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0. Introduction

“I sometimes wonder why people still use the Black-Scholes formula, since it is based on such
simple assumptions — unrealistically simple assumptions” (Black (1990)). This well-known
formula expresses the (discounted) price uBS(t, St;K,T, σ) of a European call option as a
function of five parameters. The current time t and the current (discounted) stock price St
are observable, and so are the option’s characteristics, the (discounted) strike price K and
the expiration date T . The volatility σ is not observable, but one can numerically invert
the Black-Scholes formula to define the so-called implied volatility corresponding to a given
option price u(t, St;K,T ):

(0.1) u(t, St;K,T ) = uBS

(
t, St;K,T, σimpl(t, St;K,T )

)
.

If market prices were computed by the Black-Scholes formula, σimpl would be a constant
function. But many empirical studies show that this is not the case in real markets; see for
instance Rubinstein (1985), Fung and Hsieh (1991), the paper by Clewlow and Xu (1993)
which contains a comprehensive list of references, or Dumas et al. (1995). For fixed t, St, T ,
the graph of the mapping K 7→ σimpl(t, St;K,T ) is typically U-shaped: implied volatilities
“smile”. Moreover, this smile can be more or less lopsided; this is called “skewness”. It is also
generally acknowledged that the smile effect decreases with increasing time to maturity; see
for instance Rubinstein (1985), Clewlow and Xu (1993) or Derman and Kani (1994a,b). To
our knowledge, the nonlinearity was first explicitly pointed out by Shastri and Wethyavivorn
(1987); a colourful account and intuitive description is given by Hicks (1992).

Apart from a few papers on stock price models with jumps and apart from informal
suggestions along the lines of transaction costs, liquidity problems or fat tails in the stock
price distributions, the existing literature has predominantly focussed on directly modelling
volatility as a stochastic process in order to explain such option price distortions; see for
instance Hobson and Rogers (1994), Renault and Touzi (1996) or Taylor and Xu (1993). But
the description of the volatility, though always plausible, is typically ad hoc. Our approach
in the present paper concentrates instead on the criticism that “The formula assumes that
you can’t affect either stock or option prices by placing orders” (Black (1990)). We offer a
new explanation based on the idea that a substantial use of hedging strategies will affect the
dynamics of the underlying stock. Since our resulting model can formally still be viewed as a
stochastic volatility model, we start by briefly discussing a number of previous papers before
explaining our alternative approach.

0.1. Stochastic volatility models without an additional noise term

A first group of models in the literature describes stock prices by a stochastic differential
equation of the general form

(0.2)
dSt
St

= σt dWt + µt dt.

The important point here is that the stochastic processes (σt) and (µt) are assumed to be
adapted to the filtration IFW generated by W . Examples include the Constant Elasticity of
Variance (CEV) model of Cox and Ross (1976) investigated by Beckers (1980), the Displaced
Diffusion model of Rubinstein (1983) or the recently proposed model of Hobson and Rogers
(1994). The last paper also contains further references and a more detailed discussion of the
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various families of models. One big advantage of the specification (0.2) with (µt), (σt) IF
W -

adapted is the fact that under fairly weak assumptions, one obtains a complete market and
therefore unique option prices determined by arbitrage considerations alone. For a suitable
choice of (0.2), Hobson and Rogers (1994) show that these option prices can indeed exhibit
smile and skewness effects. From our point of view, however, this argument is still rather
unsatisfactory. Even if volatility evolves in a very plausible way (including dependence on
the current stock price level as well as the past values of stock prices and volatilities), it still
has to be modelled explicitly in this approach. There is no truly endogenous derivation of
the basic model, and so we feel that it does not really provide a deeper explanation for the
emergence of smile and skewness.

