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0. Introduction

The goal of this paper is to give an overview of some results and developments in the area

of pricing and hedging options by means of a quadratic criterion. To put this into a broader

perspective, we start in this section with some general ideas and financial motivation before

turning to more precise mathematical descriptions. We remark that this borrows extensively

from the financial introduction of Delbaen/Monat/Schachermayer/Schweizer/Stricker (1997).

To describe a financial market operating in continuous time, we begin with a probability

space (Ω,F , P ), a time horizon T ∈ (0,∞) and a filtration IF = (Ft)0≤t≤T . Intuitively,

Ft describes the information available at time t. We have d + 1 basic (primary) assets

available for trade with price processes Si = (Si
t)0≤t≤T for i = 0, 1, . . . , d. To simplify the

presentation, we assume that one asset, say S0, has a strictly positive price. We then use

S0 as numeraire and immediately pass to quantities discounted with S0. This means that

asset 0 has (discounted) price 1 at all times and the other assets’ (discounted) prices are

X i = Si/S0 for i = 1, . . . , d. Without further mention, all subsequently appearing quantities

will be expressed in discounted units.

One central problem of financial mathematics in such a framework is the pricing and

hedging of contingent claims by means of dynamic trading strategies based on X . The best-

known example of a contingent claim is a European call option on asset i with expiration

date T and strike price K, say. The net payoff at T to its owner is the random amount

H(ω) = max
(
X i

T (ω)−K, 0
)
=
(
X i

T (ω)−K
)+

. More generally, a contingent claim here is

simply an FT -measurable random variable H describing the net payoff at T of some financial

instrument. Hence our claims are of European type in the sense that the date of the payoff

is fixed; but the amount to be paid may depend on the whole history of X up to time T ,

or even on more if IF contains additional information. The problems of pricing and hedging

H can then be formulated as follows: What price should the seller of H charge the buyer at

time 0? And having sold H, how can he insure or cover himself against the random loss at

time T?

A natural way to approach these questions is to consider dynamic portfolio strategies

of the form (ϑ, η) = (ϑt, ηt)0≤t≤T where ϑ is a d-dimensional predictable process and η is

adapted. In such a strategy, ϑit describes the number of units of asset i held at time t

and ηt is the amount invested in asset 0 at time t. Predictability of ϑ is a mathematical

formulation of the informational constraint that ϑ is not allowed to anticipate the movement

of X . At any time t, the value of the portfolio (ϑt, ηt) is given by Vt = ϑtrt Xt + ηt and the

cumulative gains from trade up to time t are Gt(ϑ) =
t∫
0

ϑs dXs. To have the last expression

well-defined, we assume that X is a semimartingale and G(ϑ) is then the stochastic integral

of ϑ with respect to X . The cumulative costs up to time t incurred by using (ϑ, η) are given
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by Ct = Vt −
t∫
0

ϑs dXs = Vt −Gt(ϑ). A strategy is called self-financing if its cumulative cost

process C is constant over time or equivalently if its value process V is given by

(0.1) Vt = V0 +
t∫
0

ϑs dXs = V0 +Gt(ϑ)

where V0 = C0 is the initial outlay required to start the strategy. After time 0, such a strategy

is self-supporting: any fluctuations in X can be neutralized by rebalancing ϑ and η in such

a way that no further gains or losses result. Note that a self-financing strategy is completely

described by V0 and ϑ since the self-financing constraint determines V , hence also η.

Now fix a contingent claim H and suppose there exists a self-financing strategy (V0, ϑ)

whose terminal value VT equals H with probability one. If our financial market model does

not allow arbitrage opportunities, it is clear that the price of H must be given by V0 and

that ϑ furnishes a hedging strategy against H. This was the basic insight leading to the

celebrated Black-Scholes formula for option pricing; see Black/Scholes (1973) and Merton

(1973) who solved this problem for the case where X is a one-dimensional geometric Brownian

motion and H = (XT −K)+ is a European call option. The mathematical structure of the

problem and its connections to martingale theory were subsequently worked out and clarified

by J. M. Harrison and D. M. Kreps; a detailed account can be found in Harrison/Pliska

(1981). Following their terminology, we call a contingent claim H attainable if there exists a

self-financing strategy with VT = H P -a.s. By (0.1), this means that H can be written as

(0.2) H = H0 +

T∫

0

ϑHs dXs P -a.s.,

i.e., as the sum of a constant H0 and a stochastic integral with respect to X . We speak of a

complete market if every contingent claim is attainable. Recall that we do not give precise

definitions here; for a rigorous mathematical formulation, one has to be rather careful about

the integrability conditions imposed on H and ϑH .

The importance of the concept of a complete market stems from the fact that it allows

the pricing and hedging of contingent claims to be done in a preference-independent fashion.

However, completeness is a rather delicate property which is typically destroyed as soon as

one considers even minor modifications of a basic complete model. For instance, geometric

Brownian motion (the classical Black-Scholes model) becomes incomplete if the volatility is

influenced by a second stochastic factor or if one adds a jump component to the model. If

one insists on a preference-free approach under incompleteness, one can study the range of

possible prices for H which are consistent with absence of arbitrage in a market containing

X , the riskless asset 1 and H as traded instruments; this is the idea behind the concept

of super-replication. An alternative is to introduce subjective criteria according to which
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strategies are chosen and option prices are computed. The goal of this paper is to explain

two such criteria in more detail. For a very recent similar survey, see also Pham (1999). A

numerical comparison study can be found in Heath/Platen/Schweizer (1999).

For a non-attainable contingent claim, it is by definition impossible to find a strategy

with final value VT = H which is at the same time self-financing. A first possible approach is

to insist on the terminal condition VT = H; since η is allowed to be adapted, this can always

be achieved by choice of ηT . But because such strategies cannot be self-financing in general,

a “good” strategy should now have a “small” cost process C. Measuring the riskiness of a

strategy by a quadratic criterion was first proposed by Föllmer/Sondermann (1986) for the

case where X is a martingale and subsequently extended to the general semimartingale case

in Schweizer (1988, 1991). Under some technical assumptions, such a locally risk-minimizing

strategy can be characterized by two properties: its cost process C must be a martingale (so

that the strategy is no longer self-financing, but still remains mean-self-financing) and this

martingale must be orthogonal to the martingale part M of the price process X . Translating

this into conditions on the contingent claimH shows that there exists a locally risk-minimizing

strategy for H if and only if H admits a decomposition of the form

(0.3) H = H0 +

T∫

0

ϑHs dXs + LH
T P -a.s.

where LH is a martingale orthogonal to M . The decomposition (0.3) has been called the

Föllmer-Schweizer decomposition of H; it can be viewed as a generalization to the semi-

martingale case of the classical Galtchouk-Kunita-Watanabe decomposition from martingale

theory. Its financial importance lies in the fact that it directly provides the locally risk-

minimizing strategy for H: the stock component ϑ is given by the integrand ϑH and η is

determined by the requirement that the cost process C should coincide with H0 + LH . Note

also that the special case (0.2) of an attainable claim simply corresponds to the absence of

the orthogonal term LH
T . In particular cases, one can give more explicit constructions for

the decomposition (0.3). In the case of finite discrete time, ϑH and LH can be computed

recursively backward in time. If X is continuous, the Föllmer-Schweizer decomposition un-

der P can be obtained as a Galtchouk-Kunita-Watanabe decomposition, computed under the

so-called minimal martingale measure P̂ .

One drawback of the preceding approach is the fact that one has to work with strategies

which are not self-financing. If one prefers to avoid intermediate costs or an unplanned income,

a second idea is to insist on the self-financing constraint (0.1). The possible final outcomes of

such strategies are of the form V0 +GT (ϑ) for some initial capital V0 ∈ IR and some ϑ in the

set Θ, say, of all integrands allowed in (0.1). By definition, a non-attainable claim H is not of

this form and so it seems natural to look for a best approximation of H by the terminal value

V0+GT (ϑ) of some pair (V0, ϑ). The use of a quadratic criterion to measure the quality of this
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approximation has been proposed by Bouleau/Lamberton (1989) if X is both a martingale

and a function of a Markov process and by Duffie/Richardson (1991) and Schweizer (1994a),

among others, in more general cases. To find such a mean-variance optimal strategy, one has

to project H in L2(P ) on the space IR+GT (Θ) of attainable claims. In particular, this raises

the questions whether the space GT (Θ) of stochastic integrals of X is closed in L2(P ) and

what the structure of the corresponding projection is. Both these problems as well as the

computation of the optimal initial capital V0 turn out to be intimately linked to the so-called

variance-optimal martingale measure P̃ .

The paper is structured as follows. Section 1 introduces some general notations and

recalls a few preliminaries to complement the preceding discussion. Section 2 explains the

above two approaches in the case where X is a local martingale under P ; this slightly gen-

eralizes the classical results due to Föllmer/Sondermann (1986). Section 3 discusses local

risk-minimization in detail and the final section 4 is devoted to mean-variance hedging.

1. Notations and preliminaries

In this section, we briefly introduce some notation for later use. This complements the

introduction by giving precise definitions. For all standard terminology from martingale

theory, we refer to Dellacherie/Meyer (1982).

Mathematically, the basic asset prices are defined on a probability space (Ω,F , P ) and

described by the constant 1 and an IRd-valued stochastic process X = (Xt)0≤t≤T adapted to a

filtration IF = (Ft)0≤t≤T satisfying the usual conditions of right-continuity and completeness.

Adaptedness ensures that time t prices Xt are Ft-measurable, i.e., observable at time t. To

exclude arbitrage opportunities, we assume that X admits an equivalent local martingale

measure (ELMM) Q, i.e., that there exists a probability measure Q ≈ P such that X is a

local Q-martingale. With IP denoting the convex set of all ELMMs Q for X , we thus assume

that IP 6= ∅. Incompleteness of the market given by X and IF is in our context taken to mean

that IP contains more than one element (and therefore infinitely many). Finally, a European

type contingent claim is an FT -measurable random variable H; it describes a random payoff

to be made at time T . Before we go on on with the general theory, it may be useful to

illustrate the preceding concepts by a simple example.

Example. Consider one risky asset (d = 1) with price process X and stochastic volatility

Y . More precisely, let X and Y satisfy the stochastic differential equations

dXt

Xt

= µ(t, Xt, Yt) dt+ Yt dW
1
t ,

dYt = a(t, Xt, Yt) dt+ b(t, Xt, Yt) dW
2
t
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with suitable coefficient functions µ, a, b and independent Brownian motions W 1,W 2. The

filtration IF is the one generated by W 1 and W 2, made complete and right-continuous. A

simple example of a contingent claim here is a European call option on X with strike K and

maturity T ; its (net) payoff at time T is H = (XT −K)+. Note, however, that our abstract

framework encompasses much more general (e.g., path-dependent) payoffs and unlike the

present example usually assumes no Markovian structure.

