K ∩ L1
+(P ) = {0}. (1.3)

This condition was introduced by Stricker (1990) who proved the following result:

If G̃ is a continuous adapted IRd-valued process with G̃t ∈ Lp(P ) for all t ∈ [0, T ]

and some p ∈ [1,∞), then the property

Kp ∩ Lp+(P ) = {0}

(with
p

denoting closure in Lp(P )) is equivalent to the existence of an equivalent

martingale measure Q for G̃ with dQ
dP ∈ Lq(P ), where 1

p + 1
q = 1. The case p =∞

was recently solved by Delbaen (1991). For general (not necessarily continuous)

asset prices, we have the following result by Ansel/Stricker (1991).
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Proposition 1. Suppose that G admits no arbitrage opportunities and that

sup
0≤t≤T

|G̃t| ∈ L2(P ). Then G̃ is a special semimartingale with canonical decompo-

sition

G̃ = G̃0 + M̃ + Ã, (1.4)

where for each component i = 1, . . . , d, M̃ i is a locally square-integrable local

martingale under P with M̃ i
0 = 0, and

Ãit =

t∫

0

α̃iu d〈M̃ i〉Pu , 0 ≤ t ≤ T (1.5)

for a predictable process α̃i satisfying

T∫

0

(
α̃iu
)2
d〈M̃ i〉Pu <∞ P − a.s.

(As a matter of fact, Ansel/Stricker (1991) state and prove this theorem for d = 1,

but their proof still works for d > 1 if one argues separately for each component.)

We can use the preceding result to give an existence theorem for martingale

densities. Under the assumptions of Proposition 1, set

Bt :=
d∑

i=1

〈M̃ i〉Pt , 0 ≤ t ≤ T,

σijt :=
d〈M̃ i, M̃ j〉Pt

dBt
, 0 ≤ t ≤ T, i, j = 1, . . . , d,

γit := α̃itσ
ii
t , 0 ≤ t ≤ T, i = 1, . . . , d.

Let * denote transposition, L2
loc(M̃) the set of all predictable IRd-valued processes

λ such that
∫
λ∗uσuλu dBu is locally integrable, M2

loc,0(P ) the set of all locally

square-integrable local martingales under P starting from 0, and ∆M̃t := M̃t−M̃t−
the jump of M̃ in t ∈ [0, T ]. For every λ ∈ L2

loc(M̃), the stochastic integral∫
λu dM̃u is well-defined and inM2

loc,0(P ); see Jacod (1979), chapter IV-2. Finally,

the stochastic exponential E(X) of a semimartingale X is the solution U of the

stochastic differential equation

Ut = 1 +

t∫

0

Us− dXs.



           

7

Theorem 2. Suppose that G admits no arbitrage opportunities and that

sup
0≤t≤T

|G̃t| ∈ L2(P ). Suppose also that

the matrix σt(ω) is invertible for P ×B-a.e. (ω, t) ∈ Ω× [0, T ] (1.6)

and

the process λ̂t := σ−1
t γt, 0 ≤ t ≤ T , is in L2

loc(M̃). (1.7)

Then Ẑ := E
(
−
∫
λ̂ dM̃

)
is a martingale density for G. Ẑ is a strict martingale

density if and only if

λ̂t∆M̃t < 1 P − a.s. for every t ∈ [0, T ].

Proof. Since Ẑ is locally square-integrable by (1.7), the first assertion follows im-

mediately from Proposition 5. The second is a direct consequence of the properties

of the stochastic exponential; see Protter (1990).

q.e.d.

Remark. Intuitively, the nondegeneracy condition (1.6) means that there are no

redundant assets. The idea for such a condition is taken from Karatzas/Lehoczky/

Shreve/Xu (1991).

2. Applications

In this section, we give some applications of martingale densities. First of all, we

generalize a theorem of Back (1990) on local risk premia. Then we show that

under a weak integrability condition, the existence of a martingale density implies

that asset prices must have a certain structure. This can be used to generalize

results of Huang (1985a, 1985b). Finally we provide a characterization and a

parametrization of martingale densities.

