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1 Preliminary Remarks

a Several types of problems lead to statistical models that are highly relevant for chemical
engineers:
• A response variable like yield or quality of a product or the duration of a pro-

duction process may be influenced by a number of variables – plausible examples
are temperature, pressure, humidity, properties of the input material (educts).
– In a first step, we need a model for describing the relations. This leads

to regression and analysis of variance models. Quite often, simple or
multiple linear regression already give good results.

– Optimization of production processes: If the relations are modelled
adequately, it is straightforward to search for those values of the variables
that drive the response variable to an optimal value. Methods to efficiently
find these optimum values are discussed under the label of design of ex-
periments.

• Chemical processes develop according to clear laws (“law and order of chemical
change”, Swinbourne, 1971), which are typically modelled by differential equa-
tions. In these systems there are constants, like the reaction rates, which can be
determined from data of suitable experiments. In the simplest cases this leads to
linear regression, but usually, the methods of non-linear regression, possibly
combined with the numerical solution of differential equations, are needed. We
call this combination system analysis.

• As an efficient surrogate for chemical determination of concentrations of different
compounds, indirect determination by spectroscopical measurements are often
suitable. Methods that allow for inferring amounts or concentrations of chemical
compounds from spectra belong to the field of multivariate statistics.

b In the very limited time available in this course we will present an introduction to
these topics. We start with linear regression, a topic you should already be familiar
with. The simple linear regression model is used to recall basic statistical notions. The
following steps are common for statistical methods:

1. State the scientific question and characterize the data which are available or will
be obtained.

2. Find a suitable probability model that corresponds to the knowledge about the
processes leading to the data. Typically, a few unknown constants remain, which
we call “parameters” and which we want to learn from the data. The model can
(and should) be formulated before the data is available.

3. The field of statistics encompasses the methods that bridge the gap between
models and data. Regarding parameter values, statistics answers the following
questions:
a) Which value is the most plausible one for a parameter? The answer

is given by estimation. An estimator is a function that determines a
parameter value from the data.

b) Is a given value for the parameter plausible? The decision is made by using
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a statistical test.
c) Which values are plausible? The answer is given by a set of all plausible

values, which is usually an interval, the so called confidence interval.
4. In many applications the prediction of measurements (observations) that are

not yet available is of interest.

c Linear regression was already discussed in “Grundlagen der Mathematik II”. Please
have a look at your notes to (again) get familiar with the topic.
You find additional material for this part of the course on

http://stat.ethz.ch/˜meier/teaching/cheming



2 Summary of Linear Regression

2.1 Simple Linear Regression

a Assume we have n observations (xi, Yi), i = 1, . . . , n and we want to model the
relationship between a response variable Y and a predictor variable x .
The simple linear regression model is

Yi = α+ βxi + Ei, i = 1, . . . , n.

The xi ’s are fixed numbers while the Ei ’s are random, called “random deviations” or
“random errors”. Usual assumptions are

Ei ∼ N (0, σ2), Ei independent.

The parameters of the simple linear regression model are the coefficients α, β and
the standard deviation σ of the random error.
Figure 2.1.a illustrates the model.

b Estimation of the coefficients follows the principle of least squares and yields

β̂ =
∑n
i=1(Yi − Y )(xi − x)∑n

i=1(xi − x)2 , α̂ = Y − β̂ x .

The estimates β̂ and α̂ fluctuate around the true (but unknown) parameters. More
precisely, the estimates are normally distributed,

β̂ ∼ N (β, σ2/SSX) , α̂ ∼ N
(
α, σ2

(
1
n + x2/SSX

))
,

1.6 1.8 2.0

0

1

x

Y error density

Figure 2.1.a: Display of the probability model Yi = 4− 2xi +Ei for 3 observations Y1 , Y2 and
Y3 corresponding to the x values x1 = 1.6, x2 = 1.8 and x3 = 2.
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4 2 Summary of Linear Regression

where SSX =
∑n
i=1(xi − x)2 .

c The deviations of the observed Yi from the fitted values ŷi = α̂ + β̂xi are called
residuals Ri = Yi − ŷi and are “estimators” of the random errors Ei .
They lead to an estimate of the standard deviation σ of the error,

σ̂2 = 1
n− 2

n∑
i=1

R2
i .

d Test of the null hypothesis β = β0 : The test statistic

T = β̂ − β0

se(β̂)
, se(β̂) =

√
σ̂2/SSX

has a t-distribution with n− 2 degrees of freedom under the null-hypothesis.
This leads to the confidence interval of

β̂ ± qtn−2
0.975 se(β̂).

e The “confidence band” for the value of the regression function connects the end
points of the confidence intervals for E(Y |x) = α+ βx .
A prediction interval shall include a (yet unknown) value Y0 of the response variable
for a given x0 – with a given “statistical certainty” (usually 95%). Connecting the end
points for all possible x0 produces the “prediction band”.

2.2 Multiple Linear Regression

a Compared to the simple linear regression model we now have several predictors
x(1), . . . , x(m) .
The multiple linear regression model is

Yi = β0 + β1x
(1)
i + β2x

(2)
i + ...+ βmx

(m)
i + Ei

Ei ∼ N (0, σ2), Ei independent.

In matrix notation:

Y = Xβ + E , E ∼ Nn(0, σ2 I ),

where the response vector Y ∈ Rn , the design matrix X ∈ Rn×p , the parameter
vector β ∈ Rp and the error vector E ∈ Rn for p = m+ 1 (number of parameters).

Y =


Y1
Y2
...
Yn

 , X =


1 x

(1)
1 x

(2)
1 . . . x

(m)
1

1 x
(1)
2 x

(2)
2 . . . x

(m)
2

...
...

...
...

...
1 x

(1)
n x

(2)
n . . . x

(m)
n

 , β =


β0
β1
...
βm

 , E =


E1
E2
...
En

 .

Different rows of the design matrix X are different observations. The variables (pre-
dictors) can be found in the corresponding columns.
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b Estimation is again based on least squares, leading to

β̂ = (X T X )−1 X TY ,

i.e. we have a closed form solution.
From the distribution of the estimated coefficients,

β̂j ∼ N
(
βj , σ

2
(
(X T X )−1

)
jj

)
t-tests and confidence intervals for individual coefficients can be derived as in the linear
regression model. The test statistic

T = β̂j − βj,0
se(β̂j)

, se(β̂j) =
√
σ̂2
(
(X T X )−1

)
jj

follows a t-distribution with n − (m + 1) parameters under the null-hypothesis H0 :
βj = βj,0 .
The standard deviation σ is estimated by

σ̂2 = 1
n− p

n∑
i=1

R2
i .

c Table 2.2.c shows a typical computer output, annotated with the corresponding
mathematical symbols.
The multiple correlation R is the correlation between the fitted values ŷi and the
observed values Yi . Its square measures the portion of the variance of the Yi ’s that is
“explained by the regression”, and is therefore called coefficient of determination:

R2 = 1− SSE/SSY ,

where SSE =
∑n
i=1(Yi − ŷi)2, SSY =

∑n
i=1(Yi − Y )2 .

Coefficients:
Value β̂j Std. Error t value Pr(>|t|)

(Intercept) 19.7645 2.6339 7.5039 0.0000
pH -1.7530 0.3484 -5.0309 0.0000
lSAR -1.2905 0.2429 -5.3128 0.0000

Residual standard error: σ̂ = 0.9108 on n− p = 120 degrees of freedom
Multiple R-Squared: R2 = 0.5787

Analysis of variance
Df Sum of Sq Mean Sq F Value Pr(F)

Regression m = 2 SSR = 136.772 68.386 T = 82.43 0.0000
Residuals n−p = 120 SSE = 99.554 σ̂2 = 0.830 p-value
Total 122 SSY = 236.326

Table 2.2.c: Computer output for a regression example, annotated with mathematical symbols.

d



6 2 Summary of Linear Regression

The model is called linear because it is linear in the parameters β0, . . . , βm .
It could well be that some predictors are non-linear functions of other predictors (e.g.,
x(2) = (x(1))2 ). It is still a linear model as long as the parameters appear in linear
form!

e In general, it is not appropriate to replace a multiple regression model by many simple
regressions (on single predictor variables).
In a multiple linear regression model, the coefficients describe how Y is changing when
varying the corresponding predictor and keeping the other predictor variables
constant. I.e., it is the effect of the predictor on the response after having subtracted
the effect of all other predictors on Y . Hence we need to have all predictors in the
model at the same time in order to estimate this effect.

f Many applications The model of multiple linear regression model is suitable for
describing many different situations:
• Transformations of the predictors (and the response variable) may turn origi-

nally non-linear relations into linear ones.
• A comparison of two groups is obtained by using a binary predictor variable.

Several groups need a “block of dummy variables”. Thus, nominal (or cate-
gorical) explanatory variables can be used in the model and can be combined
with continuous variables.

• The idea of different linear relations of the response with some predictors in
different groups of data can be included into a single model. More generally, in-
teractions between explanatory variables can be incorporated by suitable terms
in the model.

• Polynomial regression is a special case of multiple linear (!) regression (see
example above).

g The F-Test for comparison of models allows for testing whether several coefficients
are zero. This is needed for testing whether a categorical variable has an influence on
the response.

2.3 Residual Analysis

a The assumptions about the errors of the regression model can be split into
(a) their expected values are zero: E(Ei) = 0 (or: the regression function is

correct),
(b) they have constant variance, Var(Ei) = σ2 ,
(c) they are normally distributed,
(d) they are independent of each other.

These assumptions should be checked for
• deriving a better model based on deviations from it,
• justifying tests and confidence intervals.

Deviations are detected by inspecting graphical displays. Tests for assumptions play
a less important role.



2.3 Residual Analysis 7

b Fitting a regression model without examining the residuals is a risky exer-
cise!

c The following displays are useful:
(a) Non-linearities: Scatterplot of (unstandardized) residuals against fitted values

(Tukey-Anscombe plot) and against the (original) explanatory variables.
Interactions: Pseudo-threedimensional diagram of the (unstandardized) resid-
uals against pairs of explanatory variables.

(b) Equal scatter: Scatterplot of (standardized) absolute residuals against fitted
values (Tukey-Anscombe plot) and against (original) explanatory vari-
ables. Usually no special displays are given, but scatter is examined in the
plots for (a).

(c) Normal distribution: QQ-plot (or histogram) of (standardized) residuals.
(d) Independence: (unstandardized) residuals against time or location.
(e) Influential observations for the fit: Scatterplot of (standardized) residuals

against leverage.
Influential observations for individual coefficients: added-variable plot.

(f) Collinearities: Scatterplot matrix of explanatory variables and numerical out-
put (of R2

j or VIFj or “tolerance”).

d Remedies:
• Transformation (monotone non-linear) of the response: if the distribu-

tion of the residuals is skewed, for non-linearities (if suitable) or unequal vari-
ances.

• Transformation (non-linear) of explanatory variables: when seeing non-
linearities, high leverages (can come from skewed distribution of explanatory
variables) and interactions (may disappear when variables are transformed).

• Additional terms: to model non-linearities and interactions.
• Linear transformations of several explanatory variables: to avoid collinearities.
• Weighted regression: if variances are unequal.
• Checking the correctness of observations: for all outliers in any display.
• Rejection of outliers: if robust methods are not available (see below).

More advanced methods:
• Generalized least squares: to account for correlated random errors.
• Non-linear regression: if non-linearities are observed and transformations of vari-

ables do not help or contradict a physically justified model.
• Robust regression: should always be used, suitable in the presence of outliers

and/or long-tailed distributions.

Note that correlations among errors lead to wrong test results and confidence intervals
which are most often too short.



3 Nonlinear Regression

3.1 Introduction

a The Regression Model Regression studies the relationship between a variable of
interest Y and one or more explanatory or predictor variables x(j) . The general
model is

Yi = h(x(1)
i , x

(2)
i , . . . , x

(m)
i ; θ1, θ2, . . . , θp) + Ei.

Here, h is an appropriate function that depends on the predictor variables and pa-
rameters, that we want to summarize with vectors x = [x(1)

i , x
(2)
i , . . . , x

(m)
i ]T and

θ = [θ1, θ2, . . . , θp]T . We assume that the errors are all normally distributed and
independent, i.e.

Ei ∼ N
(
0, σ2

)
, independent.

b The Linear Regression Model In (multiple) linear regression, we considered functions
h that are linear in the parameters θj ,

h(x(1)
i , x

(2)
i , . . . , x

(m)
i ; θ1, θ2, . . . , θp) = θ1x̃

(1)
i + θ2x̃

(2)
i + . . .+ θpx̃

(p)
i ,

where the x̃(j) can be arbitrary functions of the original explanatory variables x(j) .
There, the parameters were usually denoted by βj instead of θj .

c The Nonlinear Regression Model In nonlinear regression, we use functions h that
are not linear in the parameters. Often, such a function is derived from theory. In
principle, there are unlimited possibilities for describing the deterministic part of the
model. As we will see, this flexibility often means a greater effort to make statistical
statements.