In this example, weak assumptions on µ, a, b readily guarantee the existence of an ELMM

Q. In fact, it is enough to be able to remove the drift µ by a Girsanov transformation. This

uniquely determines the transformation’s effect on W 1, but imposes no restrictions on the Q-

drift ofW 2. Hence there is no unique ELMM and we have an incomplete market. This is also

intuitively clear because there are two sources of uncertainty W 1,W 2, but (by assumption)

only one risky asset X for trade. If Y or some other suitable asset were also tradable, the

situation would be different. This ends the present discussion of the example.

Given a contingent claim H, there are at least two things a potential seller of H may

want to do: pricing by assigning a value to H at times t < T and hedging by covering himself

against future losses arising from a sale of H. The notion of hedging brings up the idea of

trading in X and we formalize this by introducing trading strategies . Note first that our

assumption IP 6= ∅ implies that X is a semimartingale under P . It thus makes sense to

speak of stochastic integrals with respect to X and we denote by L(X) the linear space of all

IRd-valued predictable X-integrable processes ϑ; see Dellacherie/Meyer (1982) for additional

information. For ϑ ∈ L(X), the stochastic integral
∫
ϑ dX is well-defined, but some elements

of L(X) are too general to yield economically reasonable strategies. We shall have to impose

integrability assumptions later and so we use for the moment the term “pre-strategy”.

Definition. A self-financing pre-strategy is any pair (V0, ϑ) such that ϑ ∈ L(X) and V0 is an

F0-measurable random variable. Intuitively, one starts out with initial capital V0 and then

holds the dynamically varying number ϑit of shares of asset i at time t. The self-financing

condition implies that the value process of (V0, ϑ) is given by

(1.1) Vt(V0, ϑ) := V0 +
t∫
0

ϑu dXu , 0 ≤ t ≤ T.

2. The martingale case

We first discuss the two basic quadratic hedging approaches in the simple special case where

X is a local P -martingale; this means that the original measure P itself is in IP . We denote by

[X ] =
(
[X i, Xj]

)
i,j=1,...,d

the matrix-valued optional covariance process of X and by L2(X)
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the space of all IRd-valued predictable processes ϑ such that

‖ϑ‖L2(X) :=

(
E

[
T∫
0

ϑtru d[X ]u ϑu

]) 1
2

<∞.

Our first result shows that the stochastic integral of ϑ with respect to X is well-defined for

ϑ ∈ L2(X) and has nice properties even if X is not locally square-integrable. This is because

the required integrability is already built into the definition of L2(X). I thank C. Stricker for

providing the proof given below.

Lemma 2.1. Suppose that X is a local P -martingale. For any ϑ ∈ L2(X), the process∫
ϑ dX is well-defined and in the space M2

0(P ) of square-integrable P -martingales null at

0. Moreover, the space I2(X) :=
{∫

ϑ dX
∣∣ϑ ∈ L2(X)

}
of stochastic integrals is a stable

subspace of M2
0(P ).

Proof. For ϑ ∈ L2(X), the process
∫
ϑtr d[X ]ϑ is integrable. Hence

∫
ϑ dX is well-defined

and a local P -martingale by Theorem 4.60 of Jacod (1979), and the Burkholder-Davis-Gundy

inequality implies that
∫
ϑ dX is even in M2

0(P ). It is clear that I
2(X) is a linear subspace

of M2
0(P ) and stable under stopping. If Y n =

∫
ϑn dX is a sequence in I2(X) converging

to some Y in M2
0(P ), then Y

n also converges to Y in M1
0(P ) and so Corollary 2.5.2 of Yor

(1978) or Corollary 4.23 of Jacod (1979) (plus Remark III.2 in Stricker (1990) to account for

the fact that X is multidimensional) imply that Y =
∫
ψ dX for some ψ ∈ L(X). Since

T∫

0

(ϑnu − ψu)
tr d[X ]u (ϑ

n
u − ψu) = [Y n − Y ]T

converges to 0 in L1(P ) by the convergence of Y n to Y in M2
0(P ), we obtain that ψ is in

L2(X). Hence Y ∈ I2(X), so I2(X) is closed in M2
0(P ) and this completes the proof.

q.e.d.

Definition. An RM-strategy is any pair ϕ = (ϑ, η) where ϑ ∈ L2(X) and η = (ηt)0≤t≤T is a

real-valued adapted process such that the value process V (ϕ) := ϑtrX +η is right-continuous

and square-integrable (i.e., Vt(ϕ) ∈ L2(P ) for each t ∈ [0, T ]).

Intuitively, ϑit and ηt denote as before the respective numbers of shares of assets i

and 0 held at time t. (The notation RM anticipates that we shall want to focus on risk-

minimization.) But in contrast to section 1, we now also admit strategies that are not

self-financing and thus may generate profits or losses over time.
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Definition. For any RM-strategy ϕ, the (cumulative) cost process C(ϕ) is defined by

Ct(ϕ) := Vt(ϕ)−
t∫
0

ϑu dXu , 0 ≤ t ≤ T.

Ct(ϕ) describes the total costs incurred by ϕ over the interval [0, t]; note that these arise from

trading because of the fluctuations of the price process X and are not due to transaction costs.

The risk process of ϕ is defined by

Rt(ϕ) := E
[(
CT (ϕ)− Ct(ϕ)

)2 ∣∣∣Ft

]
, 0 ≤ t ≤ T.

Since a contingent claim H is FT -measurable and η is allowed to be adapted, we can

always find RM-strategies with VT (ϕ) = H provided that H ∈ L2(P ). The simplest is “wait,

then pay” where ϑ ≡ 0 and ηt = HI{t=T}. But in general, these strategies will not be self-

financing; in fact, (1.1) tells us that there is a self-financing RM-strategy ϕ with VT (ϕ) = H

if and only if H admits a representation as the sum of an F0-measurable random variable

and a stochastic integral with respect to X . In that case, the cost process C(ϕ) is constant

and the risk process R(ϕ) is identically 0. For claims where this is not possible, the idea of

Föllmer/Sondermann (1986) in defining risk-minimization is to look among all RM-strategies

with VT (ϕ) = H for one which minimizes the risk process in a suitable sense.

Definition. An RM-strategy ϕ is called risk-minimizing if for any RM-strategy ϕ̃ such that

VT (ϕ̃) = VT (ϕ) P -a.s., we have

Rt(ϕ) ≤ Rt(ϕ̃) P -a.s. for every t ∈ [0, T ].

This is not the original definition, but it amounts to the same thing:

Lemma 2.2. An RM-strategy ϕ is risk-minimizing if and only if

Rt(ϕ) ≤ Rt(ϕ̃) P -a.s.

for every t ∈ [0, T ] and for every RM-strategy ϕ̃ which is an admissible continuation of ϕ

from t on in the sense that VT (ϕ̃) = VT (ϕ) P -a.s., ϑ̃s = ϑs for s ≤ t and η̃s = ηs for s < t.

Proof. See Lemma 2.1 of Schweizer (1994b); this does not use that X is a local P -martingale.

Remark. The definition in Föllmer/Sondermann (1986) of an admissible continuation of ϕ

from t on is more symmetric because they stipulate that ϑ̃s = ϑs and η̃s = ηs hold both for
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s < t. In the martingale case and for continuous time, this difference does not matter, but

a discrete-time setting or the subsequent generalization to local risk-minimization do need

the asymmetric formulation in Lemma 2.2. This also reflects the asymmetry between the

requirements on ϑ and η since ϑ must be predictable while η is allowed to be adapted.

Although RM-strategies with VT (ϕ) = H will in general not be self-financing, it turns

out that good RM-strategies are still “self-financing on average” in the following sense.

Definition. An RM-strategy ϕ is called mean-self-financing if its cost process C(ϕ) is a

P -martingale.

Lemma 2.3. Any risk-minimizing RM-strategy ϕ is also mean-self-financing.

Proof. This proof does not use that X is a local P -martingale. Fix t0 ∈ [0, T ] and define ϕ̃

by setting ϑ̃ := ϑ and

ϑ̃trt Xt + η̃t = Vt(ϕ̃) := Vt(ϕ)I[0,t0)(t) + E

[
VT (ϕ)−

T∫
t

ϑu dXu

∣∣∣∣∣Ft

]
I[t0,T ](t),

choosing an RCLL version. Then ϕ̃ is an RM-strategy with VT (ϕ̃) = VT (ϕ) and because

CT (ϕ) = CT (ϕ̃) and Ct0(ϕ̃) = E[CT (ϕ̃)|Ft0 ],

CT (ϕ)− Ct0(ϕ) = CT (ϕ̃)− Ct0(ϕ̃) + E[CT (ϕ̃)|Ft0 ]− Ct0(ϕ)

implies that

Rt0(ϕ) = Rt0(ϕ̃) +
(
Ct0(ϕ)−E[CT (ϕ)|Ft0 ]

)2
.

Because ϕ is risk-minimizing, we conclude that

Ct0(ϕ) = E[CT (ϕ)|Ft0 ] P -a.s.

and since t0 is arbitrary, the assertion follows.

q.e.d.

The key result for finding risk-minimizing RM-strategies is the well-known Galtchouk-

Kunita-Watanabe decomposition. Because I2(X) is a stable subspace of M2
0(P ), any H ∈

L2(FT , P ) can be uniquely written as

(2.1) H = E[H|F0] +

T∫

0

ϑHu dXu + LH
T P -a.s.
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for some ϑH ∈ L2(X) and some LH ∈ M2
0(P ) which is strongly orthogonal to I2(X); this

means that LH
∫
ϑ dX is a P -martingale for every ϑ ∈ L2(X). The next result was obtained

by Föllmer/Sondermann (1986) for d = 1 under the assumption that X is in M2(P ). The

observation and proof that it holds for a general local P -martingale X seem to be new.

Theorem 2.4. Suppose that X is a local P -martingale. Then every contingent claim H ∈

L2(FT , P ) admits a unique risk-minimizing RM-strategy ϕ∗ with VT (ϕ
∗) = H P -a.s. In terms

of the decomposition (2.1), ϕ∗ is explicitly given by

ϑ∗ = ϑH ,

Vt(ϕ
∗) = E[H|Ft] =: V ∗

t , 0 ≤ t ≤ T,

C(ϕ∗) = E[H|F0] + LH .