Throughout this section, we shall assume that the gains process G = S + D

is a special semimartingale with canonical decomposition

G = G0 +M +A, (2.1)

where the local martingale M and the predictable finite-variation process A both

have initial value 0. This assumption can be justified by Proposition 1. By (1.2)

and Itô’s lemma, the discounted gains process G̃ is then also a special semimartin-

gale whose canonical decomposition G̃ = S0 + M̃ + Ã is given by

M̃t =

t∫

0

1

Yu
dMu, (2.2)

Ãt =

t∫

0

1

Yu
dAu −

t∫

0

Su−
Y 2
u

dYu.
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We recall from Back (1990) the definition of the covariance process of two special

semimartingales U = U0 + MU + AU and V = V0 + NV + BV : If the product

MUMV is a special semimartingale, then

〈U, V 〉t := U0V0 + 〈MU ,MV 〉Pt +
∑

0≤s≤t
∆AUs ∆AVs , (2.3)

where 〈MU ,MV 〉P is the usual sharp bracket process from martingale theory

(D/M, VII.39) and ∆AUs = AUs −AUs− is the jump of AU at time s.

Theorem 3. a) Let Z be a strict martingale density for G and % the corre-

sponding generalized state price density. If M% is a special semimartingale, then

t∫

0

dAiu
Siu−

−
t∫

0

dYu
Yu

= −
t∫

0

d〈Gi, %〉u
Siu−%u−

P − a.s. (2.4)

for all t ∈ [0, T ] and i = 1, . . . , d.

b) Conversely, let Z be a local P -martingale with Z0 = 1 and % = Z
Y . If (2.4)

holds, then M% is a special semimartingale and Z is a martingale density for G.

Proof. 1) Let us first prove the direct half a). We start by noting that [Z, Ãi] is

a local P -martingale by Yoeurp’s lemma (D/M, VII.36). Thus, the product rule

(D/M, VIII.18)

d(ZÃi) = Z− dÃ
i + Ãi− dZ + d[Z, Ãi]

shows that ZÃi is a special semimartingale. Since Z is a martingale density, this

implies that ZM̃ i = ZG̃i−ZSi0−ZÃi is also special so that 〈Z, M̃ i〉P exists. Now

we apply the product rule and (2.2) to obtain

d(G̃iZ) = G̃i− dZ + Z− dG̃
i + d[Z, G̃i]

= G̃i− dZ + Z− dM̃
i + d[Z, Ãi] + d[Z, M̃ i]− d〈Z, M̃ i〉P

+
Z−
Y

dAi − Z−Si−
Y 2

dY + d〈Z, M̃ i〉P

= local P -martingale +

(
Z−
Y

dAi − Z−Si−
Y 2

dY + d〈Z, M̃ i〉P
)
,

again using Yoeurp’s lemma. But since G̃iZ is also a local P -martingale, the last

term, being predictable and of finite variation, must vanish identically. This shows

that we always have

dAi

Si−
− dY

Y
= −Y d〈Z, M̃

i〉P
Si−Z−

= −d〈Z, M̃
i〉P

Si−%−
. (2.5)
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2) To conclude the proof of a), we now identify the numerator on the right-

hand side of (2.5). Since M i% is special by assumption, so is M iZ = M i%Y by the

product rule. Thus 〈M i, Z〉P exists. Furthermore,

d% = d

(
Z

Y

)
=

1

Y
dZ − Z−

Y 2
dY

yields by (2.3) and the continuity of Y

d〈Gi, %〉 = d

〈
M i,

∫
1

Y
dZ

〉P

=
1

Y
d〈M i, Z〉P

= d

〈∫
1

Y
dM i, Z

〉P

= d〈M̃ i, Z〉P ,

and combining this with (2.5) proves (2.4).

3) To prove the converse half b), we use the product rule, (2.2), (2.4) and

Yoeurp’s lemma to obtain

d(G̃iZ) = G̃i− dZ + Z− dM̃
i +

Z−
Y

dAi − Z−Si−
Y 2

dY + d[Z, M̃ i] + d[Z, Ãi]

= local P -martingale + d[Z, M̃ i] +
Z−Si−
Y
·
(
dAi

Si−
− dY

Y

)

= local P -martingale + d[Z, M̃ i]− d〈Gi, %〉.