Example d Puromycin The speed of an enzymatic reaction depends on the concentration of a
substrate. As outlined in Bates and Watts (1988), an experiment was performed to
examine how a treatment of the enzyme with an additional substance called Puromycin
influences the reaction speed. The initial speed of the reaction is chosen as the response
variable, which is measured via radioactivity (the unit of the response variable is
count/min2 ; the number of registrations on a Geiger counter per time period measures
the quantity of the substance, and the reaction speed is proportional to the change per
time unit).
The relationship of the variable of interest with the substrate concentration x (in ppm)
is described by the Michaelis-Menten function

h(x; θ) = θ1x

θ2 + x
.

An infinitely large substrate concentration (x→∞) leads to the “asymptotic” speed
θ1 . It was hypothesized that this parameter is influenced by the addition of Puromycin.
The experiment is therefore carried out once with the enzyme treated with Puromycin

8
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Figure 3.1.d: Puromycin. (a) Data (• treated enzyme; 4 untreated enzyme) and (b) typical
shape of the regression function.
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Figure 3.1.e: Biochemical Oxygen Demand. (a) Data and (b) typical shape of the regression
function.

and once with the untreated enzyme. Figure 3.1.d shows the data and the shape of
the regression function. In this section only the data of the treated enzyme is used.

Example e Biochemical Oxygen Demand To determine the biochemical oxygen demand, stream
water samples were enriched with soluble organic matter, with inorganic nutrients
and with dissolved oxygen, and subdivided into bottles (Marske, 1967, see Bates and
Watts, 1988). Each bottle was inoculated with a mixed culture of microorganisms,
sealed and put in a climate chamber with constant temperature. The bottles were
periodically opened and their dissolved oxygen concentration was analyzed, from which
the biochemical oxygen demand [mg/l] was calculated. The model used to connect the
cumulative biochemical oxygen demand Y with the incubation time x is based on
exponential decay:

h(x; θ) = θ1
(
1− e−θ2x

)
.

Figure 3.1.e shows the data and the shape of the regression function.
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Figure 3.1.f: Membrane Separation Technology. (a) Data and (b) a typical shape of the regres-
sion function.

Example f Membrane Separation Technology See Rapold-Nydegger (1994). The ratio of proto-
nated to deprotonated carboxyl groups in the pores of cellulose membranes depends on
the pH-value x of the outer solution. The protonation of the carboxyl carbon atoms
can be captured with 13 C-NMR. We assume that the relationship can be written with
the extended “Henderson-Hasselbach Equation” for polyelectrolytes

log10

(
θ1 − y
y − θ2

)
= θ3 + θ4 x ,

where the unknown parameters are θ1, θ2 and θ3 > 0 and θ4 < 0. Solving for y leads
to the model

Yi = h(xi; θ) + Ei = θ1 + θ2 10θ3+θ4xi

1 + 10θ3+θ4xi
+ Ei .

The regression function h(xi, θ) for a reasonably chosen θ is shown in Figure 3.1.f next
to the data.

g A Few Further Examples of Nonlinear Regression Functions
• Hill model (enzyme kinetics): h(xi, θ) = θ1x

θ3
i /(θ2 + xθ3

i )
For θ3 = 1 this is also known as the Michaelis-Menten model (3.1.d).

• Mitscherlich function (growth analysis): h(xi, θ) = θ1 + θ2 exp(θ3xi).
• From kinetics (chemistry) we get the function

h(x(1)
i , x

(2)
i ; θ) = exp(−θ1x

(1)
i exp(−θ2/x

(2)
i )).

• Cobbs-Douglas production function

h
(
x

(1)
i , x

(2)
i ; θ

)
= θ1

(
x

(1)
i

)θ2 (
x

(2)
i

)θ3
.

Since useful regression functions are often derived from the theoretical background of
the application of interest, a general overview of nonlinear regression functions is of
very limited benefit. A compilation of functions from publications can be found in
Appendix 7 of Bates and Watts (1988).

h Linearizable Regression Functions Some nonlinear regression functions can be lin-
earized by transformations of the response variable and the explanatory variables.
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For example, a power function
h(x; θ) = θ1x

θ2

can be transformed to a linear (in the parameters!) function

ln(h(x; θ)) = ln(θ1) + θ2 ln(x) = β0 + β1x̃ ,

where β0 = ln(θ1), β1 = θ2 and x̃ = ln(x). We call the regression function h
linearizable, if we can transform it into a function that is linear in the (unknown)
parameters by (monotone) transformations of the arguments and the response.

Here are some more linearizable functions (see also Daniel and Wood, 1980):

h(x; θ) = 1/(θ1 + θ2 exp(−x)) ←→ 1/h(x; θ) = θ1 + θ2 exp(−x)

h(x; θ) = θ1x/(θ2 + x) ←→ 1/h(x; θ) = 1/θ1 + θ2/θ1
1
x

h(x; θ) = θ1x
θ2 ←→ ln(h(x; θ)) = ln(θ1) + θ2 ln(x)

h(x; θ) = θ1 exp(θ2g(x)) ←→ ln(h(x; θ)) = ln(θ1) + θ2g(x)

h(x; θ) = exp(−θ1x
(1) exp(−θ2/x

(2))) ←→ ln(ln(h(x; θ))) = ln(−θ1) + ln(x(1))− θ2/x
(2)

h(x; θ) = θ1
(
x(1))θ2 (

x(2))θ3 ←→ ln(h(x; θ)) = ln(θ1) + θ2 ln(x(1)) + θ3 ln(x(2)) .

The last one is the Cobbs-Douglas Model from 3.1.g.

i A linear regression with the linearized regression function of the example above is
based on the model

ln(Yi) = β0 + β1x̃i + Ei ,

where the random errors Ei all have the same normal distribution. We transform this
model back and get

Yi = θ1 · xθ2 · Ẽi,

with Ẽi = exp(Ei). The errors Ẽi , i = 1, . . . , n , now have a multiplicative effect and
are log-normally distributed! The assumptions about the random deviations are thus
now drastically different than for a model that is based directly on h ,

Yi = θ1 · xθ2 + E∗i ,

with random deviations E∗i that, as usual, contribute additively and have a specific
normal distribution.

A linearization of the regression function is therefore advisable only if the assumptions
about the random errors can be better satisfied – in our example, if the errors actually
act multiplicatively rather than additively and are log-normally rather than normally
distributed. These assumptions must be checked with residual analysis.

j * Note: For linear regression it can be shown that the variance can be stabilized with certain trans-
formations (e.g. log(·),

√
·). If this is not possible, in certain circumstances one can also perform a

weighted linear regression. The process is analogous in nonlinear regression.
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k We have almost exclusively seen regression functions that only depend on one predictor
variable x . This was primarily because it was possible to graphically illustrate the
model. The following theory also works well for regression functions h(x; θ) that
depend on several predictor variables x = [x(1), x(2), . . . , x(m)] .

3.2 Parameter Estimation

a The Principle of Least Squares To get estimates for the parameters θ = [θ1 , θ2 , . . . ,
θp]T , one applies – like in linear regression – the principle of least squares. The sum
of the squared deviations

S(θ) :=
n∑
i=1

(yi − ηi(θ))2 where ηi(θ) := h(xi; θ)

should be minimized. The notation that replaces h(xi; θ) with ηi(θ) is reasonable
because [xi, yi] is given by the data and only the parameters θ remain to be determined.
Unfortunately, the minimum of S(θ) and hence the estimator have no explicit solu-
tion (in contrast to the linear regression case). Iterative numeric procedures are
therefore needed. We will sketch the basic ideas of the most common algorithm. It is
also the basis for the easiest way to derive tests and confidence intervals.

b Geometrical Illustration The observed values Y = [Y1, Y2, . . . , Yn]T define a point
in n-dimensional space. The same holds true for the “model values” η (θ) =
[η1 (θ) , η2 (θ) , . . . , ηn (θ)]T for a given θ .
Please take note: In multivariate statistics where an observation consists of m variables
x(j) , j = 1, 2, . . . ,m , it’s common to illustrate the observations in the m-dimensional
space. Here, we consider the Y - and η -values of all n observations as points in the
n-dimensional space.
Unfortunately, geometrical interpretation stops with three dimensions (and thus with
three observations). Nevertheless, let us have a look at such a situation, first for simple
linear regression.

c As stated above, the observed values Y = [Y1, Y2, Y3]T determine a point in three-
dimensional space. For given parameters β0 = 5 and β1 = 1 we can calculate the model
values ηi

(
β
)

= β0 + β1xi and represent the corresponding vector η
(
β
)

= β01 + β1x

as a point. We now ask: Where are all the points that can be achieved by varying
the parameters? These are the possible linear combinations of the two vectors 1
and x : they form a plane “spanned by 1 and x”. By estimating the parameters
according to the principle of least squares, the squared distance between Y and η

(
β
)

is minimized. This means that we are looking for the point on the plane that is
closest to Y . This is also called the projection of Y onto the plane. The parameter
values that correspond to this point η̂ are therefore the estimated parameter values
β̂ = [β̂0, β̂1]T . An illustration can be found in Figure 3.2.c.

d Now we want to fit a nonlinear function, e.g. h(x; θ) = θ1 exp(1− θ2x), to the same
three observations. We can again ask ourselves: Where are all the points η (θ) that
can be achieved by varying the parameters θ1 and θ2 ? They lie on a two-dimensional
curved surface (called the model surface in the following) in three-dimensional space.
The estimation problem again consists of finding the point η̂ on the model surface that
is closest to Y . The parameter values that correspond to this point η̂ are then the
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Figure 3.2.c: Illustration of simple linear regression. Values of η
(
β
)

= β0 + β1x for varying
parameters [β0, β1] lead to a plane in three-dimensional space. The right plot also shows the
point on the surface that is closest to Y = [Y1, Y2, Y3] . It is the fitted value ŷ and determines
the estimated parameters β̂ .

estimated parameter values θ̂ = [θ̂1, θ̂2]T . Figure Figure 3.2.d illustrates the nonlinear
case.
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Figure 3.2.d: Geometrical illustration of nonlinear regression. The values of η (θ) = h(x; θ1, θ2)
for varying parameters [θ1, θ2] lead to a two-dimensional “model surface” in three-dimensional
space. The lines on the model surface correspond to constant η1 and η3 , respectively.
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e Biochemical Oxygen Demand (cont’d) The situation for our Biochemical Oxygen
Demand example can be found in Figure 3.2.e. Basically, we can read the estimated
parameters directly off the graph here: θ̂1 is a bit less than 21 and θ̂2 is a bit larger
than 0.6. In fact the (exact) solution is θ̂ = [20.82, 0.6103] (note that these are the
parameter estimates for the reduced data set only consisting of three observations).
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Figure 3.2.e: Biochemical Oxygen Demand: Geometrical illustration of nonlinear regression.
In addition, we can see here the lines of constant θ1 and θ2 , respectively. The vector of the
estimated model values ŷ = h

(
x; θ̂
)

is the point on the model surface that is closest to Y .

f Approach for the Minimization Problem The main idea of the usual algorithm for
minimizing the sum of squares (see 3.2.a) is as follows: If a preliminary best value θ(`)

exists, we approximate the model surface with the plane that touches the surface at
the point η

(
θ(`)

)
= h

(
x; θ(`)

)
(the so called tangent plane). Now, we are looking for

the point on that plane that lies closest to Y . This is the same as estimation in a
linear regression problem. This new point lies on the plane, but not on the surface
that corresponds to the nonlinear problem. However, it determines a parameter vector
θ(`+1) that we use as starting value for the next iteration.

g Linear Approximation To determine the tangent plane we need the partial derivatives

A
(j)
i (θ) := ∂ηi (θ)

∂θj
,

that can be summarized by an n × p matrix A . The approximation of the model
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surface η(θ) by the tangent plane at a parameter value θ∗ is

ηi(θ) ≈ ηi(θ∗) +A
(1)
i (θ∗) (θ1 − θ∗1) + ...+A

(p)
i (θ∗) (θp − θ∗p)

or, in matrix notation,
η(θ) ≈ η(θ∗) + A (θ∗) (θ − θ∗) .