Other papers formally belonging to this group of models are those by Derman and
Kani (1994a,b) and Dupire (1994); see also Rubinstein (1994). They consider the stochastic
differential equation

(0.3)
dSt
St

= σ(St) dWt,

but their approach is completely opposite to the one above. Assuming that the prices of call
options are given for all strikes, they identify a unique function σ(s) such that the arbitrage-
free call option prices corresponding to (0.3) coincide with the given prices; this is very similar
in spirit to the construction of a term structure model of interest rates. The knowledge of the
volatility function σ(s) can then be used to price and hedge derivative securities other than
call options in a way that is consistent with the given smile pattern. Although this looks
very attractive, we think that it suffers from two drawbacks. From a theoretical point of
view, it does not explain smile or skewness at all; they are simply given facts. More seriously,
though, the method does not really appear to be feasible in practice, because a sufficiently
exact observation of call prices for sufficiently many strikes seems impossible in most real
options markets.

0.2. Stochastic volatility models with extra noise

A second group of models uses an additional stochastic process for the volatility; this typically
entails the introduction of at least one extra source of randomness, usually a second (possibly
correlated) Brownian motion. To quote a few papers in this area, we mention Hull and White
(1987, 1988), Stein and Stein (1991), Dupire (1993) and Heston (1993); a survey is given by
Clewlow and Xu (1992). The use of implied volatilities as forecasts for future volatilities in
such models is discussed by Stein (1989), Scott (1992) and Heynenet al. (1994), among others.
Quite recently, there have also been attempts to explain smile and skewness as consequences
of stochastic volatility. Renault and Touzi (1996) consider a generalized version of the model
proposed by Hull and White (1988) and show by theoretical arguments that qualitative smile
effects will appear under reasonable assumptions. For the case of the Hull and White (1988)
model, similar (but only approximate) results are obtained by Taylor and Xu (1993), Ball and
Roma (1994) or Heynen (1994); see also Paxson (1994) and Duan (1995) for related work.

Despite these advances, we think that all the preceding stochastic volatility models have
two serious disadvantages. They are unsatisfactory from a theoretical point of view, because
volatility is exogenously given by some stochastic process chosen more or less ad hoc. The
same criticism unfortunately also applies to the rich literature on ARCH models and their
various relatives. From a practical point of view, the existing results are unsatisfactory since
they can explain only a relatively small percentage of the observed smile effect. Clewlow
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and Xu (1992) mention that “empirically observed smile effects are typically characterized
by implied volatilities around 10% higher for away-from-the-moneyness of around 5%”, while
“the Hull and White (1988) model gives implied volatilities of only 1% higher for this level
of away-from-the-moneyness”. Taylor and Xu (1993) find that the magnitudes of empirical
smiles are approximately twice the magnitude of their theoretical smiles. They suggest that
this can be ascribed to market imperfections or violations of assumptions (e.g., continuity)
about the price process. Unfortunately, such an argument brings us back to the level of an
informal discussion.

In contrast to most previous papers, we do not model volatility explicitly. Since we
want to understand how hedging strategies and the underlying asset influence each other,
we start from a microeconomic equilibrium approach as in Föllmer (1991) and Föllmer and
Schweizer (1993). This allows us to develop a diffusion model for stock prices which explicitly
incorporates the technical demand induced by hedgers. In particular, we obtain a stochastic
volatility which is endogenously determined by the trading behaviour of the agents in our
economy. This part of the paper is closely related to Frey and Stremme (1995) who use
a similar approach to study the influence of portfolio insurance on the asset’s volatility, a
question which is also discussed in Grossman (1988) and Brennan and Schwartz (1989). But
in contrast to these authors, we then go on to examine the issue of implied volatilities.
Numerical results from our model exhibit clear smiles and skews whose magnitudes agree
very well with empirical observations. Thus we are able to quantitatively substantiate the
idea that option price distortions can be induced by feedback effects from hedging strategies .

