Linear Regression

18.11.2015

General information

- Lecture website stat.ethz.ch/~muellepa
- Script, slides and other important information are on the website.

Introduction - Why Statistics?

- There is a **fast growing amount of data** these days, in nearly all research (and applied) areas.
- We want to extract useful information from data or check our hypotheses.
- E.g., among a large set of variables (temperature, pressure, ...): which have an effect on the yield of a process and how do the relationships look like?
- We need to be able to quantify uncertainty, because "the data could have been different".

- Instead of simply determining a plain numerical estimate for a model parameter, we typically have the following goals:
 - ▶ Determine **other plausible values** of the parameter.
 - ► **Test** whether a specific parameter value is **compatible** with the data.
- Moreover, we want to be able to understand and challenge the statistical methodology that is applied in current research papers.

Course Outline

Outline of the content

- Linear Regression
- Nonlinear Regression
- Design of Experiments
- Multivariate Statistics

Comments

- Due to time-constraints we will not be able to do "all the details" but you should get the main idea of the different topics.
- The lecture notes contain more material than we will be able to discuss in class!
- The relevant parts are those that we discuss in class.

Goals of Today's Lecture

- Get (again) familiar with the statistical concepts:
 - ▶ tests
 - confidence intervals
 - p-values
- Understand the difference between a standard numerical analysis of the least squares problem and the statistical approach.
- Be able to interpret a simple or a multiple regression model (e.g., meaning of parameters). Understand the most important model outputs (tests, coefficient of determination, . . .).

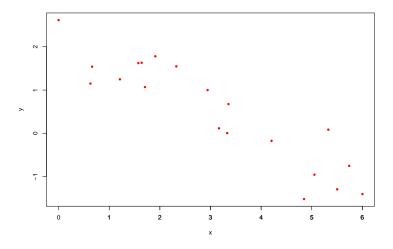
Simple Linear Regression

Introduction

Linear regression is a "nice" statistical modeling approach in the sense that:

- It is a good example to illustrate statistical concepts and to learn about the 3 basic questions of statistical inference:
 - Estimation
 - Tests
 - Confidence intervals
- It is simple, powerful and used very often.
- It is the basis of many other approaches.

Possible (artificial) data set



Goal

Model the relationship between a **response variable** Y and **one predictor variable** x.

- E.g. height of tree (Y) vs. pH-value of soil (x).
- Simplest relation one can think of is

$$Y = \beta_0 + \beta_1 x + \text{Error}.$$

This is called the simple linear regression model. It consists of

- an intercept β_0 ,
- a slope β_1 ,
- and an error term (e.g., measurement error).

The error term accounts for the fact that the model does **not** give an exact fit to the data.

Simple Linear Regression: Parameter Estimation

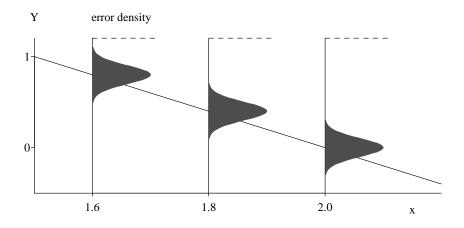
- We have a data set of n points (x_i, Y_i) , i = 1, ..., n and want to **estimate** the unknown parameters.
- We can write the model as

$$Y_i = \beta_0 + \beta_1 x_i + E_i, \quad i = 1, \dots, n,$$

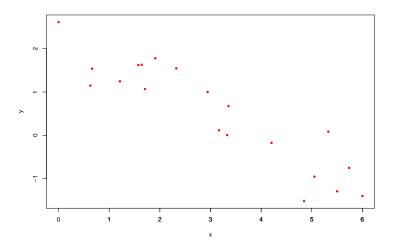
where E_i are the errors (that cannot be observed).

- Usual assumptions are $E_i \sim \mathcal{N}(0, \sigma^2)$, independent.
- Hence, in total we have the following unknown parameters
 - ▶ intercept β_0
 - ▶ slope β_1
 - error variance σ^2 (nuisance parameter).

