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@ Lecture website
stat.ethz.ch/ muellepa

@ Script, slides and other important information are on the website.
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Introduction - Why Statistics?

@ There is a fast growing amount of data these days, in nearly all
research (and applied) areas.

@ We want to extract useful information from data or check our
hypotheses.

e E.g., among a large set of variables (temperature, pressure, ...):
which have an effect on the yield of a process and how do the
relationships look like?

@ We need to be able to quantify uncertainty, because “the data could
have been different”.



@ Instead of simply determining a plain numerical estimate for a model
parameter, we typically have the following goals:

» Determine other plausible values of the parameter.
» Test whether a specific parameter value is compatible with the data.

@ Moreover, we want to be able to understand and challenge the
statistical methodology that is applied in current research papers.



Course Outline

Outline of the content
@ Linear Regression
@ Nonlinear Regression
@ Design of Experiments

@ Multivariate Statistics

Comments
@ Due to time-constraints we will not be able to do “all the details” but
you should get the main idea of the different topics.
@ The lecture notes contain more material than we will be able to
discuss in class!

@ The relevant parts are those that we discuss in class.



Goals of Today's Lecture

@ Get (again) familiar with the statistical concepts:

> tests
» confidence intervals
» p-values

@ Understand the difference between a standard numerical analysis of
the least squares problem and the statistical approach.

@ Be able to interpret a simple or a multiple regression model (e.g.,
meaning of parameters). Understand the most important model
outputs (tests, coefficient of determination, ...).



Simple Linear Regression

Introduction
Linear regression is a “nice” statistical modeling approach in the sense that:

@ It is a good example to illustrate statistical concepts and to learn
about the 3 basic questions of statistical inference:

» Estimation
» Tests
» Confidence intervals

@ |t is simple, powerful and used very often.

@ It is the basis of many other approaches.
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Possible (artificial) data set
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Goal

Model the relationship between a response variable Y and one predictor

variable x.
e E.g. height of tree (Y) vs. pH-value of soil (x).

@ Simplest relation one can think of is
Y = By + B1x + Error.

This is called the simple linear regression model. It consists of
@ an intercept [y,
@ a slope (1,

@ and an error term (e.g., measurement error).

The error term accounts for the fact that the model does not give an
exact fit to the data.



Simple Linear Regression: Parameter Estimation

e We have a data set of n points (x;, Y;),i = 1,...,n and want to
estimate the unknown parameters.

@ We can write the model as
Yi=pPo+Pixi+E, i=1...,n,
where E; are the errors (that cannot be observed).
e Usual assumptions are E; ~ N(0,0?), independent.
@ Hence, in total we have the following unknown parameters
» intercept (o

» slope 5
» error variance o (nuisance parameter).



Visualization of data generating process

Y error density
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Possible (artificial) data set
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Regression

line




@ The (unknown) parameters /5y and (; are estimated using the
principle of least squares.

@ The idea is to minimize the sum of the squared distances of the
observed data-points from the regression line

n

Z(Yi — Bo — B1x)°,

i=1
the so called sum of squares.
@ This leads to parameter estimates

5~ Thabk-x(N-Y)
> (xi —X)?

~ ~

Bo = Y —pBix.
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This is what you have learned in numerical analysis.

Moreover

1 n
~2 2
7 _n—2;Ri’

where L
Ri=Yi—Yyi=Yi—Bo— Bixi

are the (observable) residuals.

However, we have made some assumptions about the stochastic
behavior of the error term.

Can we get some extra information based on these assumptions?
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Visualization of residuals

— trueline: y=2-0.5x

— Residuals
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@ The parameter estimates 3y, 51 are random variables!

o Why? Because they depend on the Y;'s that have a random error
component.

@ Or in other words: “The data could have been different”.

@ For other realizations of the error term we get slightly different
parameter estimates (~- see animation!).
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@ The stochastic model allows us to quantify uncertainties. It can be

shown that

Bi ~ N (B, 0%/SSx)
Bo ~ N </607 o <n + SS)()) )

where SSx = 21, (x; — X)°.
@ See animation for illustration of empirical distribution.