Acknowledgements. It is a pleasure to thank Katrin Platen who devoted a lot of time and
effort to making the numerical simulations work. Thanks are also due to Glenn Kentwell and
Vincent Gesser for illuminating discussions. The detailed and constructive criticisms of two
referees prompted a major revision and led in particular to a more streamlined presentation
of our ideas. Part of this research was completed during a visit of the second author to
the Australian National University at Canberra. Financial support by Deutsche Forschungs-
gemeinschaft, Sonderforschungsbereich 303 at the University of Bonn, and by Bankers Trust
is gratefully acknowledged.

1. The basic model

This section presents a method for constructing asset price models in which one can study
how hedging strategies for derivatives interact with the evolution of the underlying financial
instruments. The general formulation is worked out in detail for one particular example
which yields our new explanation for smile and skewness. Basically, the idea is to obtain the
asset dynamics implicitly from the equilibrium condition of market clearing. This approach
is due to Föllmer (1991); it was subsequently taken up and refined in Föllmer and Schweizer
(1993), Föllmer (1994), Platen and Schweizer (1994), Frey and Stremme (1995) and Platen
and Rebolledo (1996). For different approaches to similar questions, see also Brennan and
Schwartz (1989), De Long et al. (1990), Grossman (1988), Jarrow (1994) and the references
in the papers mentioned above.

To keep the exposition as simple as possible, we consider a stylized economy in continuous
time t with just one risky asset. We call it stock, denote its time t price by St and write
Lt = logSt. There is also a riskless asset with zero interest rate so that S is actually the
discounted stock price. We work with L rather than S to simplify expressions. Agents in
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our economy are price-takers. Given a proposed log stock price ` at time t, let D(t, `, Ut)
denote their cumulative demand for stock up to time t, summed over all agents. The term
Ut here summarizes all other parameters except ` that may influence the demand for stock.
Typically, U will be a stochastic process that represents some noise; its main characteristic
is that it is either exogenous or at least not modelled in much more detail.

Stock prices in this economy are determined by the equilibrium condition of market
clearing ,

(1.1) D(t, Lt, Ut) = const. , t ≥ 0.

If we assume that L and U are continuous semimartingales and that D is sufficiently regular,
we can use the implicit function theorem and Itô’s formula to solve (1.1) for Lt and to obtain
the stochastic differential equation

(1.2) dLt = − 1

DL

(
DU dUt +Dt dt+

1

2

(
DLL

(
DU

DL

)2

− 2DLU
DU

DL
+DUU

)
d〈U〉t

)
.

In (1.2), subscripts of D denote partial derivatives, and the argument (t, Lt, Ut) has been
suppressed throughout. Details and regularity assumptions for this derivation can be found
in the appendix. Applying Itô’s formula to S = eL immediately yields the evolution of S.

In order to study feedback effects from derivatives on an underlying asset, we now have
to specify the demand D in more detail. Our subsequent approach can be viewed as a partial
equilibrium analysis in the following sense. In some large economy, derivatives written on our
stock may be valued, traded and hedged, thus inducing among other things a demand for
stock. But we are only interested in the evolution of our particular stock, and so we restrict
our attention to a sub-economy where only this single stock is traded. From that perspective,
options are not traded assets (in the small economy), and the demand for stock induced by
them can be viewed as exogenous (for the small economy). In particular, the total demand
for stock will only depend on the evolution of the stock price itself.

To see in an example how this works, let us consider the demand function

(1.3) D(t, Lt, Ut) = Ut + γ(Lt − L0) + ξ(t, Lt)

for some constant γ 6= 0, where

(1.4) Ut = vWt +mt

is a Brownian motion with drift m ∈ IR and variance v2 > 0. Each of the three components
of D has a natural interpretation. First of all, Ut represents a random error term whose
origin is not specified in more detail. Typical examples are noise, mis-specifications in the
model, a demand for liquidity purposes etc. The second component is the cumulative demand
of arbitrage-based agents or speculators; the parameter γ describes the way they react to
changes in (logarithmic) stock prices. Finally, the term ξ(t, Lt) can be viewed as the hedging
or technical part of the demand in the sense that it results from strategies used to hedge
options written on our stock. With this in mind, we shall presently describe ξ in more detail.