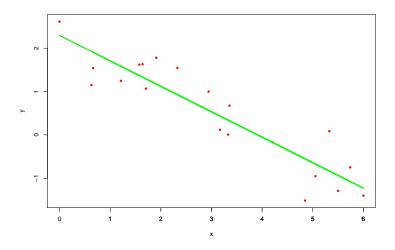
Visualization of data generating process



Possible (artificial) data set



Regression line



- The (unknown) parameters β_0 and β_1 are **estimated** using the principle of **least squares**.
- The idea is to minimize the sum of the squared distances of the observed data-points from the regression line

$$\sum_{i=1}^{n} (Y_i - \beta_0 - \beta_1 x_i)^2,$$

the so called **sum of squares**.

• This leads to parameter estimates

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

$$\widehat{\beta}_{0} = \overline{Y} - \widehat{\beta}_{1}\overline{x}.$$

- This is what you have learned in numerical analysis.
- Moreover

$$\widehat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n R_i^2,$$

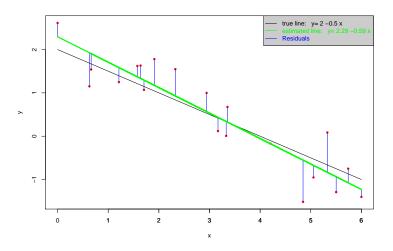
where

$$R_i = Y_i - \widehat{y}_i = Y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i$$

are the (observable) residuals.

- However, we have made some assumptions about the stochastic behavior of the error term.
- Can we get some extra information based on these assumptions?

Visualization of residuals



• The parameter estimates $\widehat{\beta}_0$, $\widehat{\beta}_1$ are random variables!

• Why? Because they depend on the Y_i 's that have a random error component.

• Or in other words: "The data could have been different".

 For other realizations of the error term we get slightly different parameter estimates (→ see animation!). The stochastic model allows us to quantify uncertainties. It can be shown that

$$\widehat{\beta}_{1} \sim \mathcal{N}\left(\beta_{1}, \sigma^{2}/\mathsf{SS}_{X}\right)$$

$$\widehat{\beta}_{0} \sim \mathcal{N}\left(\beta_{0}, \sigma^{2}\left(\frac{1}{n} + \frac{\bar{x}^{2}}{\mathsf{SS}_{X}}\right)\right),$$

where $SS_X = \sum_{i=1}^n (x_i - \bar{x})^2$.

• See animation for illustration of empirical distribution.

 This information can now be used to perform tests and to derive confidence intervals.

Statistical Tests: General Concepts

- First we recall the basics about statistical testing (restricting ourselves to two-sided tests).
- about a model parameter.

• We have to specify a **null-hypothesis** H_0 and an **alternative** H_A

- \bullet H_0 is typically of the form "no effect", "no difference", "status quo" etc.
- It is the position of a critic who doesn't believe you.
- H_A is the complement of H_0 (what you want to show).
- We want to **reject** H_0 in favor of H_A .
- In order to judge about H_0 and H_A we need some quantity that is based on our data. We call it a **test statistic** and denote it by T.

- As *T* is stochastic there is a chance to do wrong decisions:
 - ► Reject *H*⁰ even though it is true (**type I error**)
 - ▶ Do not reject H_0 even though H_A holds (**type II error**).
- How can we convince a critic? We assume that he is right, i.e. we assume that H_0 really holds.
- Assume that we know the distribution of T under H_0 . We are nice and allow the critic to control the type I error-rate.
- This means that we choose a rejection region such that T falls in that region only with probability (e.g.) 5% (significance level) if H_0 holds.

- We reject H_0 in favor of H_A if T falls in the **rejection region**.
- If we can reject H_0 we have "statistically proven" H_A .
- If we cannot reject H_0 we can basically say nothing, because absence of evidence is not evidence of absence.
- Of course we try to use a test statistic T that falls in the rejection region with high probability if H_0 does not hold (**power of the test**).