If we can show that M i% is special, part 2) of the proof will imply that 〈Z, M̃ i〉P ex-

ists and equals 〈Gi, %〉, thus proving G̃iZ to be a local P -martingale. But the valid-

ity of (2.4) implies in particular the existence of 〈Gi, %〉, and therefore M i ·
∫

1
Y dZ

must be special by (2.3). Thus

M i% = M i ·Z
Y

= M i ·
∫

1

Y
dZ −M i ·

∫
Z−
Y 2

dY

is also special.

q.e.d.

Remarks. 1) The direct half of Theorem 3 generalizes a result of Back (1990)

who proved (2.4) assuming the existence of an equivalent martingale measure.

Working instead with martingale densities allows us to avoid additional integra-

bility conditions. Furthermore, the systematic use of Yoeurp’s lemma has led to a

simplification of the original proof.
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2) Back’s interpretation of (2.4) is that it describes the local risk premium

dAit
Sit−
− dYt

Yt
of a security as the negative covariance of that security’s relative price

change with the relative change in the state price density, −d〈G
i, %〉t

Sit−%t−
. Combining

a) and b) of Theorem 3, we see that (2.4) is also essentially equivalent to the local

martingale property of G̃Z under P and thus can be interpreted as an alternative

characterization of martingale densities.

As an application of Theorem 3, we deduce the following structure result for

asset prices:

Proposition 4. Suppose that Z is a strict martingale density for G and that M

and Z are both locally square-integrable. Then each Ãi is absolutely continuous

with respect to 〈M̃ i〉P , i.e.,

Ãit =

t∫

0

α̃iu d〈M̃ i〉Pu , 0 ≤ t ≤ T (2.6)

for some predictable process α̃i ∈ L2
loc(P × 〈M̃ i〉P ).

Proof. Combining (2.2) and (2.5) yields

dÃi =
Si−
Y
·
(
dAi

Si−
− dY

Y

)
= −d〈Z, M̃

i〉P
Z−

.

But since Z and M̃ i =
∫

1
Y dM

i are both locally square-integrable, the Kunita-

Watanabe projection theorem (D/M, VIII.52) implies that

d〈Z, M̃ i〉P = ζi d〈M̃ i〉P

for some predictable process ζi ∈ L2
loc(P × 〈M̃ i〉P ). Since 1

Z−
is locally bounded,

(2.6) clearly holds with α̃i = − ζi

Z−
.

q.e.d.

Remark. Proposition 4 can be viewed as a sort of converse to Theorem 2 where we

used the absolute continuity of Ãi with respect to 〈M̃ i〉P to construct a martingale

density. Note also that the basic assumption is the local square-integrability of M i

(or equivalently M̃ i). This condition is indispensable for the existence of 〈M i〉P
or 〈M̃ i〉P ; see Yoeurp (1976). In view of the results of Stricker (1990) mentioned

in section 1, local square-integrability of Z is then a quite natural assumption. In
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particular, these conditions are always satisfied if both M and Z are continuous

or have locally bounded jumps.

Example. Suppose that the filtration IF is generated by an n-dimensional Brown-

ian motion (β1, . . . , βn). Then it is well known that every local martingale of IF is

a sum of stochastic integrals with respect to β1, . . . , βn and in particular continu-

ous, hence locally bounded. If we now assume the existence of a strict martingale

density Z (which is weaker than the existence of an equivalent martingale measure

Q), Proposition 4 implies that Ãi ¿ 〈M̃ i〉P . But since M̃ i is a sum of stochastic

integrals of Wiener processes, 〈M̃ i〉P is absolutely continuous. Hence we deduce

that the discounted gains process G̃ must be an Itô process of the form

dG̃it =
n∑

j=1

ϑijt dβ
j
t + µit dt , i = 1, . . . , d (2.7)

for some predictable processes ϑij and µi. Thus, we are led in a very natural way

to the standard diffusion model used in this situation. In particular, the existence

of a strict martingale density Z rules out the rather nasty possibility that the drift

terms Ãi could be continuous processes of finite variation which are not absolutely

continuous. See Harrison/Pitbladdo/Schaefer (1984) for an illustrative example of

such a process.

Remarks. 1) This example generalizes results of Huang (1985a, 1985b) who

assumed the existence of an equivalent martingale measure. It should be pointed

out here that the preceding structure results depend crucially on the absence

of consumption over time. For a detailed study of how agents’ preferences over

temporal consumption patterns affect the behaviour of asset prices in the absence

of arbitrage opportunities, we refer to Hindy/Huang (1989).