For the specification (1.3) of D with U as in (1.4), the model in (1.2) takes the form

(1.5) dLt = − v

γ + ξ′(t, Lt)
dWt −


m+ ξ̇(t, Lt)

γ + ξ′(t, Lt)
+

1

2

v2ξ′′(t, Lt)(
γ + ξ′(t, Lt)

)3


 dt,
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where ˙ and ′ denote partial derivatives with respect to t and `, respectively. In terms of S,
(1.5) can be written as

(1.6)
dSt
St

= σ(t, St) dWt + µ(t, St) dt

with

(1.7) σ(t, s) = − v

γ + ξ′(t, log s)

and

µ(t, s) = −


m+ ξ̇(t, log s)

γ + ξ′(t, log s)
− 1

2

v2

(
γ + ξ′(t, log s)

)2 +
1

2

v2ξ′′(t, log s)
(
γ + ξ′(t, log s)

)3


(1.8)

=
m+ ξ̇(t, log s)

v
σ(t, s) +

1

2
σ2(t, s) +

ξ′′(t, log s)

2v
σ3(t, s).

Let us now turn to the description of the hedging demand ξ. Our option hedgers are
assumed to be program traders working with a fictitious model S(0). For simplicity, we take
S(0) to be geometric Brownian motion,

(1.9)
dS

(0)
t

S
(0)
t

= σ0 dBt + µ0 dt

for some Brownian motion B. By assumption, then, our hedgers act according to the well-
known Black-Scholes formula with an a priori volatility σ0. This is of course a simplification,
and we shall comment below on its significance and the problems involved in relaxing it.

Consider first an individual European call option on a stock S with (contract) size V ,
strike price K and maturity T . The payoff at time T of this instrument is given by

(1.10) hcall(ST ) = V max(ST −K, 0) = V (ST −K)+

so that the size V simply represents the number of shares that can be bought at time T
for the price K. For a hedger working with the model (1.9), the hedging strategy for the
individual call in (1.10) is thus to hold at time t

(1.11) ξ̃call(t, `;V,K, T ) = V Φ

(
`− logK + 1

2σ
2
0(T − t)

σ0

√
T − t

)

shares of the underlying stock, where ` = logSt is the logarithm of the asset price at time t.
Since the left-hand side of (1.11) depends on t and T only via the time to maturity τ := T −t,
we write

(1.12) ξcall(`;V,K, τ) = ξ̃call(t, `;V,K, τ + t).

For a put option with the same parameters, the hedging strategy would be

ξput(`;V,K, τ) = ξcall(`;V,K, τ)− V
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by put-call parity. Since we shall only need the derivatives of ξ with respect to `, we can treat
calls and puts as equivalent for our purposes, and therefore we only work with call options
from now on.

The function ξ required in (1.3) is now obtained by summing the individual hedging
demands in (1.12) over all outstanding options. We shall assume that options are traded in a
liquid market with many agents or option contracts constantly entering or leaving the scene.
Intuitively, this means that we consider a stationary market in which we see at each date the
same distribution of outstanding options to be hedged. For concreteness, we shall work with
the specification

(1.13) ξ(`) =

M∑

i=1

N∑

j=1

ξcall(`;Vij ,Kij , τi) =
M∑

i=1

N∑

j=1

VijΦ

(
`− logKij + 1

2σ
2
0τi

σ0
√
τi

)

which means that we work with MN option series: At each point in time, there are M types
of outstanding (call) options with “typical” times to maturity τi, each subdivided into N
sub-types with sizes Vij and strikes Kij corresponding to τi. This kind of distribution is a
fairly good approximation to reality in an active options market. More generally, we could
describe our stationary market by specifying the total option exposure as a measure ν over
the space of triples (V,K, τ) and then defining ξ as the integral of ξ with respect to ν. This
formulation is due to Frey and Stremme (1995) and was also used in Platen and Schweizer
(1994); the special case (1.13) corresponds to ν being a finite sum of Dirac measures. Note
that the sizes Vij will typically be nonnegative; this reflects the fact that far more option
writers than buyers will hedge their positions.

