
5 Multivariate Analysis of Spectra

5.1 Introduction

a “Spectrum” means here: We measure the “intensity” for certain “wave lengths”. Such
a function characterizes a chemical mixture (or as a special case a pure substance).
There are many spectra in chemistry. For some of them, pure substances have a
spectrum that consists of a single “peak”. As long as the peaks are not overlapping,
we can identify the different components of a mixture and their proportions.

b NIR-Spectra (near infrared): The NIR-Spectra of pure substances is “any” function
with some more or less characteristic peaks. Hence, it’s rather difficult to identify the
type and the quantity of the different components based on the spectrum of a chemical
mixture. On the other side, these spectra are very cheap: No extra processing is needed,
they can be measured on-line.

Example c Quality Control via NIR-Spectra We have data of reflections of NIR-waves on 52
granulate samples with wave length 1100, 1102, 1104, ..., 2500 nm. Figure 5.1.c shows
the spectra in “centered” form; for each wave length j the median value medi(X(j)

i )
was subtracted from the X

(j)
i ’s.

Wl. 1800 1810 ... 2500
a 0.003097 0.017238 ... −0.02950
b 0.002797 0.016994 −0.03095
c 0.002212 0.015757 −0.03095

...
Z 0.001165 0.014237 ... −0.03110

Table 5.1.c: Data for the example “NIR-spectra” (for wavelengths larger than 1800nm).

Questions
• There are outliers. Are there other “structures”?
• The amount of an active ingredient was determined with a chemical analysis.

Can we estimate it sufficiently accurate with the spectrum?

d In other applications we measure spectra to follow a reaction on-line. It is used for
• estimating the order of a reaction and to determine potential intermediate prod-

ucts and reaction constants,
• determining the end of a process,
• monitoring a process.

We can also automatically monitor slow processes of all kinds. For example stock-
keeping: Are there any (unwanted) aging effects?
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Figure 5.1.c: NIR-Spectra of granulate samples, centered at the median curve.

e For each observation (sample) we have many variables (a whole spectrum).
Questions

• Is it reasonable to plot the different samples on a plane or is it possible to catch
most information and see structure from just a few dimensions (instead of using
all variables)?

• Can we identify dimensions (with technical interpretation) in the high-dimensional
space that contain most of the information?

• Is it possible to identify and to quantify the different components of a chemical
mixture based on its spectrum?

• For a regression analysis, 70 variables (or 700 at a higher resolution) are too
much if we only have 52 observations. How should we reduce dimensionality?

5.2 Multivariate Statistics: Basics

a Notation The vector X i = [X(1)
i , X

(2)
i , ..., X

(m)
i ]T denotes the ith spectrum. It’s a

point in m-dimensional space. Hence, for each observation we measure m different
quantities.
Remark In statistics and probability theory vectors are usually column vectors. Row
vectors are denoted by the symbol T (transposed vector).
This is inconvenient in statistics because the data matrix

X = [X(j)
i ] ,

that consists of n observations of m variables is built up the other way round: The
ith row contains the values for the ith observation. For most applications this is a
useful table (see e.g. the design matrix of a linear regression model). Here, it’s often
the other way round: In a table of spectra, a column often contains a single spectrum
(i.e., it’s one observation of a spectrum).
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b Definitions We define the following quantities for an m-dimensional random vector
X = [X(1), X(2), ..., X(m)]T ∈ Rm .

• Expectation µ ∈ Rm

µ = (µ1, . . . , µm)T , where µk = E[X(k)], k = 1, . . . , m .
In other words: a vector that consists of the (univariate) expectations.
We write µX in situations where we also have other random variables.

• Covariance Matrix |Σ ∈ Rm×m

|Σ is an m × m matrix with elements

|Σjk = Cov(X(j), X(k)) = E
�
(X(j) − µj)(X(k) − µk)

�
.

We also use the notation Var(X) or Cov(X).
Note that

◦ |Σjj = Cov(X(j), X(j)) = Var(X(j)).
This means that the diagonal elements of the matrix are the variances.

◦ Corr(X(j), X(k)) = |Σ jk�
|Σ jj |Σkk

.

Again, sometimes we write |ΣX if we want to point out that this is the covariance
matrix that corresponds to X .

c Linear Transformations
• For a simple (one-dimensional) random variable: Y = a + bX, where a, b ∈ R .

Expectation: E[Y ] = a + bµX .
Variance: Var(Y ) = b2σ2

X .
• For random vectors: Y = a + B X, where a ∈ Rm, b ∈ Rm×m .

Expectation: E[Y ] = a + B µX .
Covariance: Cov(Y ) = B |ΣX B T .

d Remark The multivariate normal distribution X ∼ N (µ, |Σ) is fully characterized
by the mean µ and the covariance matrix |Σ . It is the most common distribution in
multivariate statistics. See e.g. Chapter 15.3 in Stahel (2000).
Figure 5.2.d illustrates two two-dimensional normal distributions with the “contours”
of their densities. The mean vector is responsible for the location of the distribution
and the covariance matrix for the shape of the contours.

e Estimators

�µ =
�
X

(1)
, X

(2)
, . . . , X

(m)�T
= vector of means

�|Σ = 1
n − 1

n�

i=1
(X i − �µ)(X i − �µ)T

= matrix of the empirical variances and covariances.