- Assume that we want to test whether $\beta_1 = 0$. Or in words: "The predictor x has no influence on the response Y"
- This means we have the null hypothesis $H_0: \beta_1 = 0$ vs. the alternative $H_A: \beta_1 \neq 0$.
- Intuitively we should reject H_0 if we observe a large absolute value of $\widehat{\beta}_1$. But what does large mean here? Use distribution under H_0 to quantify!

Distribution of $\widehat{\beta}_1$

For the true (but unknown) β_1 it holds that

$$T = \frac{\widehat{\beta}_1 - \beta_1}{\widehat{\sigma}/\sqrt{\mathsf{SS}_X}} \sim t_{n-2}.$$

Hence, under H_0 : $\frac{\widehat{\beta}_1}{\widehat{\sigma}/\sqrt{\mathsf{SS}_X}} \sim t_{n-2}$ (null-distribution).

Remarks

- $\widehat{\sigma}/\sqrt{SS_X}$ is also called the **estimated standard error** of $\widehat{\beta}_1$.
- We have a *t*-distribution because we use $\hat{\sigma}$ instead of σ .
- We reject H_0 if the test statistic T lies in the "extreme regions" of the t_{n-2} distribution.
- If we test at the 5% significance level we reject H_0 if

$$|T| \geq q_{0.975}^{t_{n-2}},$$

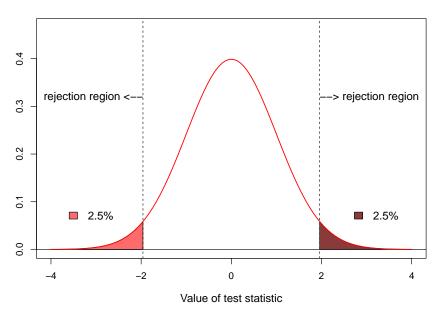
where $q_{0.975}^{t_{n-2}}$ is the 97.5%-quantile of the t_{n-2} distribution.

Or in other words:

"We reject H_0 if T falls either in the region of the 2.5% extreme cases on the left side or the 2.5% extreme cases on the right side of the distribution under H_0 " (see picture on next slide).

• Remember: $q_{0.975}^{t_{n-2}} \approx 1.96$ for large n.

Null Distribution



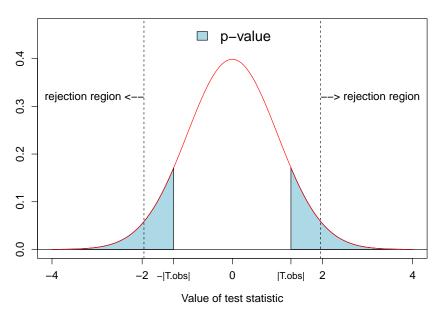
P-Value

 The p-value is the probability of observing an at least as extreme event if the null-hypothesis is true.

$$p = P_{H_0}(|T| \ge |T_{\text{observed}}|).$$

- Here: "Given that x has no effect on Y, what is the probability of observing a test-statistic T at least as extreme as the observed one?".
- The p-value tells us how extreme our observed *T* is with respect to the null-distribution.
- If the p-value is less than the significance-level (5%), we reject H_0 .
- The p-value contains more information than the test decision alone.

Null Distribution



Confidence Intervals

- A confidence interval (CI) for the parameter β_1 contains all "plausible values" for β_1 .
- Construction: A 95%-Cl consists of all parameter values β_1 that cannot be rejected using the 5%-test above.

$$\begin{split} \mathit{CI} &= \{ \text{all parameter values that are not rejected} \} \\ &= \{ \beta_1; \ |T| \leq q_{0.975}^{t_{n-2}} \} \\ &= \widehat{\beta}_1 \pm \widehat{\sigma} / \sqrt{\mathsf{SS}_X} \cdot q_{0.975}^{t_{n-2}} \\ &\approx \widehat{\beta}_1 \pm 2 \cdot \widehat{\sigma} / \sqrt{\mathsf{SS}_X} \ \text{(for large n)} \\ &= \text{estimate} \pm 2 \cdot \text{estimated standard error (for large n)}. \end{split}$$

• Alternative interpretation:

A 95%-confidence interval covers the true parameter value with probability 0.95.