If we now add a random error, we get a linear regression model

Ỹ = A (θ∗)β + E

with “preliminary residuals” Ỹ i = Yi − ηi (θ∗) as response variable, the columns of A
as predictors and the coefficients βj = θj − θ∗j (a model without intercept β0 ).

h Gauss-Newton Algorithm The Gauss-Newton algorithm starts with an initial value
θ(0) for θ , solving the just introduced linear regression problem for θ∗ = θ(0) to find a
correction β and hence an improved value θ(1) = θ(0) + β . Again, the approximated
model is calculated, and thus the “preliminary residuals” Y − η

(
θ(1)

)
and the partial

derivatives A
(
θ(1)

)
are determined, leading to θ2 . This iteration step is continued

until the the correction β is small enough.
It can not be guaranteed that this procedure actually finds the minimum of the sum
of squares. The better the p-dimensional model surface can be locally approximated
by a p-dimensional plane at the minimum θ̂ = (θ̂1, . . . , θ̂p)T and the closer the initial
value θ(0) is to the solution, the higher are the chances of finding the optimal value.
* Algorithms usually determine the derivative matrix A numerically. In more complex problems the

numerical approximation can be insufficient and cause convergence problems. For such situations
it is an advantage if explicit expressions for the partial derivatives can be used to determine the
derivative matrix more reliably (see also Chapter 3.6).

i Initial Values An iterative procedure always requires an initial value. Good initial
values help to find a solution more quickly and more reliably. Some possibilities to
arrive at good initial values are now being presented.

j Initial Value from Prior Knowledge As already noted in the introduction, nonlinear
models are often based on theoretical considerations of the corresponding application
area. Already existing prior knowledge from similar experiments can be used to get
an initial value. To ensure the quality of the chosen initial value, it is advisable to
graphically represent the regression function h(x; θ) for various possible initial values
θ = θ0 together with the data (e.g., as in Figure 3.2.k, right).

k Initial Values via Linearizable Regression Functions Often – because of the distri-
bution of the error term – one is forced to use a nonlinear regression function even
though it would be linearizable. However, the linearized model can be used to get
initial values.
In the Puromycin example the regression function is linearizable: The reciprocal values
of the two variables fulfill

ỹ = 1
y
≈ 1
h(x; θ) = 1

θ1
+ θ2
θ1

1
x

= β0 + β1x̃ .

The least squares solution for this modified problem is β̂ = [β̂0, β̂1]T = (0.00511, 0.000247)T
(Figure 3.2.k, left). This leads to the initial values

θ
(0)
1 = 1/β̂0 = 196, θ

(0)
2 = β̂1/β̂0 = 0.048.
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Figure 3.2.k: Puromycin. Left: Regression function in the linearized problem. Right: Regres-
sion function h(x; θ) for the initial values θ = θ(0) ( ) and for the least squares estimation
θ = θ̂ (——–).

l Initial Values via Geometric Interpretation of the Parameter It is often helpful to
consider the geometrical features of the regression function.
In the Puromycin Example we can derive an initial value in another way: θ1 is the
response value for x =∞ . Since the regression function is monotonically increasing, we
can use the maximal yi -value or a visually determined “asymptotic value” θ

(0)
1 = 207

as initial value for θ1 . The parameter θ2 is the x-value, such that y reaches half of
the asymptotic value θ1 . This leads to θ

(0)
2 = 0.06.

The initial values thus result from a geometrical interpretation of the parameters and
a rough estimate can be determined by “fitting by eye”.

Example m Membrane Separation Technology (cont’d) In the Membrane Separation Technology
example we let x→∞ , so h(x; θ) → θ1 (since θ4 < 0); for x→ −∞ , h(x; θ) → θ2 .
From Figure 3.1.f (a) we see that θ1 ≈ 163.7 and θ2 ≈ 159.5. Once we know θ1 and
θ2 , we can linearize the regression function by

ỹ := log10

(
θ

(0)
1 − y
y − θ(0)

2

)
= θ3 + θ4x .

This is called a conditional linearizable function. The linear regression model leads
to the initial value θ(0)

3 = 1.83 and θ
(0)
4 = −0.36.

With this initial value the algorithm converges to the solution θ̂1 = 163.7, θ̂2 = 159.8,
θ̂3 = 2.675 and θ̂4 = −0.512. The functions h(·; θ(0)) and h(·; θ̂) are shown in Figure
3.2.m (b).
* The property of conditional linearity of a function can also be useful to develop an algorithm

specifically suited for this situation (see e.g. Bates and Watts, 1988).

3.3 Approximate Tests and Confidence Intervals

a The estimator θ̂ is the value of θ that optimally fits the data. We now ask which
parameter values θ are compatible with the observations. The confidence region is
the set of all these values. For an individual parameter θj the confidence region is a
confidence interval.
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Figure 3.2.m: Membrane Separation Technology. (a) Regression line that is used for deter-
mining the initial values for θ3 and θ4 . (b) Regression function h(x; θ) for the initial value
θ = θ(0) ( ) and for the least squares estimator θ = θ̂ (——–).

The following results are based on the fact that the estimator θ̂ is asymptotically (mul-
tivariate) normally distributed. For an individual parameter that leads to a “Z -Test”
and the corresponding confidence interval; for multiple parameters the corresponding
Chi-Square test is used and leads to elliptical confidence regions.

b The asymptotic properties of the estimator can be derived from the linear approx-
imation. The problem of nonlinear regression is indeed approximately equal to the
linear regression problem mentioned in 3.2.g

Ỹ = A (θ∗)β + E ,

if the parameter vector θ∗ that is used for the linearization is close to the solution. If
the estimation procedure has converged (i.e. θ∗ = θ̂ ), then β = 0 (otherwise this would
not be the solution). The standard error of the coefficients β̂ – or more generally the
covariance matrix of β̂ – then approximate the corresponding values of θ̂ .

c Asymptotic Distribution of the Least Squares Estimator It follows that the least
squares estimator θ̂ is asymptotically normally distributed

θ̂
as.∼ N (θ, V (θ)) ,

with asymptotic covariance matrix V (θ) = σ2(A (θ)T A (θ))−1 , where A (θ) is the
n× p matrix of partial derivatives (see 3.2.g).
To explicitly determine the covariance matrix V (θ), A (θ) is calculated using θ̂ instead
of the unknown θ . For the error variance σ2 we plug-in the usual estimator

V̂ (θ) = σ̂2
(

A
(
θ̂
)T

A
(
θ̂
))−1

where

σ̂2 = S(θ̂)
n− p

= 1
n− p

n∑
i=1

(
yi − ηi

(
θ̂
) )2

.

Hence, the distribution of the estimated parameters is approximately determined and
we can (like in linear regression) derive standard errors and confidence intervals, or
confidence ellipses (or ellipsoids) if multiple variables are considered jointly.
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The denominator n−p in the estimator σ̂2 was already introduced in linear regression
to ensure that the estimator is unbiased. Tests and confidence intervals were not based
on the normal and Chi-square distribution but on the t- and F-distribution. They
take into account that the estimation of σ2 causes additional random fluctuation. Even
if the distributions are no longer exact, the approximations are more exact if we do this
in nonlinear regression too. Asymptotically, the difference between the two approaches
goes to zero.

Example d Membrane Separation Technology (cont’d) A computer output for the Membrane
Separation Technology example can be found in Table 3.3.d. The parameter esti-
mates are in column Estimate, followed by the estimated approximate standard er-
ror (Std. Error) and the test statistics (t value), that are approximately tn−p dis-
tributed. The corresponding p-values can be found in column Pr(>|t|). The esti-
mated standard deviation σ̂ of the random error Ei is here labelled as “Residual
standard error”.
As in linear regression, we can now construct (approximate) confidence intervals. The
95% confidence interval for the parameter θ1 is

163.706± qt35
0.975 · 0.1262 = 163.706± 0.256.

Formula: delta ∼ (T1 + T2 * 10ˆ(T3 + T4 * pH)) / (10ˆ(T3 + T4 * pH) + 1)

Parameters:
Estimate Std. Error t value Pr(> |t|)

T1 163.7056 0.1262 1297.256 < 2e-16
T2 159.7846 0.1594 1002.194 < 2e-16
T3 2.6751 0.3813 7.015 3.65e-08
T4 -0.5119 0.0703 -7.281 1.66e-08

Residual standard error: 0.2931 on 35 degrees of freedom

Number of iterations to convergence: 7
Achieved convergence tolerance: 5.517e-06

Table 3.3.d: Summary of the fit of the Membrane Separation Technology example.

Example e Puromycin (cont’d) In order to check the influence of treating an enzyme with
Puromycin a general model for the data (with and without treatment) can be for-
mulated as follows:

Yi = (θ1 + θ3zi)xi
θ2 + θ4zi + xi

+ Ei,

where z is the indicator variable for the treatment (zi = 1 if treated, zi = 0 otherwise).
Table 3.3.e shows that the parameter θ4 is not significantly different from 0 at the 5%
level since the p-value of 0.167 is larger then the level (5%). However, the treatment
has a clear influence that is expressed through θ3 ; the 95% confidence interval covers
the region 52.398±9.5513 ·2.09 = [32.4, 72.4] (the value 2.09 corresponds to the 97.5%
quantile of the t19 distribution).
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Formula: velocity ∼ (T1 + T3 * (treated == T)) * conc/(T2 + T4 * (treated
== T) + conc)

Parameters:
Estimate Std. Error t value Pr(> |t|)

T1 160.280 6.896 23.242 2.04e-15
T2 0.048 0.008 5.761 1.50e-05
T3 52.404 9.551 5.487 2.71e-05
T4 0.016 0.011 1.436 0.167

Residual standard error: 10.4 on 19 degrees of freedom

Number of iterations to convergence: 6
Achieved convergence tolerance: 4.267e-06

Table 3.3.e: Computer output of the fit for the Puromycin example.

f Confidence Intervals for Function Values Besides the parameters, the function value
h(x0, θ) for a given x0 is often of interest. In linear regression the function value
h
(
x0, β

)
= xT0 β =: η0 is estimated by η̂0 = xT0 β̂ and the corresponding (1 − α)

confidence interval is
η̂0 ± q

tn−p
1−α/2 · se(η̂0)

where
se(η̂0) = σ̂

√
xT0 (X T X )−1x0.

Using asymptotic approximations, we can specify confidence intervals for the func-
tion values h(x0; θ) for nonlinear h . If the function η0

(
θ̂
)

:= h
(
x0, θ̂

)
is linearly

approximated at θ we get

η0(θ̂) ≈ η0(θ) + aT0 (θ̂ − θ) where a0 = ∂h(x0, θ)
∂θ

.

If x0 is equal to an observed xi , a0 equals the corresponding row of the matrix A
from 3.2.g. The (1− α) confidence interval for the function value η0 (θ) := h(x0, θ) is
then approximately

η0
(
θ̂
)
± qtn−p

1−α/2 · se
(
η0
(
θ̂
))
,

where
se
(
η0
(
θ̂
))

= σ̂

√
â T0

(
A
(
θ̂
)T

A
(
θ̂
) )−1

â0.

Again, the unknown parameter values are replaced by the corresponding estimates.

g Confidence Band The expression for the (1 − α) confidence interval for η0(θ) :=
h(x0, θ) also holds for arbitrary x0 . As in linear regression, it is illustrative to represent
the limits of these intervals as a “confidence band” that is a function of x0 . See Figure
3.3.g for the confidence bands for the examples “Puromycin” and “Biochemical Oxygen
Demand”.
Confidence bands for linear and nonlinear regression functions behave differently: For
linear functions the confidence band has minimal width at the center of gravity of the
predictor variables and gets wider the further away one moves from the center (see
Figure 3.3.g, left). In the nonlinear case, the bands can have arbitrary shape. Because
the functions in the “Puromycin” and “Biochemical Oxygen Demand” examples must
go through zero, the interval shrinks to a point there. Both models have a horizontal
asymptote and therefore the band reaches a constant width for large x (see Figure
3.3.g, right).
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Figure 3.3.g: Left: Confidence band for an estimated line for a linear problem. Right: Confi-
dence band for the estimated curve h(x, θ) in the oxygen demand example.

h Prediction Interval The confidence band gives us an idea of the function values h(x)
(the expected values of Y for a given x). However, it does not answer the question
where future observations Y0 for given x0 will lie. This is often more interesting
than the question of the function value itself; for example, we would like to know where
the measured value of oxygen demand will lie for an incubation time of 6 days.
Such a statement is a prediction about a random variable and should be distinguished
from a confidence interval, which says something about a parameter, which is a fixed
(but unknown) number. Hence, we call the region prediction interval or prognosis
interval. More about this in Chapter 3.7.

i Variable Selection In nonlinear regression, unlike in linear regression, variable selection
is usually not an important topic, because
• there is no one-to-one relationship between parameters and predictor variables.

Usually, the number of parameters is different than the number of predictors.
• there are seldom problems where we need to clarify whether an explanatory

variable is necessary or not – the model is derived from the underlying theory
(e.g., “enzyme kinetics”).

However, there is sometimes the reasonable question whether a subset of the parame-
ters in the nonlinear regression model can appropriately describe the data (see example
“Puromycin”).