2) Note that absolute continuity of Ã does not necessarily imply absolute

continuity of A. In fact, since

At =

t∫

0

Yu dÃu +

t∫

0

Su−
Yu

dYu

by (2.2), this implication is only true if the riskless asset Y is itself absolutely

continuous. See Karatzas/Lehoczky/Shreve (1990) for an example of a situation

where discounted gains are Itô processes, but gains themselves are not.

So far, we have discussed some implications of the existence of a strict mar-

tingale density. Now every equivalent martingale measure Q for G̃ gives rise to a

strict martingale density Z, and it is well known that there is a unique equivalent

martingale measure if and only if we have a complete model; see Harrison/Pliska
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(1981, 1983) and Jarrow/Madan (1990). It is therefore of interest to characterize

martingale densities in more detail, and this is the objective of the next result.

Proposition 5. Suppose that G̃ = S0 + M̃ + Ã is a special semimartingale with

M̃ ∈M2
loc,0(P ) and

Ãit =

t∫

0

α̃iu d〈M̃ i〉Pu , 0 ≤ t ≤ T, i = 1, . . . , d (2.7)

with α̃i ∈ L2
loc(P × 〈M̃ i〉P ) for each i.

a) Z is a martingale density for G if and only if for each i = 1, . . . , d, there

exists a local martingale N i with N i
0 = 0 and orthogonal to M̃ i (i.e., N iM̃ i is a

local martingale) such that Z satisfies the equation

Zt = 1−
t∫

0

Zu−α̃
i
u dM̃

i
u +N i

t P − a.s. (2.8)

for all t ∈ [0, T ].

b) Suppose in addition that (1.6) and (1.7) are satisfied. Then Z is a mar-

tingale density and locally square-integrable if and only if Z satisfies

Zt = 1−
t∫

0

Zu−λ̂u dM̃u +Rt P − a.s. (2.9)

on [0, T ] for some R ∈M2
loc,0(P ) orthogonal to M̃ .

Proof. 1) Let Z be any local martingale with Z0 = 1 and define the local

martingales N i (i = 1, . . . , d) by

N i
t := Zt − 1 +

t∫

0

Zu−α̃
i
u dM̃

i
u , 0 ≤ t ≤ T.

To prove a), we have to show that G̃iZ is a local martingale if and only if N iM̃ i

is a local martingale. To see that this is true, we use successively the product

rule, Yoeurp’s lemma, (2.7), the fact that
∫
Z−α̃i d[M̃ i] −

∫
Z−α̃i d〈M̃ i〉P is a

local martingale, the definition of N i and the fact that N iM̃ i− [N i, M̃ i] is a local
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martingale to obtain

d(G̃iZ) = G̃i− dZ + Z− dG̃
i + d[Z, G̃i]

= local P -martingale + Z− dÃ
i + d[Z, M̃ i]

= local P -martingale + Z−α̃
i d〈M̃ i〉P + d[Z, M̃ i]

= local P -martingale + Z−α̃
i d[M̃ i] + d[Z, M̃ i]

= local P -martingale + d[N i, M̃ i]

= local P -martingale + d(N iM̃ i).

2) Suppose that Z is a martingale density and locally square-integrable. By

the Kunita-Watanabe projection theorem, Z can be written as

Zt = 1 +

t∫

0

ζu dM̃u +R0
t , 0 ≤ t ≤ T (2.10)

with ζ ∈ L2
loc(M̃) and R0 ∈M2

loc,0(P ) orthogonal to M̃ . Now define the processes

ϑ := ζ + Z−λ̂ ∈ L2
loc(M̃) and R ∈M2

loc,0(P ) by

Rt := R0
t +

t∫

0

ϑu dM̃u , 0 ≤ t ≤ T.

Since Z then clearly satisfies (2.9) and R0 is orthogonal to M̃ , it only remains to

show that
∫
ϑ dM̃ is orthogonal to M̃ . To see this, we first compute

〈
M̃ i,

∫
ϑ dM̃

〉P
=

d∑

j=1

t∫

0

ϑju d〈M̃ i, M̃ j〉Pu

=

t∫

0

d∑

j=1

σiju ϑ
j
u dBu

=

t∫

0

(σϑ)iu dBu.