This means that

�|Σjk = 1
n − 1

n�

i=1
(X(j)

i − X
(j))(X(k)

i − X
(k)).

The covariance matrix plays a crucial role in multivariate models that are based on
the normal distribution or that want to model linear relationships.
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Figure 5.2.d: Contours of the probability densities for a standard normal (left) and a general
(right) multivariate normal distribution.

5.3 Principal Component Analysis (PCA)

a Our goal is dimensionality reduction. We are looking for a few dimensions in the
m-dimensional space that can explain “most of the variation in the data”.
We define variation in the data as the sum of the individual m variances

m�

j=1

�Var(X(j)) = 1
n − 1

n�

i=1

m�

j=1
( �X(j)

i )2,

where �X(j)
i are the centered observations: �X(j)

i = X
(j)
i − X

(j) .

We want to find a new “coordinate system” with certain properties. This will lead to
• new basis vectors bk (�bk� = 1), the so called principal components. The

individual components of these basis vectors are called loadings.
• new coordinates Z

(k)
i = �XT

i bk , the so called scores (projections of the data on
the directions above).

What properties should the new coordinate system have?
• The first basis vector b1 should be chosen such that Var(Z(1)) is maximal.
• The second basis vector b2 should be orthogonal to the first one (bT

2 b1 = 0) such
that Var(Z(2)) is maximized.

• And so on...
Figure 5.3.a illustrates the idea using a two-dimensional distribution.
To summarize, we are performing a transformation to new variables

Zi = B�T (X i − �µ),

where the transformation matrix B� is orthogonal.
It can be shown that B� is the matrix of (standardized) eigenvectors and �λk are the
eigenvalues of �|ΣX .
Remember that �|ΣX is a symmetric matrix and therefore we can decompose it into

�|ΣX = B� D� B�T
,
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where B� is the matrix with the eigenvectors in the different columns and D� is the
diagonal matrix with the eigenvalues on the diagonal (this is a fact from linear algebra).
Therefore we have

�Var(Z) = B�T �|ΣXB� = D� =




�λ1 0 . . . 0
0 �λ2 . . . 0
...

... . . .
0 0 . . . �λm




�λ1 ≥ �λ2 ≥ · · · ≥ �λm ≥ 0.

Hence, the individual components of Z are uncorrelated and the first component
of Z has largest variance. By construction it holds that �λ1 = �Var(Z(1)). It is the
maximal variance of a projection:

�λ1 = max
b:�b�=1

( �Var(X b)).

Accordingly for �λm : It’s the smallest variance.
Because the �λk are the eigenvalues of �|ΣX , we know from linear algebra that

m�

k=1

�λk =
m�

k=1

�|Σkk =
m�

k=1

�Var(X(j)).

Hence �k
j=1

�λj
�m

j=1
�λj

is the proportion of the total variance that is explained by the first k principal
components.
Of course we can always go back to the original data using the new variables by doing
a simple back-transformation

Xi − �µ =
�

B�T
�−1

Zi = B�Zi =
m�

k=1
Z

(k)
i b(k).

b Graphical Representation By reducing dimensionality it gets easier to visualize
the data. For that reason we only consider the first two (or three) components and
forget about the other ones. Figure 5.3.b (i) illustrates the first two components for
the “NIR-spectra” example (for technical reasons we only consider wave lengths larger
than 1800 nm). We can see 5 outliers – they were already visible in the spectra. Figure
5.3.b (ii) shows the first three components of a principal component analysis without
the outliers.
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Figure 5.3.a: Principal component rotation.
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Figure 5.3.b: (i) Scatterplot of the first two principal components for the example “NIR-spectra”.
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Figure 5.3.b: (ii) Scatterplot matrix of the first three principal components for the example
“NIR-spectra” without the 5 outliers.

c PCA is suitable for many multivariate data sets. If we are analyzing spectra we have
the special case that the variables (the intensities of different wavelengths) have a
special ordering. Hence, we can plot each observation as a “function”. We can also
illustrate the principal component directions (the loadings) bk as spectra!

d Scaling Issues If the variables are measured in different units, they should be stan-
dardized to (empirical) variance 1 (otherwise comparing variances doesn’t make sense).
This leads to a PCA (= eigenanalysis) of the correlation- instead of the covariance ma-
trix.
For spectra this is not useful because wavelengths with very variable intensities contain
the most important information. If we would standardize the variables in that setup,
we would down-weight these variables compared to the unstandardized data set.

e Choosing the number p of components: (p < m)
• 2 (maybe 3) for illustrational purposes.
• Plot the explained variance (eigenvalues) in decreasing order and look for a break-

point (“scree plot”: plot �λk vs. k ), see Figure 5.3.e.
• “Explain 95% of the variance”: The sum of the eigenvalues �p

j=1
�λj should be

95% of the total sum �m
j=1

�λj .
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Figure 5.3.c: Spectra of “loadings” of the first three principal components for the example “NIR-
spectra”.
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Figure 5.3.e: Variances of the principal components (scree plot) for the example “NIR-spectra”.