3.4 More Precise Tests and Confidence Intervals

a The quality of the approximate confidence region that we have seen so far strongly
depends on the quality of the linear approximation. Also, the convergence properties
of the optimization algorithm are influenced by the quality of the linear approximation.
With a somewhat larger computational effort we can check the linearity graphically
and – at the same time – we can derive more precise confidence intervals.
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Figure 3.4.c: Nominal 80 and 95% likelihood contours (——) and the confidence ellipses from
the asymptotic approximation (– – – –). + denotes the least squares solution. In the Puromycin
example (left) the agreement is good and in the oxygen demand example (right) it is bad.

b F-Test for Model Comparison To test a null hypothesis θ = θ∗ for the whole parameter
vector or also θj = θ∗j for an individual component, we can use an F -test for model
comparison like in linear regression. Here, we compare the sum of squares S(θ∗) that
arises under the null hypothesis with the sum of squares S(θ̂) (for n→∞ the F - test
is the same as the so-called likelihood-ratio test, and the sum of squares is, up to a
constant, equal to the negative log-likelihood).
Let us first consider a null-hypothesis θ = θ∗ for the whole parameter vector. The test
statistic is

T = n− p
p

S(θ∗)− S(θ̂)
S(θ̂)

(as.)∼ Fp,n−p.

Searching for all null-hypotheses that are not rejected leads us to the confidence region{
θ
∣∣∣S(θ) ≤ S(θ̂)

(
1 + p

n−p q
)}

,

where q = q
Fp,n−p
1−α is the (1 − α) quantile of the F -distribution with p and n − p

degrees of freedom.
In linear regression we get the same (exact) confidence region if we use the (multi-
variate) normal distribution of the estimator β̂ . In the nonlinear case the results are
different. The region that is based on the F -test is not based on the linear approxi-
mation in 3.2.g and hence is (much) more exact.

c Confidence Regions for p=2 For p = 2, we can find the confidence regions by cal-
culating S(θ) on a grid of θ values and determine the borders of the region through
interpolation, as is common for contour plots. Figure 3.4.c illustrates both the con-
fidence region based on the linear approximation and based on the F -test for the
example “Puromycin” (left) and for “Biochemical Oxygen Demand” (right).
For p > 2 contour plots do not exist. In the next chapter we will introduce graphical
tools that also work in higher dimensions. They depend on the following concepts.
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d F-Test for Individual Parameters Now we focus on the the question whether an indi-
vidual parameter θk is equal to a certain value θ∗k . Such a null hypothesis makes no
statement about the remaining parameters. The model that fits the data best for a
fixed θk = θ∗k is given by the least squares solution of the remaining parameters. So,
S (θ1, . . . , θ

∗
k, . . . , θp) is minimized with respect to θj , j 6= k . We denote the minimum

by S̃k and the minimizer θj by θ̃j . Both values depend on θ∗k . We therefore write
S̃k (θ∗k) and θ̃j (θ∗k).
The test statistic for the F -test (with null hypothesis H0 : θk = θ∗k ) is given by

T̃ k = (n− p)
S̃k (θ∗k)− S

(
θ̂
)

S
(
θ̂
) .

It follows (approximately) an F1,n−p distribution.
We can now construct a confidence interval by (numerically) solving the equation
T̃ k = q

F1,n−p
0.95 for θ∗k . It has a solution that is less than θ̂k and one that is larger.

e t-Test via F-Test In linear regression and in the previous chapter we have calculated
tests and confidence intervals from a test value that follows a t-distribution (t-test for
the coefficients). Is this another test?
It turns out that the test statistic of the t-test in linear regression turns into the test
statistic of the F -test if we square it. Hence, both tests are equivalent. In nonlinear
regression, the F -test is not equivalent to the t-test discussed in the last chapter
(3.3.d). However, we can transform the F -test to a t-test that is more accurate than
the one of the last chapter (that was based on the linear approximation):
From the test statistic of the F -test, we take the square-root and add the sign of
θ̂k − θ∗k ,

Tk (θ∗k) := sign
(
θ̂k − θ∗k

) √
S̃k
(
θ∗k
)
− S

(
θ̂
)

σ̂
.

Here, sign(a) denotes the sign of a and as earlier, σ̂2 = S
(
θ̂
)
/(n − p). This test

statistic is (approximately) tn−p distributed.
In the linear regression model, Tk is – as already pointed out – equal to the test
statistic of the usual t-test,

Tk (θ∗k) = θ̂k − θ∗k
se
(
θ̂k
) .

f Confidence Intervals for Function Values via F -test With this technique we can
also determine confidence intervals for a function value at a point x0 . For this we re-
parameterize the original problem so that a parameter, say φ1 , represents the function
value h(x0) and proceed as in 3.4.d.

3.5 Profile t-Plot and Profile Traces

a Profile t-Function and Profile t-Plot The graphical tools for checking the linear ap-
proximation are based on the just discussed t-test, that actually doesn’t use this
approximation. We consider the test statistic Tk (3.4.e) as a function of its arguments
θk and call it profile t-function (in the last chapter the arguments were denoted
with θ∗k , now for simplicity we leave out the ∗ ). For linear regression we get, as can be
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seen from 3.4.e, a straight line, while for nonlinear regression the result is a monotone
increasing function. The graphical comparison of Tk(θk) with a straight line is the
so-called profile t-plot. Instead of θk , it is common to use a standardized version

δk (θk) := θk − θ̂k
se
(
θ̂k
)

on the horizontal axis because it is used in the linear approximation. The comparison
line is then the “diagonal”, i.e. the line with slope 1 and intercept 0.
The more the profile t-function is curved, the stronger the nonlinearity in a neighbor-
hood of θk . Therefore, this representation shows how good the linear approximation
is in a neighborhood of θ̂k (the neighborhood that is statistically important is ap-
proximately determined by |δk(θk)| ≤ 2.5). In Figure 3.5.a it is evident that in the
Puromycin example the nonlinearity is minimal, while in the Biochemical Oxygen
Demand example it is large.
In Figure 3.5.a we can also read off the confidence intervals according to 3.4.e. For con-
venience, the probabilites P (Tk ≤ t) of the corresponding t-distributions are marked
on the right vertical axis. For the Biochemical Oxygen Demand example this results
in a confidence interval without upper bound!

b Likelihood Profile Traces The likelihood profile traces are another useful graphical
tool. Here the estimated parameters θ̃j , j 6= k for fixed θk (see 3.4.d) are considered
as functions θ̃(k)

j (θk).
The graphical representation of these functions would fill a whole matrix of diagrams,
but without diagonals. It is worthwhile to combine the “opposite” diagrams of this
matrix: Over the representation of θ̃(k)

j (θk) we superimpose θ̃(j)
k (θj) in mirrored form

so that the axes have the same meaning for both functions.
Figure 3.5.b shows one of these diagrams for both our two examples. Additionally,
contours of confidence regions for [θ1, θ2] are plotted. It can be seen that that the
profile traces intersect the contours at points where they have horizontal or vertical
tangents.
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Figure 3.5.a: Profile t -plot for the first parameter for both the Puromycin (left) and the Bio-
chemical Oxygen Demand example (right). The dashed lines show the applied linear approx-
imation and the dotted line the construction of the 99% confidence interval with the help of
T1(θ1).
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Figure 3.5.b: Likelihood profile traces for the Puromycin and Oxygen Demand examples, with
80%- and 95% confidence regions (gray curves).

The representation does not only show the nonlinearities, but is also useful for the un-
derstanding of how the parameters influence each other. To understand this, we
go back to the case of a linear regression function. The profile traces in the individual
diagrams then consist of two lines, that intersect at the point [θ̂1, θ̂2] . If we standardize
the parameter by using δk (θk) from 3.5.a, one can show that the slope of the trace
θ̃

(k)
j (θk) is equal to the correlation coefficient ckj of the estimated coefficients θ̂j and
θ̂k . The “reverse line” θ̃

(j)
k (θj) then has, compared with the horizontal axis, a slope

of 1/ckj . The angle between the lines is thus a monotone function of the correlation.
It therefore measures the collinearity between the two predictor variables. If the
correlation between the parameter estimates is zero, then the traces are orthogonal to
each other.
For a nonlinear regression function, both traces are curved. The angle between them
still shows how strongly the two parameters θj and θk interplay, and hence how their
estimators are correlated.

Example c Membrane Separation Technology (cont’d) All profile t-plots and profile traces can
be put in a triangular matrix, as can be seen in Figure 3.5.c. Most profile traces are
strongly curved, meaning that the regression function tends to a strong nonlinearity
around the estimated parameter values. Even though the profile traces for θ3 and θ4
are straight lines, a further problem is apparent: The profile traces lie on top of each
other! This means that the parameters θ3 and θ4 are strongly collinear. Parameter
θ2 is also collinear with θ3 and θ4 , although more weakly.

d * Good Approximation of Two Dimensional Likelihood Contours The profile traces can be used to
construct very accurate approximations for two dimensional projections of the likelihood contours
(see Bates and Watts, 1988). Their calculation is computationally less demanding than for the
corresponding exact likelihood contours.

3.6 Parameter Transformations

a Parameter transformations are primarily used to improve the linear approximation
and therefore improve the convergence behavior and the quality of the confidence
interval.
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Figure 3.5.c: Profile t -plots and Profile Traces for the Example “Membrane Separation Tech-
nology”. The + in the profile t -plot denotes the least squares solution.

We point out that parameter transformations, unlike transformations of the response
variable (see 3.1.h), do not change the statistical part of the model. Hence, they are
not helpful if the assumptions about the distribution of the random error are violated.
It is the quality of the linear approximation and the statistical statements based on it
that are being changed!

Sometimes the transformed parameters are very difficult to interpret. The important
questions often concern individual parameters – the original parameters. Nevertheless,
we can work with transformations: We derive more accurate confidence regions for the
transformed parameters and can transform them (the confidence regions) back to get
results for the original parameters.

b Restricted Parameter Regions Often, the admissible region of a parameter is re-
stricted, e.g. because the regression function is only defined for positive values of a
parameter. Usually, such a constraint is ignored to begin with and we wait to see
whether and where the algorithm converges. According to experience, parameter esti-
mation will end up in a reasonable range if the model describes the data well and the
data contain enough information for determining the parameter.
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Sometimes, though, problems occur in the course of the computation, especially if the
parameter value that best fits the data lies near the border of the admissible region.
The simplest way to deal with such problems is via transformation of the parameter.
Examples
• The parameter θ should be positive. Through a transformation θ −→ φ = ln(θ),

θ = exp(φ) is always positive for all possible values of φ ∈ R :

h(x, θ) −→ h(x, exp(φ)).

• The parameter should lie in the interval (a, b). With the log transformation
θ = a+ (b− a)/(1 + exp(−φ)), θ can (for arbitrary φ ∈ R) only take values in
(a, b).

• In the model
h(x, θ) = θ1 exp(−θ2x) + θ3 exp(−θ4x)

with θ2, θ4 > 0 the parameter pairs (θ1, θ2) and (θ3, θ4) are interchangeable, i.e.
h(x, θ) does not change. This can create uncomfortable optimization problems,
because the solution is not unique. The constraint 0 < θ2 < θ4 that ensures the
uniqueness is achieved via the transformation θ2 = exp(φ2) und θ4 = exp(φ2)(1+
exp(φ4)). The function is now

h(x, (θ1, φ2, θ3, φ4)) = θ1 exp (− exp(φ2)x) + θ3 exp (− exp(φ2)(1 + exp(φ4))x) .

c Parameter Transformation for Collinearity A simultaneous variable and parameter
transformation can be helpful to weaken collinearity in the partial derivative vectors.
For example, the model h(x, θ) = θ1 exp(−θ2x) has derivatives

∂h

∂θ1
= exp(−θ2x) , ∂h

∂θ2
= −θ1x exp(−θ2x) .

If all x values are positive, both vectors

a1 := (exp(−θ2x1), . . . , exp(−θ2xn))T

a2 := (−θ1x1 exp(−θ2x1), . . . ,−θ1xn exp(−θ2xn))T

tend to disturbing collinearity. This collinearity can be avoided if we use center-
ing. The model can be written as h(x; θ) = θ1 exp(−θ2(x− x0 + x0)) With the re-
parameterization φ1 := θ1 exp(−θ2x0) and φ2 := θ2 we get

h
(
x;φ

)
= φ1 exp(−φ2(x− x0)) .

The derivative vectors are approximately orthogonal if we chose the mean value of the
xi for x0 .

Example d Membrane Separation Technology (cont’d) In this example it is apparent from the
approximate correlation matrix (Table 3.6.d, left half) that the parameters θ3 and θ4
are strongly correlated (we have already observed this in 3.5.c using the profile traces).
If the model is re-parameterized to

yi = θ1 + θ2 10θ̃3+θ4(xi−med(xj))

1 + 10θ̃3+θ4(xi−med(xj))
+ Ei, i = 1 . . . n

with θ̃3 = θ3 + θ4 med(xj), an improvement is achieved (right half of Table 3.6.d).
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θ1 θ2 θ3 θ1 θ2 θ̃3

θ2 −0.256 θ2 −0.256
θ3 −0.434 0.771 θ̃3 0.323 0.679
θ4 0.515 −0.708 −0.989 θ4 0.515 −0.708 −0.312

Table 3.6.d: Correlation matrices for the Membrane Separation Technology example for the
original parameters (left) and the transformed parameters θ̃3 (right).