Proof. Note first that the above prescription defines an RM-strategy ϕ∗ with VT (ϕ
∗) = H.

Now fix t ∈ [0, T ] and any RM-strategy ϕ̃ with VT (ϕ̃) = H. The same argument as in the

proof of Lemma 2.3 shows that we may assume Ct(ϕ̃) = E[CT (ϕ̃)|Ft] and so we get

CT (ϕ̃)− Ct(ϕ̃) = H −

T∫

t

ϑ̃u dXu −E[H|Ft] = LH
T − LH

t +

T∫

t

(
ϑHu − ϑ̃u

)
dXu

by using (2.1) and the martingale property of
∫
ϑ̃ dX . Because C(ϕ∗) = C0(ϕ

∗) + LH , the

orthogonality of LH and I2(X) yields

Rt(ϕ̃) = Rt(ϕ
∗) +E



(

T∫
t

(
ϑHu − ϑ̃u

)
dXu

)2
∣∣∣∣∣∣
Ft


 ≥ Rt(ϕ

∗).

Hence ϕ∗ is risk-minimizing. If some other ϕ̃ is also risk-minimizing, then C(ϕ̃) must be a

martingale by Lemma 2.3 and then the same argument as before gives for t = 0

R0(ϕ̃) = R0(ϕ
∗) + E




T∫

0

(
ϑHu − ϑ̃u

)tr
d[X ]u

(
ϑHu − ϑ̃u

)
∣∣∣∣∣∣
F0


 .

Because ϕ̃ is risk-minimizing, this implies ϑ̃ = ϑH = ϑ∗ and since C(ϕ̃) is a martingale and

VT (ϕ̃) = VT (ϕ
∗), we also obtain ϕ̃ = ϕ∗.

q.e.d.

Remark. The preceding approach relies heavily on the fact that the contingent claim H

only makes one payment at the terminal date T . For applications to insurance derivatives
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as in Møller (1998a), this is not sufficient because such products involve possible payments

at any time t ∈ [0, T ]. An extension of the risk-minimization concept to the case of such

payment streams has been developed in Møller (1998b).

An alternative quadratic approach in the martingale case has been studied by Bouleau/

Lamberton (1989). They imposed the additional condition that X is a function of some

Markov process to get more explicit results, but their basic idea can also be explained in our

general framework. Suppose that instead of insisting on VT (ϕ) = H P -a.s., we focus on self-

financing RM-strategies. Such a strategy is described by a pair (V0, ϑ) in L
2(F0, P )×L

2(X)

and its shortfall at the terminal date T is

H − VT (V0, ϑ) = H − V0 −
T∫
0

ϑu dXu.

If H is attainable by such a strategy in the sense that H = VT (V0, ϑ) for some pair (V0, ϑ),

the shortfall can be reduced to 0. But in general, one has a residual risk of

J0(V0, ϑ) := E
[(
H − VT (V0, ϑ)

)2]

if one uses a quadratic loss function and the idea of Bouleau/Lamberton (1989) is to minimize

this residual risk by choice of (V0, ϑ). This clearly amounts to projecting the random variable

H in L2(P ) on the linear space spanned by L2(F0, P ) and the stochastic integrals
T∫
0

ϑu dXu

with ϑ ∈ L2(X) and thanks to (2.1), the solution is given by

V̄0 = E[H|F0],

ϑ̄ = ϑH

with a minimal residual risk of

J0
(
V̄0, ϑ̄

)
= E

[(
LH
T

)2]
= Var

[
LH
T

]
.

In the next two sections, we generalize the preceding two approaches to the case where

X is under P no longer a local martingale, but only a semimartingale. Risk-minimization will

be replaced by local risk-minimization and extending the above projection approach leads to

mean-variance hedging. We shall also see that extensions of the Galtchouk-Kunita-Watanabe

decomposition play an important role and that it is often very helpful to work with a suitably

chosen ELMM.
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3. Local risk-minimization

Let us now consider the general situation where the original measure P is not in IP . Hence

X is no longer a local P -martingale, but only a semimartingale under P . Given a contingent

claim H, we could still look for risk-minimizing strategies ϕ with VT (ϕ) = H. But there is

bad news:

Proposition 3.1. If X is not a local P -martingale, a contingent claim H admits in general

no risk-minimizing strategy ϕ with VT (ϕ) = H P -a.s.

Proof. We show this by presenting an explicit counterexample given in Schweizer (1988). For

simplicity, we work in discrete time. Let X = (Xk)k=0,1,...,T (with T ∈ IN) be a real-valued

square-integrable process adapted to a filtration IF = (Fk)k=0,1,...,T and fix H ∈ L2(FT , P ).

The example below is on a finite probability space so that all integrability requirements are

satisfied.

If ϕ∗ is a risk-minimizing strategy with VT (ϕ
∗) = H P -a.s., Lemma 2.3 implies that

C(ϕ∗) is a P -martingale so that we get

Rk(ϕ
∗) = Var[CT (ϕ

∗)|Fk] = Var


H −

T∑

j=k+1

ϑ∗j∆Xj

∣∣∣∣∣∣
Fk




by using VT (ϕ
∗) = H and omitting Fk-measurable terms from the conditional variance. By

∆Xj := Xj −Xj−1, we denote the increment of X from j − 1 to j. Moreover,

ϑ∗kXk + η∗k = Vk(ϕ
∗) = Ck(ϕ

∗) +
k∑

j=1

ϑ∗j∆Xj = E


H −

T∑

j=1

ϑ∗j∆Xj

∣∣∣∣∣∣
Fk


+

k∑

j=1

ϑ∗j∆Xj

shows that ϕ∗ is uniquely determined by the predictable process ϑ∗ and vice versa. Because

ϕ∗ is risk-minimizing, any mean-self-financing strategy ϕ with VT (ϕ) = H will satisfy

Var


H −

T∑

j=k+1

ϑj∆Xj

∣∣∣∣∣∣
Fk


 = Rk(ϕ) ≥ Rk(ϕ

∗) = Var


H −

T∑

j=k+1

ϑ∗j∆Xj

∣∣∣∣∣∣
Fk


 .

In particular, this implies that the mapping

ϑk+1 7→ Var


H − ϑk+1∆Xk+1 −

T∑

j=k+2

ϑ∗j∆Xj

∣∣∣∣∣∣
Fk




attains its minimum at ϑ∗k+1 and so the first order condition for this problem yields

(3.1) ϑ∗k+1 =

Cov

(
H −

T∑
j=k+2

ϑ∗j∆Xj ,∆Xk+1

∣∣∣∣∣Fk

)

Var[∆Xk+1|Fk]
.
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This backward recursive expression determines a unique candidate for a risk-minimizing strat-

egy ϕ∗.

For the counterexample, we take T = 2 and consider a random walk X starting at 0

whose (i.i.d.) increments take the values +1, 0,−1 with respective probabilities 1
4 ,

1
4 ,

1
2 under

P . The filtration IF is generated byX and the contingent claim isH = |X2|
2. Any predictable

process ϑ is determined by the value of ϑ1 and the three possible values of ϑ2 on the sets

{X1 = +1}, {X1 = 0}, {X1 = −1} generating F1 and we denote the latter by ϑ2(+1), ϑ2(0),

ϑ2(−1) respectively. If there is a risk-minimizing strategy ϕ∗ with VT (ϕ
∗) = H, then ϑ∗

must be given by (3.1) and an explicit calculation yields the values ϑ∗1 = − 1
11 , ϑ

∗
2(+1) = 21

11 ,

ϑ∗2(0) = − 1
11
, ϑ∗2(−1) = −23

11
which lead to an initial risk of

R0(ϕ
∗) =

24

66
.

But for any mean-self-financing strategy ϕ with VT (ϕ) = H, the initial risk R0(ϕ) can also

be viewed as a function of the four variables ϑ1, ϑ2(+1), ϑ2(0), ϑ2(−1). The minimum of this

function is found to be attained at ϑ̄1 = − 1
11 , ϑ̄2(+1) = 59

33 , ϑ̄2(0) =
5
33 , ϑ̄2(−1) = −71

33 and

calculated as

R0(ϕ̄) =
23

66
< R0(ϕ

∗).

This shows that the unique candidate ϕ∗ given by (3.1) is not risk-minimizing and hence

there cannot exist any risk-minimizing strategy ending at H. This completes the proof.

q.e.d.

Remark. Intuitively, the reason for the failure of the risk-minimization approach in the

non-martingale case is a compatibility problem. At any time t, we minimize Rt(ϕ) over all

admissible continuations from t on and obtain a continuation which is optimal when viewed

in t only. But for s < t, the s-optimal continuation from s on tells us what to do on the

entire interval (s, T ] ⊃ (t, T ] and this may be different from what the t-optimal continuation

from t on prescribes. The above counterexample shows that this creates indeed a problem

in general, and the remarkable result in Theorem 2.4 is that the martingale property of X

guarantees the required compatibility.

Before we turn to the somewhat technical concept of local risk-minimization in continuous

time, it may be useful to explain the basic ideas and results in a discrete-time framework ; an

elementary introduction can also be found in Föllmer/Schweizer (1989). We consider for this

a situation where trading is only done at dates k = 0, 1, . . . , T ∈ IN . At time k, we choose

the numbers ϑk+1 of shares to be held over the time period (k, k + 1] and the number ηk of

units of asset 0 to be held over [k, k+1). Note that predictability of ϑ forces us to determine

the date k + 1 holdings ϑk+1 already at date k. The actual time k portfolio is ϕk = (ϑk, ηk)

12



and its value is Vk(ϕ) = ϑtrkXk + ηk. Since we want to minimize risk locally, we now consider

the incremental cost incurred by adjusting the portfolio from ϕk to ϕk+1. Because ϑk+1 is

chosen already at time k with prices given by Xk, this cost increment is

Ck+1(ϕ)− Ck(ϕ) = (ϑk+1 − ϑk)
trXk + ηk+1 − ηk

= Vk+1(ϕ)− Vk(ϕ)− ϑtrk+1(Xk+1 −Xk)

= ∆Vk+1(ϕ)− ϑtrk+1∆Xk+1

with the difference operator ∆Uk+1 := Uk+1 −Uk for any discrete-time stochastic process U .