The specification of ξ in (1.13) together with (1.3) and (1.4) induces via the equilibrium
condition (1.1) a new stock price model which we denote by S(1). According to (1.6) – (1.8),
S(1) is given by the stochastic differential equation

(1.14)
dS

(1)
t

S
(1)
t

= σ(S
(1)
t ) dWt + µ(S

(1)
t ) dt,

where W is some Brownian motion under P ,

(1.15) σ(s) = − v

γ + ξ′(log s)
.

and

µ(s) = −


 m

γ + ξ′(log s)
− 1

2

v2

(
γ + ξ′(log s)

)2 +
1

2

v2ξ′′(log s)
(
γ + ξ′(log s)

)3


(1.16)

=
m

v
σ(s) +

1

2
σ2(s) +

ξ′′(log s)

2v
σ3(s).

If the filtration is generated by S(1) or (equivalently) by W , then S(1) admits a unique
equivalent martingale measure. It removes the drift µ by a Girsanov transformation and this
leads directly to the description

(1.17)
dSt
St

= σ(St) dŴt
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for some Brownian motion Ŵ with respect to some measure P̂ . Uniqueness implies that S(1)

is complete, and so the familiar martingale approach suggests to define the value at time t of
a European call option with size V , strike price K and maturity T as

(1.18) u(t, s;K,T ) := V Ê
[
(ST −K)+

∣∣∣St = s
]

= V Ê
[(
St,sT −K

)+]
;

see for instance Harrison and Pliska (1981). In (1.18), St,s denotes as usual the solution
of (1.17) starting from stock price s at time t. For a general filtration, we typically lose
completeness, but we could then for instance refer to the argument in Hofmann et al. (1992)

to motivate the use of the minimal equivalent martingale measure P̂ . In both cases, we can
use the formula (1.18) as a proxy for option values.

At this point, a number of comments seems appropriate. We first want to emphasize
that the above approach to the construction of a stock price model is of course not limited to
the study of smile and skewness effects. It should rather be viewed as a flexible framework in
which one obtains an equilibrium price process from microeconomic specifications. These are
embodied in the choice of the demand D, and our present model is one particular example.
For ease of exposition, we have started directly with a continuous-time economy and (via the
argument in the appendix) an infinitesimal formulation for the market clearing condition. As
in Föllmer and Schweizer (1993) or Frey and Stremme (1995), one could also begin with a
discrete-time equilibrium model and derive (1.2) via a suitable diffusion limit. For the model
(1.14) – (1.16), this limiting approach is discussed in more detail in Platen and Schweizer
(1994).

From a conceptual point of view, the preceding approach derives a model S(k+1) from a
model S(k), where k has an intuitive significance as the level of sophistication of the agents
using hedging strategies. More precisely, one starts from a model S(k), uses this to compute
option values u(k) and hedging strategies ξ(k), and then employs an equilibrium argument
to derive a new model S(k+1). This new model takes into account the hedging induced by
the old one, and thus includes the feedback from already existing options. Ideally, hedgers
should therefore base their strategies not on S(0), but rather on a fixed point S(∞) of this
mechanism. Such a model S(∞) would a priori take into account the feedback effects of
hedging strategies on the underlying asset. However, this ideal solution is at present not
feasible for several reasons. For one thing, it is an open problem if the sequence (S(k))k∈IN
converges in some sense or if there exists a fixed point S(∞). The passage from S(0) to S(1) is
still possible because the constant volatility function σ(0)(s) ≡ σ0 in (1.9) permits a closed-
form expression for the strategy ξ(0) and therefore also for the next volatility function σ(1)

given by (1.15). At higher levels of iteration, this tractability is no longer present. Passing
from level k to k+ 1 requires the computation of the second derivative of the function u(k) to
obtain σ(k+1) via (1.15), and the currently available numerical methods are not sufficient to
guarantee the accuracy and stability required for a numerical iteration of such computations.
Our approach thus raises challenging theoretical and numerical problems well beyond the
scope of the present paper, and we plan to address these issues in the future.