Example e Membrane Separation Technology (cont’d) The parameter transformation in 3.6.d
leads to a satisfactory result, as far as correlation is concerned. If we look at the
likelihood contours or the profile t-plot and the profile traces, the parameterization is
still not satisfactory.
An intensive search for further improvements leads to the following transformations
that turn out to have satisfactory profile traces (see Figure 3.6.e):

θ̃1:=θ1 + θ2 10θ̃3

10θ̃3 + 1
, θ̃2:= log10

(
θ1 − θ2

10θ̃3 + 1
10θ̃3

)
,

θ̃3:=θ3 + θ4 med(xj) θ̃4:=10θ4 .

The model is now

Yi = θ̃1 + 10θ̃2 1− θ̃4
(xi−med(xj))

1 + 10θ̃3 θ̃4
(xi−med(xj)) + Ei .

and we get the result shown in Table 3.6.e

Formula: delta ∼ TT1 + 10ˆTT2 * (1 - TT4ˆpHR)/(1 + 10ˆTT3 * TT4ˆpHR)

Parameters:
Estimate Std. Error t value Pr(> |t|)

TT1 161.60008 0.07389 2187.122 < 2e-16
TT2 0.32336 0.03133 10.322 3.67e-12
TT3 0.06437 0.05951 1.082 0.287
TT4 0.30767 0.04981 6.177 4.51e-07

Residual standard error: 0.2931 on 35 degrees of freedom

Correlation of Parameter Estimates:
TT1 TT2 TT3

TT2 -0.56
TT3 -0.77 0.64
TT4 0.15 0.35 -0.31

Number of iterations to convergence: 5
Achieved convergence tolerance: 9.838e-06

Table 3.6.e: Membrane Separation Technology: Summary of the fit after parameter
transformation.
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Figure 3.6.e: Profile t -plot and profile traces for the Membrane Separation Technology example
according to the given transformations.

f More Successful Reparametrization It turned out that a successful reparametriza-
tion is very data set specific. A reason is that nonlinearities and correlations be-
tween estimated parameters depend on the (estimated) parameter vector itself. There-
fore, no generally valid recipe can be given. This makes the search for appropriate
reparametrizations often very difficult.

g Confidence Intervals on the Original Scale (Alternative Approach) Even though
parameter transformations help us in situations where we have problems with conver-
gence of the algorithm or the quality of confidence intervals, the original parameters
often remain the quantity of interest (e.g., because they have a nice physical interpre-
tation). Consider the transformation θ −→ φ = ln(θ). Fitting the model results in an
estimator φ̂ and an estimated standard error σ̂

φ̂
. Now we can construct a confidence

interval for θ . We have to search all θ for which ln(θ) lies in the interval

φ̂± σ̂
φ̂
q
tdf
0.975.
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Generally formulated: Let g be the transformation of φ to θ = g(φ). Then{
θ : g−1 (θ) ∈

[
φ̂− σ̂

φ̂
q
tdf
0.975, φ̂+ σ̂

φ̂
q
tdf
0.975

]}
is an approximate 95% confidence interval for θ . If g−1 (·) is strictly monotone in-
creasing, this confidence interval is identical to[

g
(
φ̂− σ̂

φ̂
q
tdf
0.975

)
, g
(
φ̂+ σ̂

φ̂
q
tdf
0.975

)]
.

However, this approach should only be used if the way via the F -test from Chapter
3.4 is not possible.

3.7 Forecasts and Calibration

Forecasts
a Besides the question of the set of plausible parameters (with respect to the given data,

which we also call training data set), the question of the range of future observations
is often of central interest. The difference between these two questions was already
discussed in 3.3.h. In this chapter we want to answer the second question. We assume
that the parameter θ is estimated using the least squares method. What can we now
say about a future observation Y0 at a given point x0 ?

Example b Cress The concentration of an agrochemical material in soil samples can be studied
through the growth behavior of a certain type of cress (nasturtium). 6 measurements
of the response variable Y were made on each of 7 soil samples with predetermined
(or measured with the largest possible precision) concentrations x . Hence, we assume
that the x-values have no measurement error. The variable of interest is the weight
of the cress per unit area after 3 weeks. A “logit-log” model is used to describe the
relationship between concentration and weight:

h(x; θ) =

θ1 if x = 0
θ1

1+exp(θ2+θ3 ln(x)) if x > 0.

The data and the function h(·) are illustrated in Figure 3.7.b. We can now ask
ourselves which weight values will we see at a concentration of e.g. x0 = 3?

c Approximate Forecast Intervals We can estimate the expected value E(Y0) = h(x0, θ)
of the variable of interest Y at the point x0 by η̂0 := h(x0, θ̂). We also want to get an
interval where a future observation will lie with high probability. So, we do not only
have to take into account the randomness of the estimate η̂0 , but also the random
error E0 . Analogous to linear regression, an at least approximate (1 − α) forecast
interval is given by

η̂0 ± q
tn−p
1−α/2 ·

√
σ̂2 +

(
se(η̂0)

)2
.

The calculation of se(η̂0) can be found in 3.3.f.
* Derivation The random variable Y0 is the value of interest for an observation with predictor

variable value x0 . Since we do not know the true curve (actually only the parameters), we have no
choice but to study the deviations of the observations from the estimated curve,

R0 = Y0 − h
(
x0, θ̂

)
=
(
Y0 − h(x0, θ)

)
−
(
h
(
x0, θ̂

)
− h(x0, θ)

)
.
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Figure 3.7.b: Cress Example. Left: Representation of the data. Right: A typical shape of
the applied regression function.

Even if θ is unknown, we know the distribution of the expressions in parentheses: Both are nor-
mally distributed random variables and they are independent because the first only depends on the
“future” observation Y0 , the second only on the observations Y1, . . . , Yn that led to the estimated
curve. Both have expected value 0; the variances add up to

Var(R0) ≈ σ2 + σ2aT0 (ATA)−1a0.

The described forecast interval follows by replacing the unknown values by their corresponding
estimates.

d Forecast Versus Confidence Intervals If the sample size n of the training data set is
very large, the estimated variance is dominated by the error variance σ̂2 . This means
that the uncertainty in the forecast is then primarily caused by the random error. The
second term in the expression for the variance reflects the uncertainty that is caused
by the estimation of θ .

It is therefore clear that the forecast interval is wider than the confidence interval for
the expected value, since the random error of the observation must also be taken into
account. The endpoints of such intervals are shown in Figure 3.7.i (left).

e * Quality of the Approximation The derivation of the forecast interval in 3.7.c is based on the same
approximation as in Chapter 3.3. The quality of the approximation can again be checked graphically.

f Interpretation of the “Forecast Band” The interpretation of the “forecast band” (as
shown in Figure 3.7.i), is not straightforward. From our derivation it holds that

P
(
V ∗0 (x0) ≤ Y0 ≤ V ∗1 (x0)

)
= 0.95,

where V ∗0 (x0) is the lower and V ∗1 (x0) the upper bound of the prediction interval for
h(x0). However, if we want to make a prediction about more than one future obser-
vation, then the number of the observations in the forecast interval is not binomially
distributed with π = 0.95. The events that the individual future observations fall in
the band are not independent; they depend on each other through the random borders
V0 and V1 . If, for example, the estimation of σ̂ randomly turns out to be too small,
the band is too narrow for all future observations, and too many observations would
lie outside the band.
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Calibration

g The actual goal of the experiment in the cress example is to estimate the concen-
tration of the agrochemical material from the weight of the cress. This means that we
would like to use the regression relationship in the “wrong” direction. This will cause
problems with statistical inference. Such a procedure is often desired to calibrate
a measurement method or to predict the result of a more expensive measurement
method from a cheaper one. The regression curve in this relationship is often called a
calibration curve. Another keyword for finding this topic is inverse regression.
Here, we would like to present a simple method that gives useable results if simplifying
assumptions hold.

h Procedure under Simplifying Assumptions We assume that the predictor values x
have no measurement error. In our example this holds true if the concentrations of
the agrochemical material are determined very carefully. For several soil samples with
many different possible concentrations we carry out several independent measurements
of the response value Y . This results in a training data set that is used to estimate
the unknown parameters and the corresponding parameter errors.
Now, for a given value y0 it is obvious to determine the corresponding x0 value by
simply inverting the regression function:

x̂0 = h−1(y0, θ̂
)
.

Here, h−1 denotes the inverse function of h . However, this procedure is only correct
if h(·) is monotone increasing or decreasing. Usually, this condition is fulfilled in
calibration problems.

i Accuracy of the Obtained Values Of course we now face the question about the
accuracy of x̂0 . The problem seems to be similar to the prediction problem. However,
here we observe y0 and the corresponding value x0 has to be estimated.
The answer can be formulated as follows: We treat x0 as a parameter for which we
want a confidence interval. Such an interval can be constructed (as always) from a test.
We take as null hypothesis x = x0 . As we have seen in 3.7.c, Y lies with probability
0.95 in the forecast interval

η̂0 ± q
tn−p
1−α/2 ·

√
σ̂2 +

(
se(η̂0)

)2
,

where η̂0 was a compact notation for h(x0, θ̂). Therefore, this interval is an acceptance
interval for the value Y0 (which here plays the role of a test statistic) under the null
hypothesis x = x0 . Figure 3.7.i illustrates all prediction intervals for all possible values
of x0 for the given interval in the Cress example.

j Illustration Figure 3.7.i (right) illustrates the approach for the Cress example: Mea-
sured values y0 are compatible with parameter values x0 in the sense of the test, if
the point [x0, y0] lies in the (prediction interval) band. Hence, we can thus determine
the set of values of x0 that are compatible with a given observation y0 . They form
the dashed interval, which can also be described as the set{

x : |y0 − h
(
x, θ̂

)
| ≤ qtn−p

1−α/2 ·
√
σ̂2 +

(
se
(
h
(
x, θ̂

)))2
}
.

This interval is now the desired confidence interval (or calibration interval) for x0 .
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Figure 3.7.i: Cress example. Left: Confidence band for the estimated regression curve (dashed)
and forecast band (solid). Right: Schematic representation of how a calibration interval is
determined, at the points y0 = 650 and y0 = 350. The resulting intervals are [0.4, 1.22] and
[1.73, 4.34], respectively.

If we have m values to determine y0 , we apply the above method to ȳ0 =
∑m
j=0 y0j/m

and get {
x : |ȳ0 − h

(
x, θ̂

)
| ≤

√
σ̂2 +

(
se
(
h
(
x, θ̂

)))2
· qtn−p

1−α/2

}
.

k In this chapter, only one of many possibilities for determining a calibration interval
was presented.

3.8 Closing Comments

a Reason for the Difficulty in the Biochemical Oxygen Demand Example Why did
we have so many problems with the Biochemical Oxygen Demand example? Let us
have a look at Figure 3.1.e and remind ourselves that the parameter θ1 represents the
expected oxygen demand for infinite incubation time, so it is clear that it is difficult
to estimate θ1 , because the horizontal asymptote is badly determined by the given
data. If we had more observations with longer incubation times, we could avoid the
difficulties with the quality of the confidence intervals of θ .

Also in nonlinear models, a good (statistical) experimental design is essential. The
information content of the data is determined through the choice of the experimental
conditions and no (statistical) procedure can deliver information that is not contained
in the data.

b Bootstrap For some time the bootstrap has also been used for determining confidence,
prediction and calibration intervals. See, e.g. Huet, Bouvier, Gruet and Jolivet (1996)
where also the case of non-constant variance (heteroscedastic models) is discussed. It
is also worth taking a look at the book of Carroll and Ruppert (1988).
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c Correlated Errors Here we always assumed that the errors Ei are independent. Like in
linear regression analysis, nonlinear regression models can also be extended to handle
correlated errors and random effects.

d Statistics Programs Today most statistics packages contain a procedure that can
calculate asymptotic confidence intervals for the parameters. In principle it is then
possible to calculate “t-profiles” and profile traces because they are also based on the
fitting of nonlinear models (on a reduced set of parameters).

e Literature Notes This chapter is mainly based on the book of Bates and Watts (1988).
A mathematical discussion about the statistical and numerical methods in nonlinear
regression can be found in Seber and Wild (1989). The book of Ratkowsky (1989) con-
tains many nonlinear functions h(·) that are primarily used in biological applications.



4 Analysis of Variance and Design of
Experiments

Preliminary Remark Analysis of variance (ANOVA) and design of experiments are
both topics that are usually covered in separate lectures of about 30 hours. Here, we
can only give a very brief overview. However, for many of you it may be worthwhile
to study these topics in more detail later.
Analysis of variance addresses models where the response variable Y is a function of
categorical predictor variables (so called factors). We have already seen how such
predictors can be applied in a linear regression model. This means that analysis of
variance can be viewed as a special case of regression modeling. However, it is worth-
while to study this special case separately. Analysis of variance and linear regression
can be summarized under the term linear model.
Regarding design of experiments we only cover one topic, the optimization of a
response variable. If time permits, we will also discuss some more general aspects.