But: “Variance” �m
j=1 λj = �m

j=1 Var(X(j)) is the sum of all variances. There could
be (many) noise variables among them!
Restriction to the first p principal components: In the transformation formula (5.3.a)
we simply ignore the last m − p terms:

Xi − �µ = �Xi + �Ei , �Xi =
p�

k=1
Z

(k)
i b(k) , �Ei =

m�

k=p+1
Z

(k)
i b(k).

This can be interpreted in the following two ways.
• In Linear Algebra terminology:

The “data matrix” of the �Xi is the best approximation of the data matrix of
the X i − �µ if we restrict ourselves to matrices with rank p (in the sense of the
so-called Frobenius norm of matrices: �E �2 = �

ij E2
ij ).

• In statistical terminology:
We were looking for p variables Z(k) = �m

j=1 BkjX(j), k = 1, . . . p , such that the
differences Ei = X i − �Xi of �Xi = �p

k=1 Z
(k)
i b(k) show minimial variance (in the

sum): �m
j=1

�Var(E(j)) = �m
k=p+1 λk is minimal (there will be no better choice

than the variables Z(k) ).



56 5 Multivariate Analysis of Spectra

5.4 Linear Mixing Models, Factor Analysis

a Model for Spectra Let ck be the spectrum of the chemical component k and consider
a mixture of the components with coefficients s = [s(k)] . For the ith mixture we have
the coefficients si . According to Lambert-Beer the spectrum of the ith mixture is

Xi =
�

k

c(k)s
(k)
i + Ei = C si + Ei

where Ei are measurement errors. C is the matrix of spectra ck (in the different
columns).
This looks very similar to 5.3.e. The differences are

• C not orthogonal
• X i instead of X i − �µ , not centered
• Ei random vector (measurement error)
• s

(k)
i ≥ 0 or Cjk ≥ 0, X

(j)
i ≥ 0 if we use the original spectra.

b This model can be used for many applications where there are m measurements that
are linear superimpositions of p < m components.
Examples are:

• Chemical elements in rocks that consist of several bed-rocks.
• Trace elements in spring water that ran through different soil layers.

c If the source profiles (spectra) ck are known, the “contributions” s
(k)
i can be estimated

for each observation i separately using linear regression.
However, it’s more interesting if both the source profiles and their contributions have
to be estimated from data. This can be achieved using a combination of statistical
methods, professional expertise and application specific properties.

5.5 Regression with Many Predictors

a In the introductory example about NIR-spectra we discussed the question whether we
can “predict” the amount of an active ingredient based on a spectrum.
Hence, we have a response variable Y and several predictors [x(1), ..., x(m)] . If we set
up a linear regression model we face the problem that there are many more predictors
than observations. Hence, it’s not possible to fit a “full model” (it would lead to a
perfect fit).
A possible remedy is to use “stepwise” regression: We start with just one predictor
and add the most significant predictor in the next step (until some stopping criterion
is met).
Example: Granulate Samples.
Y = yield. n = 44 (without “outliers”). Table 5.5.a shows a computer output. For
comparison: Simple correlation between L2450 and yield: r = −0.57, R2 = 0.32.

b Better known are the following methods to handle the problem of having too many
predictors

1. Principal Component-Regression,
2. Ridge Regression
3. New methods like Lasso, Elastic Net, ...
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Value Std. Error t value Pr(>|t|) Signif
(Intercept) 75.30372 0.07175 1049.52 0.000 ***
L2450 -395.43390 76.70623 -5.16 0.000 ***
L2010 -465.28939 142.44458 -3.27 0.002 **
L1990 585.20468 128.49676 4.55 0.000 ***
L2360 875.33702 160.04160 5.47 0.000 ***
L2400 532.91971 117.74430 4.53 0.000 ***
L2480 -301.44225 77.70208 -3.88 0.000 ***
L2130 -501.39852 88.17596 -5.69 0.000 ***

Residual standard error: 0.2268 on 36 degrees of freedom
Multiple R-Squared: 0.7212

Table 5.5.a: Computer output for a regression model after variable selection with stepwise
forward.

c Principal Component-Regression PCA of the predictors leads to new variables
[Z(1), . . . , Z(p)] . The principal components are usually selected without examining the
relationship with the response Y .
Variant of Brown Brown (1993): Select them according to simple correlation with Y !

d Ridge Regression An easy way to ensure that the matrix X T X (that needs to be
invertible for least squares) is non-singular is to add a diagonal matrix λI , leading to

�βλ = (X T X + λI )−1 X T Y .
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