For local risk-minimization, our goal is to minimize E
[(
Ck+1(ϕ)− Ck(ϕ)

)2 ∣∣∣Fk

]
with

respect to the time k control variables ϑk+1 and ηk. To be accurate, this requires integrability

conditions on ϑ and η, but we leave these aside for the moment. By using the expression for

∆Ck+1(ϕ) and the fact that the Fk-measurable term Vk(ϕ) does not influence the conditional

variance given Fk, we can write

E
[(
∆Ck+1(ϕ)

)2 ∣∣∣Fk

]
= Var

[
Vk+1(ϕ)− ϑtrk+1∆Xk+1

∣∣Fk

]

+
(
E
[
Vk+1(ϕ)− ϑtrk+1∆Xk+1

∣∣Fk

]
− Vk(ϕ)

)2
.

Because the first term on the right-hand side does not depend on ηk, it is clearly optimal to

choose ηk in such a way that

(3.2) Vk(ϕ) = E
[
Vk+1(ϕ)− ϑtrk+1∆Xk+1

∣∣Fk

]
.

This is equivalent to

0 = E
[
∆Vk+1(ϕ)− ϑtrk+1∆Xk+1

∣∣Fk

]
= E[∆Ck+1(ϕ)|Fk]

so that an optimal strategy should again be mean-self-financing. Because VT (ϕ) = H is

fixed, (3.2) implies by a backward induction argument that for the purposes of minimizing

E
[(
∆Ck+1(ϕ)

)2 ∣∣∣Fk

]
at time k, the value Vk+1(ϕ) may be considered as given. Thus it

only remains to minimize Var
[
Vk+1(ϕ)− ϑtrk+1∆Xk+1

∣∣Fk

]
with respect to the Fk-measurable

quantity ϑk+1 and this will be achieved if and only if

(3.3) Cov
(
Vk+1(ϕ)− ϑtrk+1∆Xk+1,∆Xk+1

∣∣Fk

)
= 0.

To simplify this, we use the Doob decomposition of X into a martingale M̄ and a predictable

process Ā given by M̄0 := 0 =: Ā0, ∆Āk+1 := E[∆Xk+1|Fk] and ∆M̄k+1 := ∆Xk+1−∆Āk+1.

Then (3.3) can be rewritten as

0 = Cov
(
∆Ck+1(ϕ),∆M̄k+1

∣∣Fk

)
= E

[
∆Ck+1(ϕ)∆M̄k+1

∣∣Fk

]
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which says that the product of the two martingales C(ϕ) and M̄ must be a martingale or

(equivalently) that C(ϕ) and M̄ must be strongly orthogonal under P . Thus in discrete time

(3.4) a suitably integrable strategy ϕ is locally risk-minimizing if and only

if its cost process C(ϕ) is a martingale and strongly orthogonal to the

martingale part (here M̄) of X .

Before passing to the continuous-time case, let us point out another useful property

which will have an analogue later on. Suppose for simplicity that d = 1. Because ϑk+1 is

Fk-measurable, we can solve (3.3) for ϑk+1 to obtain

ϑk+1 =
Cov(Vk+1(ϕ),∆Xk+1|Fk)

Var[∆Xk+1|Fk]
=
E
[
Vk+1(ϕ)∆M̄k+1

∣∣Fk

]

E
[
(∆M̄k+1)2

∣∣Fk

] .

Using E[ϑk+1∆Xk+1|Fk] = ϑk+1∆Āk+1 and plugging into (3.2) yields

Vk(ϕ) = E
[
Vk+1(ϕ)− ϑk+1∆Āk+1

∣∣Fk

]

= E

[
Vk+1(ϕ)

(
1−

∆Āk+1

E
[
(∆M̄k+1)2

∣∣Fk

]∆M̄k+1

) ∣∣∣∣∣Fk

]

= E

[
Vk+1(ϕ)

Z̄k+1

Z̄k

∣∣∣∣Fk

]

so that

(3.5) for a locally risk-minimizing strategy ϕ, the product Z̄V (ϕ) is a P -

martingale

if the process Z̄ is defined by the difference equation

(3.6) Z̄k+1 − Z̄k = Z̄k

(
Z̄k+1

Z̄k

− 1

)
= −Z̄kλ̄k+1∆M̄k+1 , Z̄0 = 1

with the predictable process

λ̄k+1 :=
∆Āk+1

E
[
(∆M̄k+1)2

∣∣Fk

] = E[∆Xk+1|Fk]

Var[∆Xk+1|Fk]
, k = 0, 1, . . . , T − 1.

This property will come up again later in a continuous-time version.

Remark. The above definition of local risk-minimization in discrete time is different from the

original one. The idea there is to consider at time k instead of E
[(
Ck+1(ϕ)− Ck(ϕ)

)2 ∣∣∣Fk

]

the risk Rk(ϕ) = E
[(
CT (ϕ)− Ck(ϕ)

)2 ∣∣∣Fk

]
. But just like before and in contrast to risk-

minimization, this is viewed as a function of the time k control variables ηk and ϑk+1 only and
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minimized only locally, i.e., with respect to these local variables. A more formal definition

can be found in Schweizer (1988) or Lamberton/Pham/Schweizer (1998) who also prove

the equivalence between the two definitions; see the remark on p.25 of Schweizer (1988) or

Proposition 2 of Lamberton/Pham/Schweizer (1998). The reason for using Rk(ϕ) is that this

formulation can be generalized to continuous time.

Let us now turn to the case of continuous time. Because we want to work again with

local variances, we require more specific assumptions on the price process X and we start

by making these precise. Since IP 6= ∅, we know already that X is a semimartingale under

P . We now assume that X is in S2
loc(P ) so that it can be decomposed as X = X0 +M + A

where M ∈ M2
0,loc(P ) is an IRd-valued locally square-integrable local P -martingale null at

0 and A is an IRd-valued predictable process of finite variation also null at 0. We denote

by 〈M〉 =
(
〈M〉ij

)
i,j=1,...,d

=
(
〈M i,M j〉

)
i,j=1,...,d

the matrix-valued predictable covariance

process of M and we suppose that A is absolutely continuous with respect to 〈M〉 in the

sense that

Ai
t =

(
t∫
0

d〈M〉s λ̂s

)i

:=

d∑

j=1

t∫

0

λ̂js d〈M
i,M j〉s , 0 ≤ t ≤ T, i = 1, . . . , d

for some IRd-valued predictable process λ̂ such that the mean-variance tradeoff process

K̂t :=

t∫

0

λ̂trs d〈M〉s λ̂s =
d∑

i,j=1

t∫

0

λ̂isλ̂
j
s d〈M

i,M j〉s

is finite P -a.s. for each t ∈ [0, T ]. This complex of conditions on X is sometimes called

the structure condition (SC). Since IP 6= ∅, it is for instance automatically satisfied if X

is continuous; see Theorem 1 of Schweizer (1995a) for this and Choulli/Stricker (1996) for

more general results in this direction. Additional results on the relation between (SC) and

properties of absence of arbitrage for the process X can be found in Delbaen/Schachermayer

(1995). Note that the stochastic integral
∫
λ̂ dM is well-defined under (SC) and that its

variance process is
〈∫

λ̂ dM
〉
= K̂; this will be used later on.

Definition. ΘS denotes the space of all processes ϑ ∈ L(X) for which the stochastic integral∫
ϑ dX is in the space S2(P ) of semimartingales. Equivalently, ϑ must be predictable with

E




T∫
0

ϑtrs d[M ]s ϑs +

(
T∫
0

|ϑtrs dAs|

)2

 <∞.

(This equivalence does not use (SC); it only requires X to be a special semimartingale.)
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Definition. An L2-strategy is a pair ϕ = (ϑ, η) where ϑ ∈ ΘS and η = (ηt)0≤t≤T is a

real-valued adapted process such that the value process V (ϕ) := ϑtrX +η is right-continuous

and square-integrable (i.e., Vt(ϕ) ∈ L2(P ) for each t ∈ [0, T ]). The cost process C(ϕ), the

risk process R(ϕ) and the concept of mean-self-financing are defined as in section 2. Note

that in the martingale case A ≡ 0, we have ΘS = L2(X) so that the notions of RM-strategy

and L2-strategy then coincide.

For a formal description of local risk-minimization in continuous time, we now restrict

our attention to the case d = 1. One can proceed in a similar way and obtain analogous

results for d > 1; the details for this have been worked out and will be presented elsewhere.

The only reason for choosing d = 1 here is that this permits references to already published

work. Let us first fix some terminology. A partition of [0, T ] is a finite set τ = {t0, t1, . . . , tk}

of times with 0 = t0 < t1 < . . . < tk = T and the mesh size of τ is |τ | := max
ti,ti+1∈τ

(ti+1 − ti).

The number k of times is not fixed, but can depend on τ . A sequence (τn)n∈IN of partitions

is called increasing if τn ⊆ τn+1 for all n; it tends to the identity if lim
n→∞

|τn| = 0.

The next definition translates the idea that changing an optimal strategy over a small

time interval should lead to an increase of risk, at least asymptotically. The form of the

denominator indicates that the appropriate time scale for these asymptotics is determined by

the fluctuations of X as measured by its predictable quadratic variation.

Definition. A small perturbation is an L2-strategy ∆ = (δ, ε) such that δ is bounded, the

variation of
∫
δ dA is bounded (uniformly in t and ω) and δT = εT = 0. For any subinterval

(s, t] of [0, T ], we then define the small perturbation

∆
∣∣
(s,t]

:=
(
δI(s,t], εI[s,t)

)
.

The asymmetry between δ and ε reflects the fact that δ is predictable and ε merely adapted.

Definition. For an L2-strategy ϕ, a small perturbation ∆ and a partition τ of [0, T ], we set

rτ (ϕ,∆) :=
∑

ti,ti+1∈τ

Rti

(
ϕ+∆

∣∣
(ti,ti+1]

)
−Rti(ϕ)

E
[
〈M〉ti+1

− 〈M〉ti
∣∣Fti

] I(ti,ti+1].

ϕ is called locally risk-minimizing if

lim inf
n→∞

rτn(ϕ,∆) ≥ 0 (P ⊗ 〈M〉)-a.e. on Ω× [0, T ]

for every small perturbation ∆ and every increasing sequence (τn)n∈IN of partitions tending

to the identity.
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Lemma 3.2. Let d = 1 and suppose that 〈M〉 is P -a.s. strictly increasing. If an L2-strategy

is locally risk-minimizing, it is also mean-self-financing.

Proof. This is Lemma 2.1 of Schweizer (1991); note that its assumption (X1) of square-

integrability for M is not required in the proof.