The preceding discussion also illuminates the difference between our approach and the
work by Frey and Stremme (1995). They basically compare the two models resulting from
(1.6) – (1.8) when ξ is first omitted (their “reference model”) and then included (their “al-
ternative economy that includes portfolio insurance”). In contrast to that, we compare the
fictitious initial model S(0) (which is in general not the same as their reference model) to the
actually resulting model S(1). This implies in particular that in our framework, one cannot
draw conclusions by simply omitting one component of D in (1.3) and leaving all others
unchanged.
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The next comment concerns the sign of the parameter γ in (1.3) which describes the
way that arbitrageurs or speculators react to price changes in the underlying asset. The case
γ < 0 corresponds to impatient agents who want to take their profits immediately; they thus
react with selling orders to a rise in stock prices and vice versa. On the other hand, γ > 0
describes patient speculators who buy the stock after an increase in its value since they hope
for a further rise and thus a larger profit later on. We shall assume for the rest of the paper
that

(1.19) γ > 0,

and this deserves some more discussion.
In Frey and Stremme (1995), the authors study similar models; the assumptions made

there correspond to a negative γ. Moreover, they argue (against γ > 0) that “working with
an increasing demand function for the reference traders yields . . . an unstable equilibrium”.
While this is true, it is not an argument against our positive γ. As pointed out above, we do
not introduce our program traders into a reference economy as in Frey and Stremme (1995).
Quite in contrast, we want to model the interaction between hedgers and speculators and its
effect on stock prices. Since our hedgers are Black-Scholes program traders, their demand
is procyclic: they buy with rising prices. Once a speculator realizes this fact, he may be
quite happy to follow along and bet on an increasing stock price. Of course, not every single
arbitrageur will behave like this. But in a situation with interaction between speculators
and procyclic hedgers, it seems reasonable that a majority of the speculators will be patient
rather than impatient, and this is exactly condition (1.19). For a discussion on the relaxation
of this assumption, we also refer to the end of the next section.

2. Numerical results

In this section, we present the numerical results obtained from the computation of the option
values in (1.16). Let us begin with some more technical remarks. Since we assume that
γ > 0 and that the sizes Vij in (1.13) are all nonnegative, the volatility function σ in (1.15)
is sufficiently regular so that the stochastic differential equation (1.17) has a unique strong
solution for S. For the actual computation of (1.18), we can then apply stochastic numerical
methods as explained for example in Kloeden and Platen (1992). For our subsequent results,
we used a weak Euler predictor-corrector approximation method of weak order 1.0. Together
with a combination of several variance reduction techniques, this led to a rather reliable and
efficient evaluation for the parameters given below.

To completely specify the model (1.13) – (1.16), we now fix the parameter values v = 0.2,
γ = 0.5, t = 0 and S0 = 100. The hedging demand function ξ is given by (1.13) with M = 1
and N = 3. By (1.13) and (1.15), the volatility function can then be written as

(2.1) σ(s) = − v

γ +
3∑
j=1

Vj
1√

2πσ2
0τ

exp

(
− (log s−logKj+

1
2σ

2
0τ)

2

2σ2
0τ

) .

According to information obtained from experienced traders, the average time to maturity
of the most intensively hedged options can usually be found between 0.05 and 0.32 years. As
representative time to maturity, we therefore choose τ = 0.16. The traders also said that
they usually only hedge options whose strikes are at most 10% in or out of the money. For
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that reason, we work with the strikes K1 = 90, K2 = 100 and K3 = 110. The sizes Vj will be
chosen below in two different ways to obtain a smile with a more or less pronounced skewness
effect. Their actual values are not important for our numerical results; what matters is how
big they are relative to each other and relative to the patience parameter γ. Finally, the
volatility σ0 of the Black-Scholes model (1.9) in the background is taken to be σ0 = 0.2.