Simple Linear Regression: Computer Output

Example

Model the lead content of tree barks $(\mu g/g)$ using the traffic amount (in 1000 cars per day). Data was collected at different streets.

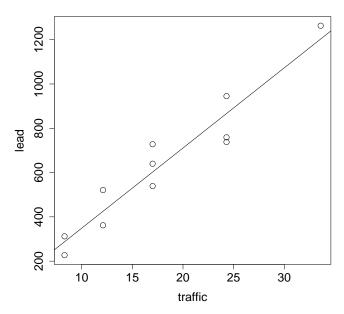
Computer Output

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -12.842 72.143 -0.178 0.863
traffic 36.184 3.693 9.798 4.24e-06 ***
```

Residual standard error: 92.19 on 9 degrees of freedom Multiple R-squared: 0.9143, Adjusted R-squared: 0.9048 F-statistic: 96.01 on 1 and 9 DF, p-value: 4.239e-06

Data and fitted model



Multiple Linear Regression

- Now we have more than one predictor.
- Model

$$Y_i = \beta_0 + \beta_1 x_i^{(1)} + \beta_2 x_i^{(2)} + \ldots + \beta_m x_i^{(m)} + E_i, \quad i = 1, \ldots, n$$
 $E_i \sim \mathcal{N}(0, \sigma^2), \text{ independent.}$

- Unknown parameters: $\beta_0, \beta_1, \dots, \beta_m, \sigma^2$.
- The model is called **linear** because it is **linear in the parameters**.
- Note: There are no assumptions regarding the predictors!
- Interpretation of Coefficients

 β_j measures the efffect of $x^{(j)}$ on Y after having subtracted all other effects from $x^{(k)}$ on Y, $k \neq j$.

In matrix form we have

$$Y = X\beta + E$$
,

where

$$X = \begin{pmatrix} 1 & x_{1}^{(1)} & x_{1}^{(2)} & \dots & x_{1}^{(m)} \\ 1 & x_{2}^{(1)} & x_{2}^{(2)} & \dots & x_{2}^{(m)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n}^{(1)} & x_{n}^{(2)} & \dots & x_{n}^{(m)} \end{pmatrix}, \quad Y = \begin{pmatrix} Y_{1} \\ Y_{2} \\ \vdots \\ Y_{n} \end{pmatrix},$$

$$\beta = \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta \end{pmatrix}, \quad E = \begin{pmatrix} E_{1} \\ E_{2} \\ \vdots \\ E \end{pmatrix}.$$

- The matrix X is called the **design matrix**. It consists of n rows (the different observations) and p=m+1 columns (the different predictors).
- Again, the model is fitted using least squares, leading to

$$\widehat{\beta} = (X^T X)^{-1} X^T Y,$$

i.e., we have a closed form solution.

Moreover

$$\widehat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n (Y_i - \widehat{y}_i)^2.$$

Multiple Linear Regression: Inference

• Again, it can be shown that

$$\widehat{\beta}_{j} \sim \mathcal{N}\left(\beta_{j}, \sigma^{2}\left((X^{T}X)^{-1}\right)_{jj}\right).$$

- Again, the estimator $\widehat{\beta}_j$ fluctuates around the true value β_j .
- The standard error is given by

$$\sigma \sqrt{((X^TX)^{-1})_{jj}}$$

• This leads to the test statistic

$$T_j = \frac{\widehat{\beta}_j - \beta_j}{\widehat{\sigma}\sqrt{((X^TX)^{-1})_{jj}}} \sim t_{n-p}.$$

• This is very similar to simple linear regression, with the exception that we now have a t_{n-p} instead of a t_{n-2} distribution.

 Tests and CI for individual parameters are constructed as in the simple linear regression case.

• Here we can also do simultaneous tests.

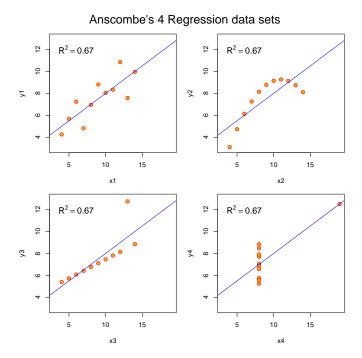
 $H_0: \beta_1 = \beta_2 = \ldots = \beta_m = 0$ (no effect from any of the predictors). $H_A:$ at least on $\beta_i \neq 0$.

This can be tested using an F-test (see computer output).

Coefficient of Determination R^2

$$R^{2} = \frac{\sum_{i=1}^{n} (\widehat{y}_{i} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - \widehat{y}_{i})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}$$

- R^2 is the proportion of the variance that can be explained by the regression model.
- $R^2 = 1$ is equivalent to a perfect fit (all residuals equal 0).
- Simple linear regression: $R^2 = \text{Corr}(x, y)^2$.
- Multiple linear regression: $R^2 = \text{Corr}(\hat{y}, y)^2$.
- R^2 does not tell you how well your model fits the data (see next slide). E.g, it does not tell you whether the relationships are really linear or not.



Multiple Linear Regression: Computer Output

Example

Model the "monthly steam demand" of a factory using the predictors "operating days" and "average outside temperature".

Computer Output

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.126885 1.102801 8.276 3.35e-08 ***

Operating.Days 0.202815 0.045768 4.431 0.00021 ***

Temperature -0.072393 0.007999 -9.050 7.19e-09 ***
```