Thanks to Lemma 3.2, we can in searching for locally risk-minimizing strategies restrict

ourselves to the class of mean-self-financing strategies. Together with the terminal condition

VT (ϕ) = H, this class can be parametrized by processes ϑ ∈ ΘS so that we effectively have

to deal with one dimension less than before. To proceed, we then split rτ (ϕ,∆) into a term

depending only on ϑ and δ and a second term involving η and ε as well. The subsequent

assumptions ensure that the second term vanishes asymptotically, and the first one is dealt

with by means of differentiation results for semimartingales presented in Schweizer (1990).

In the end, we then obtain the following result; note that it exactly parallels (3.4).

Theorem 3.3. Suppose that X satisfies (SC), d = 1, M is in M2
0(P ), 〈M〉 is P -a.s. strictly

increasing, A is P -a.s. continuous and E
[
K̂T

]
< ∞. Let H ∈ L2(FT , P ) be a contingent

claim and ϕ an L2-strategy with VT (ϕ) = H P -a.s. Then ϕ is locally risk-minimizing if and

only if ϕ is mean-self-financing and the martingale C(ϕ) is strongly orthogonal to M .

Proof. This follows immediately from Proposition 2.3 of Schweizer (1991) once we note that

E
[
K̂T

]
= E




T∫

0

∣∣λ̂u
∣∣2 d〈M〉u


 <∞

implies that λ̂ ∈ L2(P ⊗ 〈M〉) so that
∣∣λ̂
∣∣ log+

∣∣λ̂
∣∣ is (P ⊗ 〈M〉)-integrable. Assumption (X5)

of Schweizer (1991) (X continuous at T P -a.s.) is not used in the proof.

q.e.d.

Now we return to the general case d ≥ 1. The preceding result motivates the following

Definition. LetH ∈ L2(FT , P ) be a contingent claim. An L2-strategy ϕ with VT (ϕ) = H P -

a.s. is called pseudo-locally risk-minimizing or pseudo-optimal forH if ϕ is mean-self-financing

and the martingale C(ϕ) is strongly orthogonal to M .

For d = 1 and X sufficiently well-behaved, we have just seen that pseudo-optimal and

locally risk-minimizing strategies are the same. But in general, pseudo-optimal strategies are

both easier to find and to characterize. This is shown in the next result which is due to

Föllmer/Schweizer (1991).
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Proposition 3.4. A contingent claim H ∈ L2(FT , P ) admits a pseudo-optimal L2-strategy

ϕ with VT (ϕ) = H P -a.s. if and only if H can be written as

(3.7) H = H0 +

T∫

0

ξHu dXu + LH
T P -a.s.

with H0 ∈ L2(F0, P ), ξ
H ∈ ΘS and LH ∈ M2

0(P ) strongly P -orthogonal to M . The strategy

ϕ is then given by

ϑt = ξHt , 0 ≤ t ≤ T

and

Ct(ϕ) = H0 + LH
t , 0 ≤ t ≤ T ;

its value process is

(3.8) Vt(ϕ) = Ct(ϕ) +

t∫

0

ϑu dXu = H0 +

t∫

0

ξHu dXu + LH
t , 0 ≤ t ≤ T

so that η is also determined by the above description.

Proof. This is Proposition (2.24) of Föllmer/Schweizer (1991), but for completeness we

repeat here the simple proof: Write

H = VT (ϕ) = CT (ϕ) +
T∫
0

ϑu dXu = C0(ϕ) +
T∫
0

ϑu dXu + CT (ϕ)− C0(ϕ)

and use the definition of pseudo-optimality.

q.e.d.

Quite apart from the connection to local risk-minimization, the decomposition (3.7) is

in itself interesting. In the martingale case where A ≡ 0 and M = X − X0, it is the well-

known Galtchouk-Kunita-Watanabe decomposition (2.1). In the general case, it has been

called in the literature the Föllmer-Schweizer decomposition of H and has been studied by

several authors. Sufficient conditions for its existence have for instance been given by Buck-

dahn (1993), Schweizer (1994a), Monat/Stricker (1995), Schweizer (1995a), Delbaen/Monat/

Schachermayer/Schweizer/Stricker (1997) or Pham/Rheinländer/Schweizer (1998). The sim-

plest sufficient condition is that the mean-variance tradeoff process K̂ should be bounded

uniformly in t and ω; see Theorem 3.4 of Monat/Stricker (1995). A survey of some results

on the Föllmer-Schweizer decomposition has been given by Stricker (1996).

In view of Theorem 3.3 and Proposition 3.4, finding the Föllmer-Schweizer decomposi-

tion of a given contingent claim H is important because it allows one to obtain a locally risk-

minimizing strategy under some additional assumptions. In Buckdahn (1993) or Schweizer

18



(1994a), the existence of this decomposition is proved by means of backward stochastic dif-

ferential equations whereas Monat/Stricker (1995) and Pham/Rheinländer/Schweizer (1998)

use a fixed point argument. But all these results do not provide a constructive way of finding

ξH and LH more explicitly. Following Föllmer/Schweizer (1991) and Schweizer (1995a), we

therefore explain how one can often obtain (3.7) by switching to a suitably chosen martingale

measure for X ; this notably works in the case where X is continuous and has a bounded

mean-variance tradeoff. Moreover, this approach is in perfect analogy to the situation in

discrete time.

Inspired by the difference equation (3.6), we consider the stochastic differential equation

dẐt = −Ẑt−λ̂t dMt , Ẑ0 = 1.

Its unique strong solution is the stochastic exponential Ẑ = E
(
−
∫
λ̂ dM

)
; if X (hence also

M) is continuous, this is explicitly given by

Ẑt = exp


−

t∫

0

λ̂u dMu −
1

2

〈∫
λ̂ dM

〉
t


 = exp


−

t∫

0

λ̂u dMu −
1

2
K̂t


 , 0 ≤ t ≤ T.

It is well known and easily checked that Ẑ is in general a locally square-integrable local

P -martingale such that

(3.9) ẐX is a local P -martingale,

Ẑ
∫
ϑ dX is a local P -martingale for every ϑ ∈ ΘS

and

(3.10) ẐL is a local P -martingale for every L ∈ M2
0,loc(P ) strongly P -ortho-

gonal to M ;

see for instance Theorem (3.5) of Föllmer/Schweizer (1991) or Schweizer (1995a). By (3.8),

this implies the analogue of (3.5) that

(3.11) for a pseudo-optimal L2-strategy ϕ for H, the product ẐV (ϕ) is a local

P -martingale.

In the situation of (3.11), C(ϕ) is a martingale and sup
0≤t≤T

|Vt(ϕ)| ∈ L2(P ); hence ẐV (ϕ) is

then a true martingale if Ẑ itself is a square-integrable martingale.

So suppose now that Ẑ ∈ M2(P ). A restrictive sufficient condition for this is by Theorem

II.2 of Lepingle/Mémin (1978) uniform boundedness of K̂ in t and ω. In concrete applications,

one can also try to check square-integrability directly. If Ẑ is also strictly positive on [0, T ]
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(which will certainly hold if M , hence Ẑ, is continuous), then

(3.12)
dP̂

dP
:= ẐT = E

(
−
∫
λ̂ dM

)
T
∈ L2(P )

defines a probability measure P̂ ≈ P which is in IP according to (3.9). For reasons explained

below, this measure P̂ is called the minimal equivalent local martingale measure for X . Since

the martingale form of (3.11) says that V (ϕ) is a P̂ -martingale for a pseudo-optimal L2-

strategy ϕ for H, we get

(3.13) Vt(ϕ) = Ê[H|Ft] =: V H,P̂
t , 0 ≤ t ≤ T

for such a strategy. Hence we are led to study the P̂ -martingale V H,P̂ and its relation to the

local P̂ -martingale X . Note that H ∈ L1(P̂ ) because H and ẐT are both in L2(P ); hence

V H,P̂ is indeed well-defined.

In addition to the previous assumptions, suppose now also thatX is continuous . By (3.9),

X is a local P̂ -martingale and so V H,P̂ admits a Galtchouk-Kunita-Watanabe decomposition

under P̂ with respect to X as

(3.14) V H,P̂
t = V H,P̂

0 +

t∫

0

ξH,P̂
u dXu + LH,P̂

t , 0 ≤ t ≤ T

where ξH,P̂ ∈ L(X) and LH,P̂ is a local P̂ -martingale null at 0 and strongly P̂ -orthogonal

to X ; see Ansel/Stricker (1993). For t = T , this gives in particular a decomposition of

the random variable H. Thanks to the continuity of X , LH,P̂ is also a local P -martingale

strongly P -orthogonal to X ; see Ansel/Stricker (1992) or Schweizer (1995a). In many cases,

this decomposition gives us what we need; this was already observed in Theorem (3.14) of

Föllmer/Schweizer (1991).

Theorem 3.5. Suppose that X is continuous and hence satisfies (SC) (because IP 6= ∅).

Define the strictly positive local P -martingale Ẑ := E
(
−
∫
λ̂ dM

)
and suppose that

(3.15) Ẑ ∈ M2(P ).

Define P̂ and V H,P̂ as above by (3.12) and (3.13), respectively. If either

(3.16) H admits a Föllmer-Schweizer decomposition

or

(3.17) V H,P̂
0 ∈ L2(P ), ξH,P̂ ∈ ΘS and LH,P̂ ∈ M2(P ),
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then (3.14) for t = T gives the Föllmer-Schweizer decomposition of H and ξH,P̂ determines a

pseudo-optimal L2-strategy for H. A sufficient condition for (3.15), (3.16) and (3.17) is that

K̂ is uniformly bounded.

Proof. This is almost a summary of the preceding arguments. If we have (3.16), then (3.10)

implies that LH is a local P̂ -martingale and strongly P̂ -orthogonal to X , since
〈
LH , X

〉
=

〈
LH ,M

〉
= 0 by the continuity of X . By the uniqueness of the Galtchouk-Kunita-Watanabe

decomposition, (3.7) and (3.14) for t = T must therefore coincide. If we have (3.17), the

argument just before Theorem 3.5 shows that (3.14) for t = T gives a Föllmer-Schweizer

decomposition for H which by uniqueness must again coincide with (3.7). The assertion

about ξH,P̂ is then immediate from Proposition 3.4 and that boundedness of K̂ is sufficient

follows from Theorem II.2 of Lepingle/Mémin (1978), Theorem 3.4 of Monat/Stricker (1995)

and Lemma 6 of Pham/Rheinländer/Schweizer (1998) respectively.

q.e.d.