2.1. The smile effect

Let us first consider the case where the sizes Vj lie symmetrically around the current stock
price S0, i.e., V1 = V3 = 0.01. The size V2 = 0.09 is chosen considerably larger to model a
situation where most of the options held in the market are at the money.

Figure 1 Volatility function σ(s) for the sizes (0.01, 0.09, 0.01).

For this case, Figure 1 shows the (negative of the) volatility function σ(s) in (2.1). We see
that σ varies between a value of approximately 0.2 for the current stock price s = S0 = 100
and goes as high as 0.4 for values of s far away from S0. Furthermore, we observe that σ(s)
is almost symmetric around the current stock price S0 = 100.

Next we compare the option values obtained from (1.18) to the Black-Scholes prices
computed with the a priori volatility σ0, i.e., to uBS(0, S0;K,T, σ0). Since we are at date
t = 0, the parameter T may be interpreted either as expiration date or as time to maturity.
Figure 2 displays the difference u(0, S0;K,T )−uBS(0, S0;K,T, σ0) for strike prices K between
80 and 120 and for expiration dates up to 1 year away from now. We note that in the
considered range of parameters, the difference of our value to the Black-Scholes price is
always nonnegative and goes up to the fairly large amount of 2 monetary units. To give
an idea of the relative importance of these deviations, we remark that typical figures for
Black-Scholes prices range here from 0 to around 21 monetary units.
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Figure 2 Option value minus Black-Scholes price.

The most interesting result is given by Figure 3. It shows the implied volatilities for the
option values u(0, S0;K,T ) from (1.18), i.e., the surface defined by the mapping (K,T ) 7→
σimpl(0, S0;K,T ). Looking at Figure 3, we observe a strong smile effect: strikes at the money
have a distinctly lower implied volatility than those in or out of the money. Furthermore, the
difference also decreases with increasing time to maturity.

Figure 3 Implied volatilities for the sizes (0.01, 0.09, 0.01).
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These numerical results coincide with the empirical findings of Rubinstein (1985), Clewlow
and Xu (1993) and Taylor and Xu (1993). Extensive simulation studies with different volatil-
ity functions of the above type always showed a pronounced smile effect. Thus we conclude
that at least with the definition (1.18) of an option value, our new stock price model has the
potential to produce implied volatility smiles as a consequence of dynamical hedging.

2.2. The skewness effect

Let us now turn to the case where the distribution of the option sizes in the market is not
symmetric around S0. Intuitively, this could represent either a bear market or a bull market,
depending on the direction of the asymmetry. To be specific, we shall now take V1 = 0.001,
V2 = 0.05 and V3 = 0.09. All other parameters are left unchanged. The (negative of the)
corresponding volatility function σ(s) is shown in Figure 4; it has a negative slope at the
current stock price S0.

Figure 4 Volatility function for the sizes (0.001, 0.05, 0.09).

Figure 5 shows the implied volatilities for this specification. We clearly see a strong skewness
effect: implied volatilities tend to rise more for decreasing than for increasing strike prices,
and the implied volatility curve is not centered around S0, but rather around a strike larger
than S0. Another skew is obtained in Figure 6 by choosing now V1 = 0.09, V2 = 0.05 and
V3 = 0.001. Plotting the negative of the volatility function for this case would reveal that its
slope at S0 is positive which causes the reversal of the skew compared to Figure 5.

Rubinstein (1985) applied nonparametric tests on various alternative option pricing mod-
els, using as data all reported trades and quotes on the 30 most active option classes on the
Chicago Board Options Exchange from 1976 through 1978. He found in the period until
about October 1977 that implied volatilities tended to rise with decreasing strike price for
strikes in the neighbourhood of the current stock price. A reversal of this bias was observed
in the second period, where implied volatilities tended to rise with increasing strike price. As
shown in Figures 5 and 6, our model has the ability to explain this kind of bias reversals in
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implied volatilities as being caused by changes in the distribution of options in the market.
As a rough rule, one could say that if options out of the money are expected to be more
intensively hedged than those in the money, dynamical hedging should usually induce a rise
of implied volatilities for decreasing strike, and vice versa.