4.1 Multiple Groups, One-Way ANOVA

a We observe g groups of values

Yhi = µh + Ehi i = 1, 2, . . . , nh; h = 1, 2, . . . , g,

where Ehi ∼ N (0, σ2), independent.
The question of interest is whether there is a difference between the µh ’s.

b Null hypothesis H0 : µ1 = µ2 = . . . = µg .

Alternative HA : µh 6= µk for at least one pair (h, k).

Test statistic
Based on the average of each group Y h. = 1

nh

∑nh
i=1 Yhi we get the “mean squared error

between the different groups”

MSG = 1
g − 1

g∑
h=1

nh(Y h. − Y ..)2.

This can be compared to the “mean squared error within the groups”

MSE = 1
n− g

∑
h,i

(Yhi − Y h.)2,

leading to the test statistics of the F-test:

T = MSG

MSE
,

which follows an F -distribution with g− 1 and n− g degrees of freedom under H0 .

34
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Df Sum of Sq Mean Sq F Value Pr(F)

Treatment 4 520.69 130.173 1.508 0.208
Error 77 6645.15 86.301

Total 81 7165.84

Table 4.1.b: Example of an ANOVA table.
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Figure 4.2.a: Sr-89-values for the 24 laboratories

c Non-parametric tests (if errors are not normally distributed):
“Kruskal-Wallis-Test”, based on the ranks of the data.
For g = 2 groups: “Wilcoxon-Mann-Whitney-Test”, also called “U-Test”.

4.2 Random Effects, Ring Trials

Example a Strontium in Milk Figure 4.2.a illustrates the results of a ring trial (an inter-laboratory
comparison) to determine the concentration of the radioactive isotope Sr-89 in milk
(the question was of great interest after the Chernobyl accident). In 24 laboratories
in Germany two runs to determine this quantity in artificially contaminated milk were
performed. For this special situation the “true value” is known: it is 57.7 Bq/l. Source:
G. Haase, D. Tait und A. Wiechen: “Ergebnisse der Ringanalyse zur Sr-89/Sr-90-
Bestimmung in Milch im Jahr 1991”. Kieler Milchwirtschaftliche Forschungsberichte
43, 1991, S. 53-62).
Figure 4.2.a shows that the two measurements of the same laboratory are in general
much more similar than measurements between different laboratories.

b Model: Yhi = µ+Ah + Ehi . Ah random, Ah ∼ N (0, σ2
A).

Special quantities can tell us now how far two measurements can be from each other
such that it is still safe to assume that the difference is only random.

• Comparisons within laboratory: “Repeatability” 2
√

2 · σ̂E ,
• Comparisons between laboratories: “Comparability” 2

√
2(σ̂2

E + σ̂2
A)
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4.3 Two and More Factors

Example a Fisher’s Potato Crop Data Sir Ronald A. Fisher who established ANOVA (and many
other things), used to work in the agricultural research center in Rothamstead, Eng-
land. In an experiment to increase the yield of potatoes, the influence of two treat-
ment factors, the addition of ammonium- and potassium-sulphate (each having 4
levels: 1, 2, 3, 4), was studied. Figure 4.3.a illustrates the data. Source: T. Eden
and R. A. Fisher, Studies in Crop Variation. VI. Experiments on the Response of the
Potato to Potash and Nitrogen, J. Agricultural Science, 19, 201-213, 1929; available
through Bennett, 1971.

Potassium-sulphate K
1 2 3 4

1 404 308 356 439
Ammonium- 2 318 434 402 422
sulphate N 3 456 544 484 504
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Figure 4.3.a: Fisher’s Potato Crop Data.

b Model:
Yh,k = µ+ αh + βk + Ehk ,

∑
h

αh = 0 und
∑
k

βk = 0

c Estimates:
µ̂ = Y .. , α̂h = Y h. − Y .. , β̂k = Y .k − Y .. .

d Tests. Null-hypotheses: No influence of factor A (B ). F-Tests. See table.

DF SS MS F Pr(F)

N 3 59793 19931 10.84 0.0024
K 3 10579 3526 1.92 0.1973

Resid. 9 16552 1839

Total 15 86924

Table 4.3.d: ANOVA table for Fisher’s potato crop data.

e Interaction Effects Model 4.3.b assumes that the effect of factor B is given by βk ,
independent of the value of factor A . Or in other words, the model postulates that the
effects of the two factors are additive. In general, so called interaction effects can
occur. E.g., for fertilizers, further increasing one fertilizer is of little effect if another
substance (fertilizer) is missing.
The general model for two factors with interaction effect can be written as

Yh,k = µh,k + Eh,k = µ+ αh + βk + γhk + Eh,k .

Side constraints for the the interaction effect γhk are needed in order to obtain an
identifiable model:

∑
h γhk = 0 for all k and

∑
k γhk = 0 for all h .
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However, parameters can only be estimated if there are two or more observations for
each combination of (h, k) (replicates).

f It’s not difficult to extend model 4.3.b for more than two factors. The general
model then also contains “interactions of higher order”.

g For product development it’s often necessary to check the effect of several (many)
factors. In order to avoid too many experiments, it’s often useful to restrict each
factor to two levels and to avoid replicates. Such a series of experiments for k factors
is called 2k -design and will be discussed in more detail in the next section.

4.4 Response Surface Methods

Example a Antibody Production Large amounts of antibodies are obtained in biotechnological
processes: Host animals (e.g. mice) are injected with modified cells that can produce
the corresponding antibody. After a certain time these cells start to produce antibodies
that can be collected in excreted fluid for further processing.
The cells can only produce antibodies if the immune system of the host animal is
being weakened at the same time. This can be done with 4 factors. Moreover, it is
believed that the amount of injected cells and their development stage has an influence
on antibody production.
As there are no theoretical models for such complex biological processes, the relevant
process factors have to be determined by an experiment. Such an experiment needs
many mice, is time-intensive and usually costs a lot of money. Using a clever design,
we can find out the important process factors with the lowest possible effort. That’s
where statistical design of experiments comes into play.
Two relevant process factors were identified in this study: the dose of Co60 gamma
rays and the number of days between radiation and the injection of a pure oil. Now,
the question is to find the levels for these two factors such that an optimal amount
of antibodies is being produced by the modified cells.

b We have already seen a model which models a response variable Y that depends on
two factors. It was

Yh,k = µh,k + Eh,k = µ+ αh + βk + γhk + Eh,k , h, k = 1, 2.

If the two factors are based on continuous variables x(1), x(2) , as is the case here with
radiation dose and the number of days between radiation and injection, we have the
corresponding general model

Yi = h
(
x

(1)
i , x

(2)
i

)
+ Ei,

(analogous for more than two factors). The function h
(
x(1), x(2)

)
, which depends on

x(1) and x(2) , is the so-called response surface. Usually a quadratic polynomial
(see below) in the variables x(1) and x(2) is used for h (sometimes the function h is
available from theory). Once we have h , we can find the optimal setting [x(1)

0 , x
(2)
0 ] of

the process factors. Usually, h must be estimated from data.
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Figure 4.4.c: Varying the variables one by one. Left: Yield vs. reaction time, reaction tem-
perature held constant at 220◦C . Right: Yield vs. reaction temperature, reaction time held
constant at 100 minutes.

c A naive approach to find the optimum would be to optimize the variables one by one.
The weakness of such an approach is now being illustrated with an artificial example.

Example d Reaction Analysis A chemist wants to maximize the yield of a chemical reaction by
varying reaction time and reaction temperature. First, he performs an experiment
where he uses a constant reaction temperature of T = 220◦C and reaction times 80,
90, 100, 110, and 120 minutes. Results are illustrated in Figure 4.4.d. According to
this data, the maximum is attained with a reaction time of about 100 minutes.
In a second stage, reaction time is held constant at its optimal value of t = 100 minutes.
Reaction temperature is varied at 180, 200, 220, 240, and 260◦C . Now, the conclusion
is that maximal yield is attained with a reaction temperature of about 220◦C . This
is not too far away from the value that was used in the first stage. Hence, the final
conclusion is that the maximal yield of about 65 grams is attained using a reaction
time of about 100 minutes and a reaction temperature of about 220◦C .

e To see that this conclusion is wrong, we have to make use of a two-dimensional view.
Let us put time on the x- and temperature on the y -axis. Yield is illustrated by the
corresponding contours (Figure 4.4.e). In this example, maximal yield of about 70
grams is attained with a reaction time of about 85 minutes and a reaction temperature
of about 270◦C .
The approach of “varying the variables one by one” is misleading because it tacitly
assumes that the maximal value of one variable is independent of the other ones. This
assumption is usually not fulfilled.

f Even though the original setting of the process variables was “far away” from the
optimal value, an appropriate sequence of well chosen experimental set-ups leads to
the optimum. For that purpose, we start with a so called first-order design, a
2k -design with additional measurements in the center. Experience from earlier exper-
iments should guide us in selecting appropriate levels for the factors.

Example g Reaction Analysis (cont’d) From earlier experiments we know that a reaction tem-
perature of 140◦C and a reaction time of 60 minutes gives good results. Now we want
to vary reaction time by 10 minutes and reaction temperature by 20◦C . The corre-
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Figure 4.4.e: A hypothetical response surface, illustrated by contours in the diagram reaction
temperature vs. reaction time.

sponding first-order design and the corresponding measurement results can be found
in Table 4.4.g. Usually, coded variables are used in literature. They can also be found
in Table 4.4.g.

Variable Variable Yield
in original units in coded units

Run Temperature [◦C] Time [min] Temperature Time Y [grams]

1 120 50 –1 –1 52
2 160 50 +1 –1 62
3 120 70 –1 +1 60
4 160 70 +1 +1 70
5 140 60 0 0 63
6 140 60 0 0 65

Table 4.4.g: First-order design and measurement results for the example “Reaction Analysis”.
The single experiments (runs) were performed in random order : 5, 4, 2, 6, 1, 7, 3.

h Because the response surface h (see 4.4.b) is unknown, we approximate it with the
simplest possible surface, a plane. Hence, we have the model

Yi = θ0 + θ1x
(1)
i + θ2x

(2)
i + Ei,

which has to be fitted to the data. We have already seen how the parameter estimates
can be obtained.
The fitted plane, the so called first-order response surface, is given by

ŷ = θ̂0 + θ̂1x
(1) + θ̂2x

(2).

Of course, this is only an approximation of the real response surface.
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 62.000 0.882 70.30 6.3e-06 ***
xt1 5.000 1.080 4.63 0.019 *
xt2 4.000 1.080 3.70 0.034 *

Table 4.4.i: Estimated coefficients for the coded variables in the example “Reaction Analysis”.

Example i Reaction Analysis (cont’d) The parameters with respect to the coded variables can
be found in Table 4.4.i.

j On the first-order response surface we can find those points [x(1), x(2)]T which have a
constant yield ŷ = ŷ0 . From equation

ŷ0 = θ̂0 + θ̂1x
(1) + θ̂2x

(2)

we find the straight line

x(2) = ŷ0 − θ̂0 − θ̂1x
(1)

θ̂2

with slope b = −θ̂1/θ̂2 and intercept a = (ŷ0− θ̂0)/θ̂2 . Orthogonal to this straight line
is the direction of steepest ascent (descent). This straight line has slope θ̂2/θ̂1 .
The two-dimensional vector [θ̂1, θ̂2]T is called estimated gradient; this direction is the
fastest way to get large values of ŷ .
Of course we also get large values when following any direction that is “close” to the
gradient.

k Observations that are in the center of the 2k -design have no influence on the estimates
of the parameters θ1, . . . , θk and hence no influence on the estimated gradient, either.
This can be seen from the normal equations.
But why should we do experiments in the center?
• It’s possible to estimate the measurement error without using the assumption

that the plane is a good approximation of the true response surface if several
observations are available in the center.

• Possible curvature of the true response surface can be detected. If there is no
curvature and if the plane is a “good” approximation of the true response sur-
face in the range of the experimental set-up, the average of the observations in
the center, Y c , and the average of the observations of the 2k -design, Y f , are
estimates of the mean of Y for the set-up in the center. Hence, they should be
“more or less equal”. If the difference is obviously different from zero it’s a hint
that there is curvature.