The basic message of Theorem 3.5 is that for X continuous, finding a locally risk-

minimizing strategy essentially boils down to finding the Galtchouk-Kunita-Watanabe de-

composition of H under the minimal ELMM P̂ . This is very useful because the density

process Ẑ of P̂ with respect to P can immediately be written down explicitly and we can

directly see the dynamics of X under P̂ . In particular, finding (3.14) can often be reduced to

solving a partial differential equation if H can be written as a function of the final value of

some (possibly multidimensional) process which has a Markovian structure under P̂ . This is

explained in Pham/Rheinländer/Schweizer (1998) and for the case of a stochastic volatility

model in more detail also in Heath/Platen/Schweizer (1998).

Remark. We emphasize that by its very nature, local risk-minimization is a hedging approach

designed to control the riskiness of a strategy as measured by its local cost fluctuations. If

there is an optimal strategy ϕ, we can use Vt(ϕ) as a value or price of H at time t, but two

things about this should be kept in mind: Such a valuation is a by-product of the method,

not its primary objective, and it is only a valuation with respect to the (subjective) criterion

of local risk-minimization.

If we can obtain the Föllmer-Schweizer decomposition of H via the Galtchouk-Kunita-

Watanabe decomposition of H under P̂ , we know from (3.13) that the value process of

the corresponding pseudo-optimal strategy ϕ is given by the conditional expectations of H

under P̂ . Together with the preceding remark, this shows that V H,P̂ can be interpreted

as an intrinsic valuation process for H and identifies P̂ as the valuation operator naturally

associated with the criterion of local risk-minimization. It seems therefore appropriate to
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comment briefly on the origins and properties of P̂ and in particular on the terminology

“minimal ELMM”.

The first formal definition of a minimal martingale measure appears in Föllmer/Schweizer

(1991). They consider a continuous square-integrable real-valued process X and focus on

equivalent martingale measures Q for X that satisfy dQ
dP

∈ L2(P ). A martingale measure Q

from this class is called minimal if Q = P on F0 and if any L ∈ M2
0(P ) strongly P -orthogonal

to M is under Q still a martingale. Theorem (3.5) of Föllmer/Schweizer (1991) then proves

that such a measure is unique and must coincide with P̂ defined above; existence is therefore

equivalent to Ẑ being in M2(P ). These results have precursors in Schweizer (1988, 1991) for

the special case where M2(P ) is generated by M and a second orthogonal P -martingale N .

In that context, the “minimal” martingale measure is introduced as an equivalent probability

that turns X into a martingale and preserves the martingale property of N . The terminology

“minimal” is there motivated by the fact that apart from turning X into a martingale, this

measure disturbs the overall martingale and orthogonality structures as little as possible.

The original motivation in Schweizer (1988) for introducing a minimal martingale mea-

sure P̂ was its use in finding locally risk-minimizing strategies via a variant of Theorem 3.5.

It has subsequently turned out that P̂ appears quite naturally in a number of other situa-

tions as well. Apart from local risk-minimization as discussed above, one can mention here

logarithmic utility maximization problems
(
see Cvitanić/Karatzas (1992), Karatzas (1997),

Amendinger/Imkeller/Schweizer (1998)
)
, pricing under local utility indifference

(
see Davis

(1994, 1997), Karatzas/Kou (1996)
)
, equilibrium prices for assets

(
see Pham/Touzi (1996)

or Jouini/Napp (1998)
)
and value preservation

(
see Korn (1997, 1998)

)
. In view of this ap-

parent ubiquity of P̂ , it is natural to ask for a more concise and transparent description of P̂ ,

preferably as the solution of a suitable optimization problem. This would give a more precise

meaning to the sense in which P̂ is optimal.

Proposition 3.6. Let X be a continuous adapted process admitting at least one equivalent

local martingale measure Q. If P̂ defined by (3.12) is a probability measure equivalent to P ,

then P̂ minimizes the reverse relative entropy H(P |Q) over all ELMMs Q for X .

Proof. See Theorem 1 of Schweizer (1999a).

At present, this seems to be the most general known characterization of P̂ . For the

case of a multidimensional diffusion model for X , this can also be found in section 5.6 of

Karatzas (1997), and Schweizer (1999a) contains a discussion of other less general results. A

counterexample in Schweizer (1999a) shows that Proposition 3.6 does not carry over to the

case where X is discontinuous. Finding an analogous description of P̂ in general seems to be

an open problem.
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4. Mean-variance hedging

Let us now return to the general situation where X is a semimartingale under P and H is

a given contingent claim. The key difference between (local) risk-minimization and mean-

variance hedging is that we no longer impose on our trading strategies the replication re-

quirement VT = H P -a.s., but insist instead on the self-financing constraint (1.1). For a

self-financing pre-strategy (V0, ϑ), the shortfall or loss from hedging H by (V0, ϑ) is then

H − VT (V0, ϑ) = H − V0 −
T∫
0

ϑu dXu

and we want to minimize the L2(P )-norm of this quantity by choosing (V0, ϑ). Note that

a symmetric criterion is quite natural in the present context of hedging and pricing options

because one does not know at the start whether one is dealing with a buyer or a seller;

see Bertsimas/Kogan/Lo (1999) for an amplification of this point. Choosing the L2-norm is

mainly for convenience because it allows fairly explicit results while at the same time leading

to interesting mathematical questions. For brevity, we write L2 for L2(P ) if there is no risk

of confusion.

We first have to be more specific about our strategies. We do not assume that F0 is

trivial but we insist on a non-random initial capital V0.

Definition. We denote by Θ2 the set of all ϑ ∈ L(X) such that the stochastic integral process

G(ϑ) :=
∫
ϑ dX satisfies GT (ϑ) ∈ L2(P ). For a fixed linear subspace Θ of Θ2, a Θ-strategy is a

pair (V0, ϑ) ∈ IR×Θ and its value process is V0+G(ϑ). A Θ-strategy
(
Ṽ0, ϑ̃

)
is called Θ-mean-

variance optimal for a given contingent claim H ∈ L2 if it minimizes ‖H − V0 −GT (ϑ)‖L2

over all Θ-strategies (V0, ϑ) and Ṽ0 is then called the Θ-approximation price for H.

The preceding definition depends on the choice of the space Θ of strategies allowed for

trading and we shall be more specific about this later on. For the moment, however, we go in

the other direction and consider an even more general framework. Suppose we have chosen a

linear subspace Θ of Θ2. Then the linear subspace

G := GT (Θ) =

{
T∫
0

ϑu dXu

∣∣∣∣∣ϑ ∈ Θ

}

of L2 describes all outcomes of self-financing Θ-strategies with initial wealth V0 = 0 and

A := IR+ G =

{
V0 +

T∫
0

ϑu dXu

∣∣∣∣∣ (V0, ϑ) ∈ IR×Θ

}

is the space of contingent claims replicable by self-financing Θ-strategies. Our goal in mean-

variance hedging is to find the projection in L2 of H on A and this can be studied for a general
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linear subspace G of L2. In analogy to the above definition, we introduce a G-mean-variance

optimal pair
(
Ṽ0, g̃

)
∈ IR × G for H ∈ L2 and call Ṽ0 the G-approximation price for H. In

particular, we need no explicit model for X or Θ at this stage and both a discrete-time or

a continuous-time choice for X fit equally well into this setting. This was first pointed out

in Schweizer (1998) and exploited in Schweizer (1999b). Our presentation here follows the

latter.

Definition. We say that G admits no approximate profits in L2 if Ḡ does not contain the

constant 1; the bar ¯ denotes the closure in L2.

With our preceding interpretations, this notion is very intuitive: It says that one cannot

approximate (in the L2-sense) the riskless payoff 1 by a self-financing strategy with initial

wealth 0. This is a no-arbitrage condition on the financial market underlying G; see also

Stricker (1990).

Definition. A signed G-martingale measure is a signed measure Q on (Ω,F) with Q[Ω] = 1,

Q≪ P with dQ
dP

∈ L2 and

EQ[g] = E

[
dQ

dP
g

]
= 0 for all g ∈ G.

IP 2
s (G) denotes the convex set of all signed G-martingale measures and an element P̃G of IP 2

s (G)

is called variance-optimal if it minimizes
∥∥∥dQ
dP

∥∥∥
L2

=

√
1 + Var

[
dQ
dP

]
over all Q ∈ IP 2

s (G).

Lemma 4.1. Let G be a linear subspace of L2. Then:

1) G admits no approximate profits in L2 if and only if IP 2
s (G) 6= ∅.

2) If G admits no approximate profits in L2, then Ā = IR+ Ḡ.

3) If G admits no approximate profits in L2, then the variance-optimal signed G-mar-

tingale measure P̃G exists, is unique and satisfies

(4.1)
dP̃G

dP
∈ Ā.

Proof. This very simple result goes back to Delbaen/Schachermayer (1996a) and Schweizer

(1998); for completeness, we reproduce here the detailed proof of Schweizer (1999b). We use

(· , ·) for the scalar product in L2.

1) An element Q of IP 2
s (G) can be identified with a continuous linear functional Ψ on L2

satisfying Ψ = 0 on G and Ψ(1) = 1 by setting Ψ(U) = E
[
dQ
dP
U
]
=
(

dQ
dP
, U
)
. Hence 1) is

clear from the Hahn-Banach theorem.
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2) Any g ∈ Ḡ is the limit in L2 of a sequence (gn) in G; hence c+ gn = an is a Cauchy

sequence in A and thus converges in L2 to a limit a ∈ Ā so that c + g = a ∈ Ā. This

gives the inclusion “⊇” in general. For the converse, we use the assumption that G admits

no approximate profits in L2 to obtain from part 1) a signed G-martingale measure Q. The

random variable Z := dQ
dP

is then in G⊥ and satisfies (Z, 1) = Q[Ω] = 1. For any a ∈ Ā,

there is a sequence an = cn + gn in A converging to a in L2. Since cn + gn ∈ IR + G for all

n, we conclude that cn = (cn + gn, Z) = (an, Z) converges in IR to (a, Z) =: c. Therefore

gn = an−cn converges in L2 to g := a−c and since this limit is in Ḡ, we have a = c+g ∈ IR+Ḡ

which proves the inclusion “⊆”.