Thus we have to show that

σϑ = 0 P ×B-a.e. on Ω× [0, T ]

or equivalently

σζ = −Z−γ P ×B-a.e. on Ω× [0, T ]. (2.11)
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But since Z is a martingale density, successively applying the definition of γ, the

definition of σ, (2.8), (2.10) and again the definition of σ yields

−
t∫

0

Zu−γ
i
u dBu = −

t∫

0

Zu−α̃
i
uσ

ii
u dBu

= −
t∫

0

Zu−α̃
i
u d〈M̃ i, M̃ i〉Pu

= 〈Z, M̃ i〉Pt

=
d∑

j=1

t∫

0

ζju d〈M̃ j , M̃ i〉Pu

=

t∫

0

d∑

j=1

ζjuσ
ji
u dBu

=

t∫

0

(σζ)iu dBu P − a.s.

on [0, T ] and therefore (2.11).

3) Conversely, suppose that Z satisfies (2.9). If we define N i ∈M2
loc,0(P ) by

N i
t := Rt +

t∫

0

Zu−α̃
i
u dM̃

i
u −

t∫

0

Zu−λ̂u dM̃u,

we obviously have (2.8) and

〈N i, M̃ i〉Pt = 〈R, M̃ i〉Pt +

t∫

0

Zu−α̃
i
u d〈M̃ i〉Pu −

d∑

j=1

t∫

0

Zu−λ̂
j
u d〈M̃ j , M̃ i〉Pu

=

t∫

0

Zu−
(
γiu − (σλ̂)iu

)
dBu = 0

by (1.7), so N i is orthogonal to M̃ i.

q.e.d.

Remarks. 1) The idea for the proof of a) is taken from Ansel/Stricker (1991); a

previous version of this paper treated only the locally square-integrable case. Note

that equation (2.9) allows us to parametrize the set of all locally square-integrable
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martingale densities by the space R of all local martingales R ∈M2
loc,0(P ) which

are orthogonal to M̃ . For a Brownian filtration, results similar to b) have also

been obtained by He/Pearson (1990), Karatzas/Lehoczky/Shreve/Xu (1991) and

El Karoui/Quenez (1991).

2) A slightly more general form of equation (2.9) has been studied by Yoeurp/

Yor (1977). In particular, these authors show that (2.9) has a unique solution Z

(whose explicit expression is rather complicated) for given λ̂, M̃ and R. Since the

above reference is not easily accessible, we mention that this result is also proved

in chapter VI-1 of Jacod (1979).

The simplest case of equation (2.9) is of course the case R ≡ 0. The equation

then reduces to

Zt = 1−
t∫

0

Zu−λ̂u dM̃u , 0 ≤ t ≤ T

whose solution Ẑ is given by the stochastic exponential E
(
−
∫
λ̃ dM̃

)
which has

already appeared in Theorem 2. We shall call Ẑ the minimal martingale density

for G since it is in a sense the simplest martingale density: If we think of G and

Y as given, we also know the decomposition G̃ = S0 + M̃ + Ã and the processes

α̃i and σij appearing in (2.7) and (1.7), respectively. But clearly this is already

sufficient to construct Ẑ. Put differently, the exact knowledge of the second order

structure of G̃ is enough to determine Ẑ.

If Ẑ is not only a martingale density, but even a strictly positive square-

integrable martingale, dP̂ = ẐT dP defines an equivalent martingale measure P̂

for G̃ which is called the minimal equivalent martingale measure. P̂ has the prop-

erty that it preserves martingales: if L is a square-integrable P -martingale P -

orthogonal to M̃ , then L is also a P̂ -martingale. Thus, P̂ is minimal among all

equivalent martingale measures for G̃ in the sense that it turns G̃ into a martingale,

but preserves the remaining structure of the model. More details on these ques-

tions can be found in Föllmer/Schweizer (1991); Schweizer (1991a, 1991b) gives

applications to the problem of hedging contingent claims. Finally we mention that

for the case of a Brownian filtration, a similar concept was also studied by Pagès

(1989) and He/Pearson (1990).
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Henri Poincaré 26, 451–460
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