@ This information can now be used to perform tests and to derive
confidence intervals.
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Statistical Tests: General Concepts
@ First we recall the basics about statistical testing (restricting ourselves
to two-sided tests).

@ We have to specify a null-hypothesis Hy and an alternative Hy
about a model parameter.

@ Hj is typically of the form “no effect”, “no difference”, “status quo” etc.
@ It is the position of a critic who doesn't believe you.
@ Hp is the complement of Hy (what you want to show).

@ We want to reject Hy in favor of Hp.

@ In order to judge about Hy and Hs we need some quantity that is
based on our data. We call it a test statistic and denote it by T.
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As T is stochastic there is a chance to do wrong decisions:

» Reject Hy even though it is true (type | error)
» Do not reject Hy even though Ha holds (type Il error).

How can we convince a critic? We assume that he is right, i.e. we
assume that Hy really holds.

Assume that we know the distribution of T under Hy. We are nice
and allow the critic to control the type | error-rate.

This means that we choose a rejection region such that T falls in that
region only with probability (e.g.) 5% (significance level) if Hy holds.
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o We reject Hy in favor of Hy if T falls in the rejection region.
o If we can reject Hp we have “statistically proven” Hp.

o If we cannot reject Hy we can basically say nothing, because
absence of evidence is not evidence of absence.

@ Of course we try to use a test statistic T that falls in the rejection
region with high probability if Hy does not hold (power of the test).



@ Assume that we want to test whether 51 = 0. Or in words: “The
predictor x has no influence on the response Y"

@ This means we have the null hypothesis Hp : 51 = 0 vs. the
alternative Ha : p1 # 0.

@ Intuitively we should reject Hp if we observe a large absolute value of
B1. But what does large mean here? Use distribution under Hy to
quantify!

Distribution of 31
For the true (but unknown) S; it holds that

T_ B1— b ¢
5/v/S5x %

Hence, under Hp: B ~ tp—2 (null-distribution).

5/v/SSx




Remarks
@ 0/4/SSx is also called the estimated standard error of Bl.
@ We have a t-distribution because we use & instead of o.

o We reject Hp if the test statistic T lies in the “extreme regions” of the
t,—o distribution.

o If we test at the 5% significance level we reject Hy if
T| > g3
[ T| = ag'o75,

where qéf§725 is the 97.5%-quantile of the t,_» distribution.

N
N
N
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@ Or in other words:

“We reject Hp if T falls either in the region of the 2.5% extreme cases
on the left side or the 2.5% extreme cases on the right side of the
distribution under Hp" (see picture on next slide).

@ Remember: qt"*2 ~ 1.96 for large n.
0.975



Null Distribution

—> rejection region
W 25%

rejection region <-—

00

Value of test statistic
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P-Value

@ The p-value is the probability of observing an at least as extreme
event if the null-hypothesis is true.

p=Pu(|T| > ‘Tobserved’)'

@ Here: “Given that x has no effect on Y, what is the probability of
observing a test-statistic T at least as extreme as the observed one?".

@ The p-value tells us how extreme our observed T is with respect to
the null-distribution.

@ If the p-value is less than the significance-level (5%), we reject Hp.

@ The p-value contains more information than the test decision alone.



Null Distribution

—> rejection region

rejection region <—

00

2

0 |T.obs|

—|T.obs|

-2

Value of test statistic
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Confidence Intervals

@ A confidence interval (Cl) for the parameter 1 contains all “plausible

values” for 3.

@ Construction: A 95%-Cl consists of all parameter values 31 that
cannot be rejected using the 5%-test above.

Cl = {all parameter values that are not rejected}
= {61 |TI < ag'ars
= B1£5/V/SSx - aars
Bi+2- &/4/SSx (for large n)

= estimate & 2 - estimated standard error (for large n).

o Alternative interpretation:

A 95%-confidence interval covers the true parameter value with
probability 0.95.
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Simple Linear Regression: Computer Output

Example

Model the lead content of tree barks (11g/g) using the traffic amount (in
1000 cars per day). Data was collected at different streets.