A statistical test for curvature is as follows: The empirical variance s2 that was esti-
mated from the nc observations in the center can be used to determine the standard
deviation of the difference. The variance of Y c can be estimated by s2/nc and the
variance of Y f by s2/2k . Because Y c and Y f are independent, the variance of the
difference Y c − Y f is estimated by s2(1/nc + 1/2k). Now we can perform a t-test or
we can construct the corresponding confidence interval: If the interval

Y c − Y f ± q
tnc−1
0.975 ·

√
s2(1/nc + 1/2k)

does not cover zero, the difference is statistically different from zero.
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If we face relevant curvature of the true response surface (in the range of the exper-
imental set-up), a linear approximation is not appropriate. Hence, we may also have
problems determining the direction of steepest ascent. Usually we will use a second-
order response surface (see below) for such situations.

l If the measurements of the center observations are all performed in a row, we face
the danger that the observed variation (measured by s2 ) is not really the variation
between “independent” observations. Usually we will get significant curvature, even
for cases where the response surface is a plane.
In general, it’s important to randomize the different experimental set-ups –
even though this usually needs much more effort because we always have to arrange a
new setting for each new run.

m If it’s plausible to use a linear response surface, we will search for an optimum along
the direction of steepest ascent. Along[

x
(1)
0
x

(2)
0

]
+ k

[
c(1)

c(2)

]

we will perform additional experiments for k = 1, 2, . . . until yield starts to decrease.
[x(1)

0 , x
(2)
0 ]T is the point in the center of our experimental design and [c(1), c(2)]T is

the direction of steepest ascent.

Example n Reaction Analysis (cont’d) The first-order response surface is

ŷ = 62 + 5x̃(1) + 4x̃(2) = 3 + 0.25 · x(1) + 0.4 · x(2),

where [x̃(1), x̃(2)]T are the coded x-values (taking values ±1) (see Table 4.4.i). Note
that the gradient for the coded and the non-coded (original) x-values lead to different
directions of steepest ascent. An other ascent direction can be identified by observing
that individually increasing temperature by 4◦C or time by 2.5 minutes both leads to
a yield increase of 1 gram.
Further experiments are now performed along[

140
60

]
+ k ·

[
25
10

]
,

which corresponds to the steepest ascent direction with respect to the coded x-values,
(see Table 4.4.n).

Temperature [◦C] Time [min] Y

1 165 70 72
2 190 80 77
3 215 90 79
4 240 100 76
5 265 110 70

Table 4.4.n: Experimental design and measurement results for experiments along the steepest
ascent direction for the example “Reaction Analysis”.
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Based on the results in Table 4.4.n (plot the profile of yield vs. runs), the optimum
should be in the neighborhood of a reaction temperature of 215◦C and a reaction time
of 90 minutes.

o Once the optimum along the gradient is identified, a further first-order design ex-
periment can be performed (around the optimum) to get a new gradient. However,
in general the hope is that we are already close to the optimal solution and we will
continue as illustrated in the next section.

4.5 Second-Order Response Surfaces

a Once we are close to the optimal solution, the estimated plane will be nearly parallel
to the (x(1), x(2))-plane. Hence, θ̂1 and θ̂2 will be nearly zero. We expect that the
optimal solution is a (flat) peak in the range of our experimental set-up and hence we
expect the difference Y c − Y f to be significantly different from zero. Such a peak can
be modelled by a second-order polynomial:

Yi = θ0 + θ1x
(1)
i + θ2x

(2)
i + θ11(x(1)

i )2 + θ22(x(2)
i )2 + θ12x

(1)
i x

(2)
i + Ei

b However, the 2k -design does not contain enough data to estimate the parameters of
the second-order polynomial. The reason is that we need at least 3 levels for each
factor. There are now several ways of expanding our original design. The more levels
we have for each factor, the better we can estimate the curvature. So called rotatable
central composite designs (also called second-order central composite designs) are
very famous. As can be seen from the graphical representation in Figure 4.5.b we
can get such a design by extending our original first-order design. In total we have 9
different experimental set-ups if we have two predictor variables. All points (except
the center point) have the same distance from the center (0, 0). Five levels are
used for each factor. If we use replicates at (0, 0) we get a more precise estimate of
the quadratic part of the model.

Example c Reaction Analysis (cont’d) A rotatable central composite design was applied. The
results can be found in Table 4.5.c.
The parameter estimates lead to the estimated second-order response surface:

ŷ = θ̂0 + θ̂1x
(1) + θ̂2x

(2) + θ̂11(x(1))2 + θ̂22(x(2))2 + θ̂12x
(1) x(2)

= −278 + 2.0 · x(1) + 3.2 · x(2) + 0.0060 · (x(1))2 + 0.026 · (x(2))2 + 0.006 · x(1) x(2).

d Depending on the parameters, a second-order response surface can take different
shapes. The most important ones are those that have a maximum (minimum) or
a saddle (rather rare). A schematic contour plot of these two types is illustrated in
Figure 4.5.d.

Surfaces with a maximum (minimum) don’t need further explanations: Once we leave
the optimum in any direction, yield Y is decreasing (increasing). For a saddle, it
depends on the direction whether yield Y increases or decreases. Hence, the surface
is like a horse saddle.
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Figure 4.5.b: Rotatable central composite design. It consists of a 22 -design (v) with additional
experiments in the center and along the axes (p).

Variables Variables Yield
in original units in coded units

Run Temperature [◦C] Time [min] Temperature Time Y [grams]

1 195 80 −1 −1 78
2 235 80 +1 −1 76
3 195 100 −1 +1 72
4 235 100 +1 +1 75
5 187 90 −

√
2 0 74

6 243 90 +
√

2 0 76
7 215 76 0 −

√
2 77

8 215 104 0 +
√

2 72
9 215 90 0 0 80

Table 4.5.c: Rotatable central composite design and measurement results for the example “Re-
action Analysis”.

e It’s possible to find an analytical solution for the critical point by calculating partial
derivatives. In the critical point they have to be zero:

∂Ŷ

∂x(1) = θ̂1 + 2 θ̂11 x
(1)
0 + θ̂12 x

(2)
0 = 0

∂Ŷ

∂x(2) = θ̂2 + 2 θ̂22 x
(2)
0 + θ̂12 x

(1)
0 = 0 .

Solving this linear equation system for x(1)
0 and x

(2)
0 leads us to

x
(1)
0 = θ̂12 θ̂2 − 2 θ̂22 θ̂1

4 θ̂11 θ̂22 − θ̂2
12

x
(2)
0 = θ̂12 θ̂1 − 2 θ̂11 θ̂2

4 θ̂11 θ̂22 − θ̂2
12

.
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Figure 4.5.d: Contour plots of second-order response surfaces with a maximum (left) and a
saddle (right).

Example f Reaction Analysis (cont’d) We can directly read the critical values off the contour
plot in Figure 4.5.f: (220◦C , 85 minutes).
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Figure 4.5.f: Estimated response surface and experimental designs for the example “Reaction
Analysis”. The first-order design is marked with u, the experiments along the steepest ascent
with vand those of the rotatable central composite design with �E.

Example g Antibody production (cont’d) Let’s come back to our original example. A radioactive
dose of 200 rads and a time of 14 days is used as starting point. Around this point we
use a first-order design, see Table 4.5.g.
Based on the measurements in the center we can calculate the standard deviation of
the error term: σ̂ = 53.9. Now we check whether there is significant curvature. The
confidence interval for the difference can be calculated as outlined in 4.4.k:

Y c − Y f ± q
tnc−1
0.975 ·

√
s2(1/nc + 1/2k) = 589− 335± 4.30 · 41.1

= [77, 431].

As this interval does not cover 0, the difference is statistically different from zero on the
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Variables Variables Yield
in original units in coded units

Run RadDos [rads] Time [days] RadDos Time Y

1 100 7 −1 −1 207
2 100 21 −1 +1 257
3 300 7 +1 −1 306
4 300 21 +1 +1 570
5 200 14 0 0 630
6 200 14 0 0 528
7 200 14 0 0 609

Table 4.5.g: First-order design and measurement results for the example “Antibody
Production”.

5% level. As yield decreases at the border of our experimental set-up, we conjecture
that the optimal value must lie somewhere within our set-up range.
Hence, we expand our design to a rotatable central composite design by doing addi-
tional measurements (see Table 4.5.g).

Variables Variables Yield
in original units in coded units

Run RadDos [rads] Time [days] RadDos Time Y

8 200 4 0 −
√

2 315
9 200 24 0 +

√
2 154

10 59 14 −
√

2 0 100
11 341 14 +

√
2 0 513

Table 4.5.g: Rotatable central composite design and measurement results for the example “An-
tibody Production”.

The estimated response surface is

Ŷ = −608.4 + 5.237 · RadDos + 77.0 · Time
−0.0127 · RadDos2 − 3.243 · Time2 + 0.0764 · RadDos · Time.

We can identify the optimal conditions in the contour plot (Figure 4.5.g):
RadDosopt ≈ 250 rads and timeopt ≈ 15 days.

h Summary To find the optimal setting of our variables (leading to maximal yield) we
have to iteratively do experiments using special designs.
• If we are still “far away” from the optimum, we use first-order designs and we

estimate the corresponding first-order response surface (a plane).
• On the estimated response surface we determine an ascent direction. Along that

direction we do additional experiments until the response variable decreases again
(“extrapolation”).

• Further first-order experiments may be performed (hence we repeat the last two
steps).

• As soon as we are close to the optimum, we perform (e.g.) a rotatable central
composite design (or we expand our first-order design) to estimate the second-
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Figure 4.5.g: Estimated second-order response surface for the example “antibody production”.

order response surface. The optimum on that response surface can be determined
either analytically or graphically.

4.6 Experimental Designs, Robust Designs

a Here we discussed two types of experimental designs in more detail. Of course there
are books full of other designs that are useful for various scopes. The subject is called
design of experiments.
It may be worthwhile to note that for situations where little is known about the
influence of the predictors on the response, so called “screening designs” can be
very useful. They allow a (rough) analysis of k factors with less than 2k experiments.

b The idea of “robust product design” is that products should have constant quality
even if production conditions vary. To reach this goal we do not only have to optimize
the expected quality (or yield or other response variables) but also the variability.
There are special designs for that purpose, e.g. the Taguchi designs.

4.7 Further Reading

• ANOVA and Design of Experiments Short overviews of simple ANOVA
models can be found in Hartung, Elpelt and Klösener (2002, Chap. XI) and Sachs
(2004, Chap. 7). Linder and Berchtold (1982) give a more detailed introduction.

• Applied books about ANOVA and design of experiments are the famous book of
Box, Hunter and Hunter (1978) and the book of Daniel (1976).

• A special book that uses unusual ways to introduce known (and unknown) meth-
ods with focus an explorative analysis is Hoaglin, Mosteller and Tukey (1991).

• A classical mathematically oriented book about ANOVA is Scheffe (1959).
• Design of Experiments Federer (1972, 1991) is an introduction to statistics
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where design of experiments often takes center stage. More details can be found
in the already mentioned book of Box et al. (1978) but also in Mead (1988).

• A systematic overview of experimental design can be found in Petersen (1985).
• A few books discuss topics about practical application of statistics that can’t

be dealt with mathematics. Recommendations are Boen and Zahn (1982) and
Chatfield (1996).

• Response Surfaces An introduction to response surfaces is available in Box et
al. (1978, Chapter 15) or in Hogg and Ledolter (1992).
Box and Draper (1987) and Myers and Montgomery (1995) cover more details.



5 Multivariate Analysis of Spectra

5.1 Introduction

a “Spectrum” means here: We measure the “intensity” for certain “wave lengths”. Such
a function characterizes a chemical mixture (or as a special case a pure substance).
There are many spectra in chemistry. For some of them, pure substances have a
spectrum that consists of a single “peak”. As long as the peaks are not overlapping,
we can identify the different components of a mixture and their proportions.

b NIR-Spectra (near infrared): The NIR-Spectra of pure substances is “any” function
with some more or less characteristic peaks. Hence, it’s rather difficult to identify the
type and the quantity of the different components based on the spectrum of a chemical
mixture. On the other side, these spectra are very cheap: No extra processing is needed,
they can be measured on-line.

Example c Quality Control via NIR-Spectra We have data of reflections of NIR-waves on 52
granulate samples with wave length 1100, 1102, 1104, ..., 2500 nm. Figure 5.1.c shows
the spectra in “centered” form; for each wave length j the median value medi(X(j)

i )
was subtracted from the X(j)

i ’s.

Wl. 1800 1810 ... 2500
a 0.003097 0.017238 ... −0.02950
b 0.002797 0.016994 −0.03095
c 0.002212 0.015757 −0.03095

...
Z 0.001165 0.014237 ... −0.03110

Table 5.1.c: Data for the example “NIR-spectra” (for wavelengths larger than 1800nm).

Questions
• There are outliers. Are there other “structures”?
• The amount of an active ingredient was determined with a chemical analysis.

Can we estimate it sufficiently accurate with the spectrum?

d In other applications we measure spectra to follow a reaction on-line. It is used for
• estimating the order of a reaction and to determine potential intermediate prod-

ucts and reaction constants,
• determining the end of a process,
• monitoring a process.

We can also automatically monitor slow processes of all kinds. For example stock-
keeping: Are there any (unwanted) aging effects?

48
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Figure 5.1.c: NIR-Spectra of granulate samples, centered at the median curve.

e For each observation (sample) we have many variables (a whole spectrum).
Questions
• Is it reasonable to plot the different samples on a plane or is it possible to catch

most information and see structure from just a few dimensions (instead of using
all variables)?