Figure 5 Implied volatility for the sizes (0.001, 0.05, 0.09).

Figure 6 Implied volatility for the sizes (0.09, 0.05, 0.001).

To conclude this subsection, we exhibit the cross-section of Figure 3 along the plane
K = S0.
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Figure 7 Implied volatility at the money for the sizes (0.01,0.09, 0.01).

In other words, Figure 7 shows the implied volatility for an option at the money as a function
of the time to maturity. We observe that this curve is increasing; this is also the case in
both our skewness examples. Prices of options at the money are usually easy to observe in
the market. To fix the parameter γ, one could therefore try to fit the curve of at-the-money
implied volatilities computed from our model to the curve corresponding to market prices.

Remark. All the preceding results are based on the assumption (1.19) of a positive patience
parameter γ, and so one can ask what happens if γ is negative. For strongly negative γ and
sufficiently small sizes Vij , the numerator in (1.15) will become negative instead of positive.
This implies that the negative of the volatility function will decrease away from the current
stock price, thus leading to a picture which is just the reverse of Figure 1. Numerical compu-
tations then show that the smile in Figure 3 also changes sign and becomes a “frown”. For
intermediate values of γ and Vij , it is less clear what happens since the numerator in (1.15)
may become 0.

Further numerical evidence suggests that the implied volatility function σimpl has a
shape quite similar to the volatility function σ, but with a considerably smaller amplitude.
This can even be observed if σ is allowed to depend on current time t in addition to the
current stock price s. For instance, we could consider a time-dependent patience function
γ(t) or an option exposure distribution ν(t) changing over time to represent a non-stationary
market as in Frey and Stremme (1995) or Platen and Schweizer (1994). Depending on the
specific market under consideration, one could therefore also explain more general patterns of
volatility deformations as results of feedback effects from hedging strategies. This is a topic
for future research in both theoretical and empirical directions.
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Appendix

This section provides the details for the derivation of the stochastic differential equation
(1.2) for L from the market clearing condition (1.1). We assume that L and U are continuous
semimartingales and that D is in C2 with

(A1) DL(t, `, u) 6= 0 for all (t, `, u).

As in section 1, subscripts of D denote partial derivatives. Condition (A1) is for instance
satisfied for the function D in (1.3) if ξ′ = ∂ξ

∂` is nonnegative and γ is positive as in (1.19).
For γ < 0, one could guarantee (A1) by suitable boundedness conditions on ξ′; this is the
approach taken in Frey and Stremme (1995).

A derivation of (1.2) can now be based on the implicit function theorem. Thanks to the
assumption (A1), the equation

(A2) D(t, `, u) = const.

can be solved for ` to give

(A3) ` = f(t, u)

for a function f defined by

(A4) D(t, f(t, u), u) = const.

Differentiating the identity (A4) and using again (A1) yields the partial derivatives of f as

ft = −Dt

DL
,(A5)

fU = −DU

DL
,

fUU = − 1

DL

(
DUU − 2DLU

DU

DL
+DLL

(
DU

DL

)2
)
,

with the right-hand sides of (A5) evaluated at (t, f(t, u), u). Since Lt is defined by the
equilibrium condition

(1.1) D(t, Lt, Ut) = const. , t ≥ 0,

equations (A2) and (A3) yield

Lt = f(t, Ut) , t ≥ 0.

Applying Itô’s formula and using (A5) then leads to the stochastic differential equation (1.2).
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H. Föllmer (1994), “Stock Price Fluctuations as a Diffusion in a Random Environment”,
Philosophical Transactions of the Royal Society, London, Series A, 347, 471–483
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