Computer Qutput

Coefficients:

Estimate Std. Error t value Pr(>|tl|)
(Intercept) -12.842 72.143 -0.178 0.863
traffic 36.184 3.693 9.798 4.24e-06 **x

Residual standard error: 92.19 on 9 degrees of freedom
Multiple R-squared: 0.9143, Adjusted R-squared: 0.9048
F-statistic: 96.01 on 1 and 9 DF, p-value: 4.239e-06



Data and fitted model
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Multiple Linear Regression

@ Now we have more than one predictor.
o Model
Yi=Bo+ Bix 4+ Box® 4 4 Box™ 4, i=1,...,n
E; ~ N(0,02), independent.
e Unknown parameters: g, 1, .. ., Bm, 02.
@ The model is called linear because it is linear in the parameters.
@ Note: There are no assumptions regarding the predictors!

o Interpretation of Coefficients

B; measures the efffect of xU) on Y after having subtracted all other
effects from x(%) on Y, k # .
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@ In matrix form we have

where

Y = XB+E,
X§2) X1(m)
x§2) X2(m)
e )

Bo
B1 £

Y1
Yo
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@ The matrix X is called the design matrix. It consists of n rows (the
different observations) and p = m + 1 columns (the different
predictors).

@ Again, the model is fitted using least squares, leading to
B=XTX)"xTy,

i.e., we have a closed form solution.

@ Moreover




Multiple Linear Regression: Inference

@ Again, it can be shown that

~

B~ N (B0 (XTX)Y),).

Again, the estimator (3; fluctuates around the true value f3;.

The standard error is given by
o\ J(XTX)1);

This leads to the test statistic

~

Bj— B

Tj= ~ thp.
5\ /(XTX)1),

This is very similar to simple linear regression, with the exception that
we now have a t,_, instead of a t,_» distribution.
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@ Tests and Cl for individual parameters are constructed as in the
simple linear regression case.

@ Here we can also do simultaneous tests.

Ho: B1=p2=...= m =0 (no effect from any of the predictors).
Ha : at least on 3; # 0.

@ This can be tested using an F-test (see computer output).
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Coefficient of Determination R?

R2 Y (yi—Y)? 1 S (Yi—¥i)?

Sia(Yi- YR XYY
@ R? is the proportion of the variance that can be explained by the
regression model.
e R?2 =1 is equivalent to a perfect fit (all residuals equal 0).
e Simple linear regression: R? = Corr(x, y)?.
e Multiple linear regression: R?> = Corr(y, y)>.

e R? does not tell you how well your model fits the data (see next
slide). E.g, it does not tell you whether the relationships are really
linear or not.
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Anscombe's 4 Regression data sets

5 10 15 5 10 15
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Multiple Linear Regression: Computer Output

Example

Model the “monthly steam demand” of a factory using the predictors
“operating days” and “average outside temperature”.

Computer OQutput

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.126885 1.102801  8.276 3.35e-08 *x*x
Operating.Days 0.202815 0.045768 4.431 0.00021 *x**
Temperature -0.072393 0.007999 -9.050 7.19e-09 *xx

Residual standard error: 0.6616 on 22 degrees of freedom
Multiple R-squared: 0.8491, Adjusted R-squared: 0.8354
F-statistic: 61.9 on 2 and 22 DF, p-value: 9.226e-10



Residual Analysis

@ We made assumptions about the error term in the model. We
assumed that the errors

» have expectation 0 (i.e. the regression model is correct),
» have constant variance,

» are normally distributed,

» are independent.

@ Tests and confidence intervals are based on these assumptions. They
can be (substantially) wrong if they are not fulfilled!
@ Results can be “worthless” if assumptions are not met!

@ Residual Analysis is the visual inspection of the model fit to verify
assumptions.

@ Among the most popular tools are the Tukey-Anscombe plot and
QQ-plots (and many more...).
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Plot (standardized) residuals R; against fitted values y;.

Checks
o E[E] =07
o Var(E;) = 02 constant?

TA-plot should show random scatter around the zero line:

r
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TA-Plots: Regression Assumptions Violated

d)

<>
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QQ-Plot

Plot empirical quantiles of residuals against quantiles of standard normal
distribution ~~ Should show a more or less straight line.

Good examples for various sample sizes
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QQ-Plots: Non-Normal Distributions
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