Residual standard error: 0.6616 on 22 degrees of freedom Multiple R-squared: 0.8491, Adjusted R-squared: 0.8354 F-statistic: 61.9 on 2 and 22 DF, p-value: 9.226e-10

Residual Analysis

- We made assumptions about the error term in the model. We assumed that the errors
 - ▶ have expectation 0 (i.e. the regression model is correct),
 - have constant variance,
 - are normally distributed,
 - ▶ are independent.
- Tests and confidence intervals are based on these assumptions. They can be (substantially) wrong if they are not fulfilled!
- Results can be "worthless" if assumptions are not met!
- Residual Analysis is the visual inspection of the model fit to verify assumptions.
- Among the most popular tools are the Tukey-Anscombe plot and QQ-plots (and many more...).

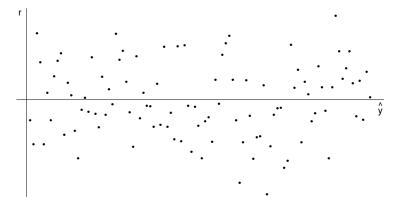
Tukey-Anscombe Plot

Plot (standardized) residuals R_i against fitted values \hat{y}_i .

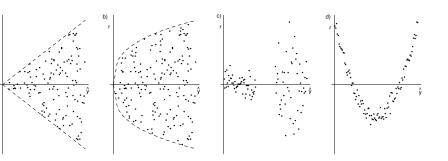
Checks

- $E[E_i] = 0$?
- $Var(E_i) = \sigma^2$ constant?

TA-plot should show random scatter around the zero line:



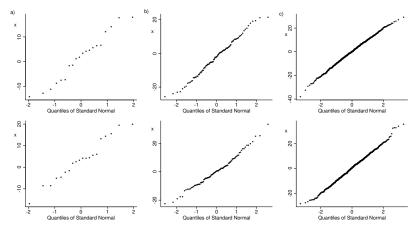
TA-Plots: Regression Assumptions Violated



QQ-Plot

Plot empirical quantiles of residuals against quantiles of standard normal distribution \leadsto Should show a more or less **straight line**.

Good examples for various sample sizes



QQ-Plots: Non-Normal Distributions