3) Existence and uniqueness of P̃G are clear once we observe that we have to minimize

‖Z‖ over the closed convex set Z :=
{
Z = dQ

dP

∣∣∣Q ∈ IP 2
s (G)

}
which is non-empty thanks to

1). For any fixed Z0 ∈ Z, the projection Z̃ of Z0 in L2 on Ā is again in Z; in fact, one easily

verifies that Ψ̃(U) :=
(
Z̃, U

)
is 0 on G and has Ψ̃(1) = 1. Since part 2) tells us that Z̃ = c̃+ g̃

with g̃ ∈ Ḡ, we obtain
(
Z, Z̃

)
= c̃ =

(
Z̃, Z̃

)
for all Z ∈ Z and therefore

‖Z‖2 =
∥∥Z̃
∥∥2 +

∥∥Z − Z̃
∥∥2 ≥

∥∥Z̃
∥∥2 for all Z ∈ Z.

Hence we conclude that dP̃G

dP
= Z̃ is in Ā.

q.e.d.

For any g ∈ G and any Q ∈ IP 2
s (G), we have

1 = EQ[1− g] = E

[
dQ

dP
(1− g)

]
≤

∥∥∥∥
dQ

dP

∥∥∥∥
L2

‖1− g‖L2

by the Cauchy-Schwarz inequality and therefore

1

inf
Q∈IP 2

s
(G)

∥∥∥dQ
dP

∥∥∥
L2

= sup
Q∈IP 2

s
(G)

1∥∥∥dQ
dP

∥∥∥
L2

≤ inf
g∈G

‖1− g‖L2 .

This indicates that finding the variance-optimal signed G-martingale measure is the dual

problem to approximating in L2 the constant 1 by elements of G. This duality is reflected in

the next result which gives the G-approximation price as an expectation under P̃G .

Proposition 4.2. Suppose that G is a linear subspace of L2 which admits no approximate

profits in L2. If a contingent claim H ∈ L2 admits a G-mean-variance optimal pair
(
Ṽ0, g̃

)
,

the G-approximation price of H is given by

Ṽ0 = ẼG[H]
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where ẼG denotes expectation under the variance-optimal signed G-martingale measure P̃G .

Proof. If H admits a G-mean-variance optimal pair
(
Ṽ0, g̃

)
, then Ṽ0 + g̃ is the projection in

L2 of H on Ā = IR+ Ḡ by Lemma 4.1. Since H− Ṽ0− g̃ is then in the orthogonal complement

of Ā, (4.1) implies that E
[(
H − Ṽ0 − g̃

)
dP̃G

dP

]
= 0 and so we obtain

Ṽ0 = E

[
(
H − g̃ )

dP̃G

dP

]
= ẼG[H]

because P̃G is in IP 2
s (G).

q.e.d.

The assumption in Proposition 4.2 that H admits a G-mean-variance optimal pair is

obviously unpleasant. We can avoid it by either working a priori with elements from the

closed linear subspace Ā = IR + Ḡ or by ensuring in some way that G (hence also A) is

already closed in L2. The simpler first solution is preferable if we are not directly interested

in the structure of the optimal element Ṽ0 + g̃. This is the case in most situations where

we only want to value contingent claims by using some quadratic criterion; see for instance

Mercurio (1996), Aurell/Simdyankin (1998), Schweizer (1998) or Schweizer (1999b). But for

hedging purposes, we also want to understand g̃ itself and therefore we follow here the second

idea and return to the framework with a semimartingale X and a space Θ ⊆ Θ2 of integrands

to study the closedness of GT (Θ) in L2.

So let X = (Xt)0≤t≤T be an IRd-valued semimartingale which is locally in L2(P ) in the

sense that the maximal process X∗
t := sup

0≤s≤t

|Xs|, 0 ≤ t ≤ T , is locally P -square-integrable.

Let (̺n)n∈IN be a corresponding localizing sequence of stopping times. A process of the form

ϑ = ξI]]σ,τ ]] with σ ≤ τ stopping times with τ ≤ ̺n for some n and with a bounded IRd-valued

Fσ-measurable random variable ξ is called a simple integrand and we denote by Θsimple the

linear space spanned by all simple integrands. It is evident that Θsimple ⊆ Θ2 and easy to

verify that Q is an ELMM for X with dQ
dP

∈ L2(P ) if and only if Q is in IP 2
s (Θsimple) and

Q ≈ P . We denote the set of all these probability measures Q by IP 2
e (X).

Definition. The variance-optimal signed martingale measure P̃ for X is defined as the

variance-optimal signed GT (Θsimple)-martingale measure.

In general, P̃ is unfortunately a signed measure. But for a continuous process X , the

situation is better.

Theorem 4.3. If X is a continuous IRd-valued semimartingale and IP 2
e (X) 6= ∅, then P̃ is
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in IP 2
e (X). In other words, the variance-optimal signed martingale measure for X is then

automatically equivalent to P and in particular a probability measure.

Proof. See Theorem 1.3 of Delbaen/Schachermayer (1996a).

In order to study the closedness in L2 of G := GT (Θ) and also to relate P̃ to P̃G , we now

consider two specific choices of Θ.

Definition. ΘGLP consists of all ϑ ∈ L(X) such that GT (ϑ) is in L2(P ) and the process

G(ϑ) =
∫
ϑ dX is a uniformly Q-integrable Q-martingale for every Q ∈ IP 2

e (X). ΘS consists

(as in section 3) of all ϑ ∈ L(X) such that G(ϑ) is in the space S2(P ) of semimartingales.

The space ΘS has been introduced by Schweizer (1994a). At first sight, it appears

simpler and more natural because it can be defined directly in terms of the original proba-

bility measure P . Moreover, it obviously generalizes the space L2(X) used in section 2 for

the martingale case to the semimartingale framework. The space ΘGLP was first used by

Delbaen/Schachermayer (1996b) and introduced to hedging by Gouriéroux/Laurent/Pham

(1998). Its main advantage (as illustrated by the next two results) is that it is better adapted

to duality formulations and easier to handle for certain theoretical aspects. On the other

hand, proving for an explicitly given strategy ϑ that it is in Θ is usually much simpler for

Θ = ΘS than for Θ = ΘGLP. For additional results on the relation between ΘS and ΘGLP,

see also Rheinländer (1999).

Theorem 4.4. Let X be an IRd-valued semimartingale which is locally in L2(P ) and assume

that IP 2
e (X) 6= ∅. Then GT (ΘGLP) is closed in L2(P ). If X is continuous, we have in addition

that GT (ΘGLP) = GT (Θsimple) where the bar ¯ denotes the closure in L2(P ); this implies in

particular that P̃ = P̃GT (ΘGLP).

Proof. This is due to Delbaen/Schachermayer (1996b). The first assertion follows from the

equivalence of (i) and (ii) in their Theorem 1.2 (note that their D2 is always closed in L2)

and the second uses in addition their Theorem 2.2.

q.e.d.

For ΘS instead of ΘGLP, analyzing the closedness question is more delicate.

Definition. Let Z = (Zt)0≤t≤T be a strictly positive P -martingale with E[Z0] = 1. We say

that Z satisfies the reverse Hölder inequality R2(P ) if there is some constant C such that

E
[
Z2
T

∣∣Ft

]
≤ CZ2

t P -a.s.
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for each t ∈ [0, T ]. A probability measure Q ≈ P is said to satisfy R2(P ) if its density process

ZQ
t := E

[
dQ
dP

∣∣∣Ft

]
, 0 ≤ t ≤ T , satisfies R2(P ).

Theorem 4.5. Let X be a continuous IRd-valued semimartingale. Then the following state-

ments are equivalent:

1) IP 2
e (X) 6= ∅ and GT (ΘS) is closed in L2(P ).

2) There exists some Q ∈ IP 2
e (X) satisfying R2(P ).

3) The variance-optimal martingale measure P̃ is in IP 2
e (X) and satisfies R2(P ).

Proof. This is a partial statement of Theorem 4.1 of Delbaen/Monat/Schachermayer/

Schweizer/Stricker (1997).

Once we know that GT (Θ) is closed and does not contain 1, we can obtain Θ-mean-

variance optimal Θ-strategies
(
Ṽ0, ϑ̃

)
by projecting the given contingent claim H ∈ L2 on

the space A of replicable claims and it becomes interesting to study the structure of the

optimal integrand ϑ̃ in more detail. Before we do this, let us briefly mention some more recent

extensions of the preceding results. It is natural to replace the exponent 2 by p ∈ (1,∞) in

the definition of ΘS and to ask if GT (ΘS) is then closed in Lp(P ). For the case where X

is continuous, this has been treated in Grandits/Krawczyk (1998) who generalized Theorem

4.5 to an arbitrary p ∈ (1,∞). The next step is then to eliminate the assumption that X is

continuous. This has been done in Choulli/Krawczyk/Stricker (1998, 1999) who first extended

the Doob, Burkholder-Davis-Gundy and Fefferman inequalities from (local) martingales to

a class of semimartingales (called E-martingales) with a particular structure inspired by the

financial background of the problem. They then used this to provide sufficient conditions

for the closedness of GT (ΘS) in Lp(P ) when X is an E-martingale. Moreover, they also

generalized earlier results by Delbaen/Monat/Schachermayer/Schweizer/Stricker (1997) on

the existence and continuity of the Föllmer-Schweizer decomposition. The problem of finding

necessary and sufficient conditions for GT (ΘS) to be closed in this general setting seems at

present still open.

Let us now turn to the problem of finding the integrand ϑ̃ in the projection of a given

H ∈ L2 on the space A = IR + GT (Θ). For the case where X = (Xk)k=0,1,...,T is a real-

valued square-integrable process in discrete time with a bounded mean-variance tradeoff,

explicit recursive formulae for ϑ̃ have been given in Schweizer (1995b). These results are

for the one-dimensional case d = 1; the extension to d > 1 has been worked out and will

be presented elsewhere. See also Bertsimas/Kogan/Lo (1999) and Černý (1999) for recent

results obtained via dynamic programming arguments. If X = (Xt)0≤t≤T is an IRd-valued

semimartingale, the above recursive expressions take under some additional assumptions the
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form of a backward stochastic differential equation; see Schweizer (1994a, 1996) for more

details. Both types of results simplify considerably if logX is a Lévy process in either

discrete or continuous time and H has a particular structure; this has been worked out

by Hubalek/Krawczyk (1998). Theoretical and numerical results for mean-variance opti-

mal strategies can be found in Biagini/Guasoni/Pratelli (1999), Guasoni/Biagini (1999) and

Heath/Platen/Schweizer (1998) for the case of a stochastic volatility model and more numer-

ically oriented studies in diffusion or jump-diffusion models have been done by Bertsimas/

Kogan/Lo (1999), Grünewald/Trautmann (1997) and Hipp (1996, 1998). Additional refer-

ences can also be found after the next theorem.