• Can we identify dimensions (with technical interpretation) in the high-dimensional
space that contain most of the information?

• Is it possible to identify and to quantify the different components of a chemical
mixture based on its spectrum?

• For a regression analysis, 70 variables (or 700 at a higher resolution) are too
much if we only have 52 observations. How should we reduce dimensionality?

5.2 Multivariate Statistics: Basics

a Notation The vector Xi = [X(1)
i , X

(2)
i , ..., X

(m)
i ]T denotes the ith spectrum. It’s a

point in m-dimensional space. Hence, for each observation we measure m different
quantities.
Remark In statistics and probability theory vectors are usually column vectors. Row
vectors are denoted by the symbol T (transposed vector).
This is inconvenient in statistics because the data matrix

X = [X(j)
i ] ,

that consists of n observations of m variables is built up the other way round: The
ith row contains the values for the ith observation. For most applications this is a
useful table (see e.g. the design matrix of a linear regression model). Here, it’s often
the other way round: In a table of spectra, a column often contains a single spectrum
(i.e., it’s one observation of a spectrum).
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b Definitions We define the following quantities for an m-dimensional random vector
X = [X(1), X(2), ..., X(m)]T ∈ Rm .
• Expectation µ ∈ Rm

µ = (µ1, . . . , µm)T , where µk = E[X(k)], k = 1, . . . ,m .
In other words: a vector that consists of the (univariate) expectations.
We write µX in situations where we also have other random variables.

• Covariance Matrix |Σ ∈ Rm×m
|Σ is an m×m matrix with elements

|Σjk = Cov(X(j), X(k)) = E
[
(X(j) − µj)(X(k) − µk)

]
.

We also use the notation Var(X) or Cov(X).
Note that
◦ |Σjj = Cov(X(j), X(j)) = Var(X(j)).

This means that the diagonal elements of the matrix are the variances.

◦ Corr(X(j), X(k)) = |Σ jk√
|Σ jj |Σkk

.

Again, sometimes we write |ΣX if we want to point out that this is the covariance
matrix that corresponds to X .

c Linear Transformations
• For a simple (one-dimensional) random variable: Y = a+ bX, where a, b ∈ R .

Expectation: E[Y ] = a+ bµX .
Variance: Var(Y ) = b2σ2

X .
• For random vectors: Y = a+ BX, where a ∈ Rm, b ∈ Rm×m .

Expectation: E[Y ] = a+ BµX .
Covariance: Cov(Y ) = B |ΣXB T .

d Remark The multivariate normal distribution X ∼ N (µ, |Σ) is fully characterized
by the mean µ and the covariance matrix |Σ . It is the most common distribution in
multivariate statistics. See e.g. Chapter 15.3 in Stahel (2000).
Figure 5.2.d illustrates two two-dimensional normal distributions with the “contours”
of their densities. The mean vector is responsible for the location of the distribution
and the covariance matrix for the shape of the contours.

e Estimators

µ̂ =
[
X

(1)
, X

(2)
, . . . , X

(m)]T = vector of means

|̂Σ = 1
n− 1

n∑
i=1

(Xi − µ̂)(Xi − µ̂)T

= matrix of the empirical variances and covariances.

This means that

|̂Σjk = 1
n− 1

n∑
i=1

(X(j)
i −X

(j))(X(k)
i −X

(k)).

The covariance matrix plays a crucial role in multivariate models that are based on
the normal distribution or that want to model linear relationships.
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Figure 5.2.d: Contours of the probability densities for a standard normal (left) and a general
(right) multivariate normal distribution.

5.3 Principal Component Analysis (PCA)

a Our goal is dimensionality reduction. We are looking for a few dimensions in the
m-dimensional space that can explain “most of the variation in the data”.
We define variation in the data as the sum of the individual m variances

m∑
j=1

V̂ar(X(j)) = 1
n− 1

n∑
i=1

m∑
j=1

(X̃(j)
i )2,

where X̃(j)
i are the centered observations: X̃(j)

i = X
(j)
i −X

(j) .

We want to find a new “coordinate system” with certain properties. This will lead to
• new basis vectors bk (‖bk‖ = 1), the so called principal components. The

individual components of these basis vectors are called loadings.
• new coordinates Z(k)

i = X̃T
i bk , the so called scores (projections of the data on

the directions above).

What properties should the new coordinate system have?
• The first basis vector b1 should be chosen such that Var(Z(1)) is maximal.
• The second basis vector b2 should be orthogonal to the first one (bT2 b1 = 0) such

that Var(Z(2)) is maximized.
• And so on...

Figure 5.3.a illustrates the idea using a two-dimensional distribution.
To summarize, we are performing a transformation to new variables

Zi = B̂
T (Xi − µ̂),

where the transformation matrix B̂ is orthogonal.
It can be shown that B̂ is the matrix of (standardized) eigenvectors and λ̂k are the
eigenvalues of |̂ΣX .
Remember that |̂ΣX is a symmetric matrix and therefore we can decompose it into

|̂ΣX = B̂ D̂ B̂
T
,
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where B̂ is the matrix with the eigenvectors in the different columns and D̂ is the
diagonal matrix with the eigenvalues on the diagonal (this is a fact from linear algebra).
Therefore we have

V̂ar(Z) = B̂
T |̂ΣXB̂ = D̂ =


λ̂1 0 . . . 0
0 λ̂2 . . . 0
...

... . . .
0 0 . . . λ̂m


λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m ≥ 0.

Hence, the individual components of Z are uncorrelated and the first component
of Z has largest variance. By construction it holds that λ̂1 = V̂ar(Z(1)). It is the
maximal variance of a projection:

λ̂1 = max
b:‖b‖=1

(V̂ar(X b)).

Accordingly for λ̂m : It’s the smallest variance.
Because the λ̂k are the eigenvalues of |̂ΣX , we know from linear algebra that

m∑
k=1

λ̂k =
m∑
k=1

|̂Σkk =
m∑
k=1

V̂ar(X(j)).

Hence ∑k
j=1 λ̂j∑m
j=1 λ̂j

is the proportion of the total variance that is explained by the first k principal
components.
Of course we can always go back to the original data using the new variables by doing
a simple back-transformation

Xi − µ̂ =
(

B̂
T
)−1

Zi = B̂Zi =
m∑
k=1

Z
(k)
i b(k).

b Graphical Representation By reducing dimensionality it gets easier to visualize
the data. For that reason we only consider the first two (or three) components and
forget about the other ones. Figure 5.3.b (i) illustrates the first two components for
the “NIR-spectra” example (for technical reasons we only consider wave lengths larger
than 1800 nm). We can see 5 outliers – they were already visible in the spectra. Figure
5.3.b (ii) shows the first three components of a principal component analysis without
the outliers.
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Figure 5.3.a: Principal component rotation.
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Figure 5.3.b: (i) Scatterplot of the first two principal components for the example “NIR-spectra”.
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Figure 5.3.b: (ii) Scatterplot matrix of the first three principal components for the example
“NIR-spectra” without the 5 outliers.

c PCA is suitable for many multivariate data sets. If we are analyzing spectra we have
the special case that the variables (the intensities of different wavelengths) have a
special ordering. Hence, we can plot each observation as a “function”. We can also
illustrate the principal component directions (the loadings) bk as spectra!

d Scaling Issues If the variables are measured in different units, they should be stan-
dardized to (empirical) variance 1 (otherwise comparing variances doesn’t make sense).
This leads to a PCA (= eigenanalysis) of the correlation- instead of the covariance ma-
trix.
For spectra this is not useful because wavelengths with very variable intensities contain
the most important information. If we would standardize the variables in that setup,
we would down-weight these variables compared to the unstandardized data set.

e Choosing the number p of components: (p < m)
• 2 (maybe 3) for illustrational purposes.
• Plot the explained variance (eigenvalues) in decreasing order and look for a break-

point (“scree plot”: plot λ̂k vs. k ), see Figure 5.3.e.
• “Explain 95% of the variance”: The sum of the eigenvalues

∑p
j=1 λ̂j should be

95% of the total sum
∑m
j=1 λ̂j .
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Figure 5.3.c: Spectra of “loadings” of the first three principal components for the example “NIR-
spectra”.

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

NIR−spectra without 5 outliers

V
ar

ia
nc

es
0.

0e
+

00
2.

0e
−

05
4.

0e
−

05 Variances of princ. components

Figure 5.3.e: Variances of the principal components (scree plot) for the example “NIR-spectra”.

But: “Variance”
∑m
j=1 λj =

∑m
j=1 Var(X(j)) is the sum of all variances. There could

be (many) noise variables among them!
Restriction to the first p principal components: In the transformation formula (5.3.a)
we simply ignore the last m− p terms:

Xi − µ̂ = X̂i + Êi , X̂i =
p∑

k=1
Z

(k)
i b(k) , Êi =

m∑
k=p+1

Z
(k)
i b(k).

This can be interpreted in the following two ways.
• In Linear Algebra terminology:

The “data matrix” of the X̂i is the best approximation of the data matrix of
the Xi − µ̂ if we restrict ourselves to matrices with rank p (in the sense of the
so-called Frobenius norm of matrices: ‖E‖2 =

∑
ij E

2
ij ).

• In statistical terminology:
We were looking for p variables Z(k) =

∑m
j=1BkjX

(j), k = 1, . . . p , such that the
differences Ei = Xi − X̂i of X̂i =

∑p
k=1 Z

(k)
i b(k) show minimial variance (in the

sum):
∑m
j=1 V̂ar(E(j)) =

∑m
k=p+1 λk is minimal (there will be no better choice

than the variables Z(k) ).
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5.4 Linear Mixing Models, Factor Analysis

a Model for Spectra Let ck be the spectrum of the chemical component k and consider
a mixture of the components with coefficients s = [s(k)] . For the ith mixture we have
the coefficients si . According to Lambert-Beer the spectrum of the ith mixture is

Xi =
∑
k

c(k)s
(k)
i + Ei = C si + Ei

where Ei are measurement errors. C is the matrix of spectra ck (in the different
columns).
This looks very similar to 5.3.e. The differences are
• C not orthogonal
• Xi instead of Xi − µ̂ , not centered
• Ei random vector (measurement error)
• s

(k)
i ≥ 0 or Cjk ≥ 0, X(j)

i ≥ 0 if we use the original spectra.

b This model can be used for many applications where there are m measurements that
are linear superimpositions of p < m components.
Examples are:
• Chemical elements in rocks that consist of several bed-rocks.
• Trace elements in spring water that ran through different soil layers.

c If the source profiles (spectra) ck are known, the “contributions” s(k)
i can be estimated

for each observation i separately using linear regression.
However, it’s more interesting if both the source profiles and their contributions have
to be estimated from data. This can be achieved using a combination of statistical
methods, professional expertise and application specific properties.

5.5 Regression with Many Predictors

a In the introductory example about NIR-spectra we discussed the question whether we
can “predict” the amount of an active ingredient based on a spectrum.
Hence, we have a response variable Y and several predictors [x(1), ..., x(m)] . If we set
up a linear regression model we face the problem that there are many more predictors
than observations. Hence, it’s not possible to fit a “full model” (it would lead to a
perfect fit).
A possible remedy is to use “stepwise” regression: We start with just one predictor
and add the most significant predictor in the next step (until some stopping criterion
is met).
Example: Granulate Samples.
Y = yield. n = 44 (without “outliers”). Table 5.5.a shows a computer output. For
comparison: Simple correlation between L2450 and yield: r = −0.57, R2 = 0.32.

b Better known are the following methods to handle the problem of having too many
predictors

1. Principal Component-Regression,
2. Ridge Regression
3. New methods like Lasso, Elastic Net, ...
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Value Std. Error t value Pr(>|t|) Signif
(Intercept) 75.30372 0.07175 1049.52 0.000 ***
L2450 -395.43390 76.70623 -5.16 0.000 ***
L2010 -465.28939 142.44458 -3.27 0.002 **
L1990 585.20468 128.49676 4.55 0.000 ***
L2360 875.33702 160.04160 5.47 0.000 ***
L2400 532.91971 117.74430 4.53 0.000 ***
L2480 -301.44225 77.70208 -3.88 0.000 ***
L2130 -501.39852 88.17596 -5.69 0.000 ***

Residual standard error: 0.2268 on 36 degrees of freedom
Multiple R-Squared: 0.7212

Table 5.5.a: Computer output for a regression model after variable selection with stepwise
forward.

c Principal Component-Regression PCA of the predictors leads to new variables
[Z(1), . . . , Z(p)] . The principal components are usually selected without examining the
relationship with the response Y .
Variant of Brown Brown (1993): Select them according to simple correlation with Y !

d Ridge Regression An easy way to ensure that the matrix X T X (that needs to be
invertible for least squares) is non-singular is to add a diagonal matrix λI , leading to

β̂λ = (X T X + λI )−1 X TY .
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