The most general results on ϑ̃ have been obtained for the case where X is continuous

and IP 2
e (X) 6= ∅. By Theorem 4.3, the variance-optimal martingale measure P̃ for X then

exists and is equivalent to P . Moreover, the arguments in Delbaen/Schachermayer (1996a)

also show that the process

Z̃t := Ẽ

[
dP̃

dP

∣∣∣∣∣Ft

]
, 0 ≤ t ≤ T

can be written as

Z̃t = Z̃0 +

t∫

0

ζ̃u dXu , 0 ≤ t ≤ T

for some ζ̃ ∈ ΘGLP. In particular, Z̃ is continuous. Note also that (4.1) implies that Z̃0 is

a non-random constant. As the next result shows, P̃ , Z̃ and ζ̃ all turn up in the solution of

the mean-variance hedging problem.

Theorem 4.6. Suppose that X is a continuous process such that IP 2
e (X) 6= ∅. Let H ∈

L2(P ) be a contingent claim and write the Galtchouk-Kunita-Watanabe decomposition of H

under P̃ with respect to X as

(4.2) H = Ẽ[H|F0] +

T∫

0

ξH,P̃
u dXu + LH,P̃

T = V H,P̃
T

with

V H,P̃
t := Ẽ[H|Ft] = Ẽ[H|F0] +

t∫

0

ξH,P̃
u dXu + LH,P̃

t , 0 ≤ t ≤ T.

Then the mean-variance optimal ΘGLP-strategy for H is given by

(4.3) Ṽ0 = Ẽ[H]
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and

ϑ̃t = ξH,P̃
t −

ζ̃t

Z̃t


V H,P̃

t− − Ẽ[H]−

t∫

0

ϑ̃u dXu


(4.4)

= ξH,P̃
t − ζ̃t


V

H,P̃
0 − Ẽ[H]

Z̃0

+

t−∫

0

1

Z̃u

dLH,P̃
u


 , 0 ≤ t ≤ T.

Proof. Thanks to Theorem 4.4, (4.3) follows immediately from Proposition 4.2. According to

Corollary 16 of Schweizer (1996), ϑ̃ is obtained by projecting the random variableH−Ẽ[H] on

GT (Θ) and this is in principle dealt with in Rheinländer/Schweizer (1997). The representation

(4.4) is very similar to their Theorem 6, but we cannot directly use their results since they

work with ΘS instead of ΘGLP. Thus we appeal to some results from Gouriéroux/Laurent/

Pham (1998) and this involves a second change of measure. Because Z̃ is a strictly positive

P -martingale and Z̃0 is deterministic, we can define a new probability measure R̃ ≈ P̃ ≈ P

by setting

dR̃

dP̃
:=

Z̃T

Z̃0

.

Clearly, the IRd+1-valued process Y =

(
1/Z̃

X/Z̃

)
is then a continuous local R̃-martingale since

P̃ ∈ IP 2
e (X). The density of R̃ with respect to P is Z̃2

T

/
Z̃0 and because Z̃0 is deterministic,

H is in L2(P ) if and only if H
/
Z̃T is in L2(R̃). The basic idea of Gouriéroux/Laurent/Pham

(1998) is now to use Z̃
/
Z̃0 as a new numeraire, rewrite the original problem in terms of

the corresponding new quantities and apply the Galtchouk-Kunita-Watanabe decomposition

theorem to H
/
Z̃T under R̃ with respect to Y . This yields

(4.5)
H

Z̃T

= E
R̃

[
H

Z̃T

∣∣∣∣F0

]
+

T∫
0

ψu dYu + LT

for some IRd+1-valued ψ ∈ L(Y ) such that
∫
ψ dY ∈ M2

0(R̃) and some L ∈ M2
0(R̃) strongly

R̃-orthogonal to Y . According to Theorem 5.1 and the subsequent remark in Gouriéroux/

Laurent/Pham (1998), ϑ̃ is then given by

(4.6) ϑ̃it = ψi
t + ζ̃it

(
Ẽ[H]

Z̃0

+
t∫
0

ψu dYu − ψtr
t Yt

)
, 0 ≤ t ≤ T, i = 1, . . . , d

if we note that the relation between their terminology and ours is given by V (ã) = Z̃
/
Z̃0,

X i(ã) = Z̃0Y
i and ã = −ζ̃

/
Z̃. By using Proposition 8 of Rheinländer/Schweizer (1997),
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(4.6) can be rewritten as

(4.7) ϑ̃ =
Ẽ[H]

Z̃0

ζ̃ + ϑ

with ϑ corresponding to ψ from (4.5) via equation (4.6) in Rheinländer/Schweizer (1997).

Hence it only remains to obtain ϑ or ψ in terms of the decomposition (4.5) and this is

basically already contained in Rheinländer/Schweizer (1997) if one looks carefully enough.

More precisely, we start from (4.5) and argue as in Proposition 10 of Rheinländer/Schweizer

(1997) to express the quantities in the decomposition (4.2) in terms of ψ and L. Note that

as long as we make no integrability assertions, that argument only uses Proposition 8 of

Rheinländer/Schweizer (1997) which holds as soon as IP 2
e (X) 6= ∅; see Remark 2) following

that Proposition 8. The uniqueness of the Galtchouk-Kunita-Watanabe decomposition then

implies that

LH,P̃
t =

t∫
0

Z̃u dLu , 0 ≤ t ≤ T

and

ξH,P̃
t =

V H,P̃
0

Z̃0

ζ̃t + ϑt + Lt−ζ̃t , 0 ≤ t ≤ T ;

note that we have to replace Ẽ[H] in equation (4.14) of Rheinländer/Schweizer (1997) by

V H,P̃
0 since F0 need not be trivial. Solving this for ϑ and plugging the result into (4.7) yields

the second expression in (4.4). The first then follows similarly as in the proof of Theorem 6

of Rheinländer/Schweizer (1997); we again have to replace there Ẽ[H] by V H,P̃
0 .

q.e.d.

While Theorem 4.6 does give a reasonably constructive description of the strategy ϑ̃, it is

still not completely satisfactory. For continuous-time processes with discontinuous trajecto-

ries, hardly anything is known about ϑ̃ except under quite restrictive additional assumptions

on X . Fairly explicit expressions have been found by Hubalek/Krawczyk (1998) if X is an

exponential Lévy process. This relies on earlier results in Schweizer (1994a) who obtained an

analogue to (4.4) for the case where X has a deterministic mean-variance tradeoff; see also

Grünewald (1998) who used this in a jump-diffusion setting. Somewhat more generally, Hipp

(1993, 1996), Wiese (1998) and Pham/Rheinländer/Schweizer (1998) studied the special case

where the minimal martingale measure P̂ and the variance-optimal martingale measure P̃

coincide. But at present, finding ϑ̃ in general is an open problem.

At least for continuous processes X , Theorem 4.6 makes it clear that a key role in

determining ϑ̃ is played by the variance-optimal martingale measure P̃ . For one thing, we

need the Galtchouk-Kunita-Watanabe decomposition of H under P̃ just as we needed the
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Galtchouk-Kunita-Watanabe decomposition of H under P̂ in section 3 to find locally risk-

minimizing strategies. (This partly explains why the case P̃ = P̂ is still solvable.) Thus we

have to understand the behaviour of X under P̃ and therefore also the structure of P̃ itself in

more detail. In addition, the latter is also required for finding ζ̃ and Z̃ that appear in (4.4).

We first recall a rather special case treated by Pham/Rheinländer/Schweizer (1998).

Lemma 4.7. Suppose thatX is a continuous process such that IP 2
e (X) 6= ∅. ForQ ∈

{
P̂ , P̃

}
,

we denote by ZQ
t := E

[
dQ
dP

∣∣∣Ft

]
, 0 ≤ t ≤ T , the density process of Q with respect to P . If

the final value K̂T of the mean-variance tradeoff is deterministic, then P̃ = P̂ ,

ZP̃
t = ZP̂

t = Ẑt = E
(
−
∫
λ̂ dM

)
t

, 0 ≤ t ≤ T,

Z̃t = Ê

[
dP̂

dP

∣∣∣∣∣Ft

]
= eK̂T E

(
−
∫
λ̂ dX

)
t

, 0 ≤ t ≤ T,

ζ̃t = −eK̂T E
(
−
∫
λ̂ dX

)
t
λ̂t = −Z̃tλ̂t , 0 ≤ t ≤ T

and

ZP̃
t

Z̃t

= e−(K̂T−K̂t) , 0 ≤ t ≤ T.

Proof. BecauseX satisfies (SC), the three middle results are simply reformulations of subsec-

tion 4.2 of Pham/Rheinländer/Schweizer (1998). The equality of P̃ and P̂ is a consequence

of the last remark in section 3 of Pham/Rheinländer/Schweizer (1998) and the last result

follows because

Z̃t = eK̂T E
(
−
∫
λ̂ dM − K̂

)
t
= eK̂TZP̃

t e
−K̂t .

q.e.d.

Although Lemma 4.7 is a pleasingly simple result, its assumption is usually too restrictive

for practical applications. More general results have been obtained by Laurent/Pham (1999)

in a multidimensional diffusion model by dynamic programming arguments. They show how

one can represent the ratio process Z̃
/
ZP̃ as the solution of a dynamic optimization problem

and how its canonical decomposition determines the ratio ζ̃
/
Z̃. Current work in progress

is aimed at extending these results to general continuous semimartingales, but there still

remains a lot to be done because no really explicit results have been found so far. If we

consider for instance a stochastic volatility model for X , the currently available techniques

only work in the case where X and its volatility are uncorrelated. This unfortunately excludes

most models of interest for practical applications and illustrates the need for more research in
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this area. For additional details and more recent work, we refer to Biagini/Guasoni/Pratelli

(1999), Guasoni/Biagini (1999), Heath/Platen/Schweizer (1998) and Laurent/Pham (1999).
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ETH Zürich 8615

M. Schweizer (1990), “Risk-Minimality and Orthogonality of Martingales”, Stochastics

and Stochastics Reports 30, 123–131

M. Schweizer (1991), “Option Hedging for Semimartingales”, Stochastic Processes and

their Applications 37, 339–363

M. Schweizer (1994a), “Approximating Random Variables by Stochastic Integrals”, An-

nals of Probability 22, 1536–1575

M. Schweizer (1994b), “Risk-Minimizing Hedging Strategies under Restricted Informa-

tion”, Mathematical Finance 4, 327–342

M. Schweizer (1995a), “On the Minimal Martingale Measure and the Föllmer-Schweizer
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