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1 Preliminary Remarks

a Several types of problems lead to statistical models that are highly relevant for chemical
engineers:

A response variable like yield or quality of a product or the duration of a pro-
duction process may be influenced by a number of variables — plausible examples
are temperature, pressure, humidity, properties of the input material (educts).

— In a first step, we need a model for describing the relations. This leads
to regression and analysis of variance models. Quite often, simple or
multiple linear regression already give good results.

— Optimization of production processes: If the relations are modelled
adequately, it is straightforward to search for those values of the variables
that drive the response variable to an optimal value. Methods to efficiently
find these optimum values are discussed under the label of design of ex-
periments.

Chemical processes develop according to clear laws (“law and order of chemical
change”, Swinbourne, 1971), which are typically modelled by differential equa-
tions. In these systems there are constants, like the reaction rates, which can be
determined from data of suitable experiments. In the simplest cases this leads to
linear regression, but usually, the methods of non-linear regression, possibly
combined with the numerical solution of differential equations, are needed. We
call this combination system analysis.

As an efficient surrogate for chemical determination of concentrations of different
compounds, indirect determination by spectroscopical measurements are often
suitable. Methods that allow for inferring amounts or concentrations of chemical
compounds from spectra belong to the field of multivariate statistics.

b In the very limited time available in this course we will present an introduction to
these topics. We start with linear regression, a topic you should already be familiar
with. The simple linear regression model is used to recall basic statistical notions. The
following steps are common for statistical methods:

1.

State the scientific question and characterize the data which are available or will
be obtained.

Find a suitable probability model that corresponds to the knowledge about the
processes leading to the data. Typically, a few unknown constants remain, which
we call “parameters” and which we want to learn from the data. The model can
(and should) be formulated before the data is available.

The field of statistics encompasses the methods that bridge the gap between
models and data. Regarding parameter values, statistics answers the following
questions:

a) Which value is the most plausible one for a parameter? The answer
is given by estimation. An estimator is a function that determines a
parameter value from the data.

b) Is a given value for the parameter plausible? The decision is made by using



a statistical test.

c¢) Which values are plausible? The answer is given by a set of all plausible
values, which is usually an interval, the so called confidence interval.

4. In many applications the prediction of measurements (observations) that are
not yet available is of interest.

€ Linear regression was already discussed in “Grundlagen der Mathematik I1”. Please
have a look at your notes to (again) get familiar with the topic.

You find additional material for this part of the course on

http://stat.ethz.ch/~meier/teaching/cheming




2 Summary of Linear Regression

2.1 Simple Linear Regression

Assume we have n observations (x;,Y;), ¢ = 1,...,n and we want to model the
relationship between a response variable Y and a predictor variable x.

The simple linear regression model is
Y=a+8x;,+E;, i=1,...,n.

The z;’s are fixed numbers while the F;’s are random, called “random deviations” or
“random errors”. Usual assumptions are

E; ~ N(0,0%), E; independent.

The parameters of the simple linear regression model are the coefficients «, 3 and
the standard deviation o of the random error.

Figure 2.1.a illustrates the model.

Estimation of the coefficients follows the principle of least squares and yields

S (Y = Y) (i — 7) P
ST om0 AT Y -6z

B=

The estimates 3 and @ fluctuate around the true (but unknown) parameters. More
precisely, the estimates are normally distributed,

B~ NB, o¥SSx), a~N (a, o2 (% + fQ/SSX)) ,

Y error density

1.6 1.8 2.0 X
Figure 2.1.a: Display of the probability model Y; = 4 — 2z; + E; for 3 observations Y7, Y2 and
Y3 corresponding to the x values 1 = 1.6, x5 = 1.8 and x3 = 2.
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where SSx = Y"1, (z; — 7)%.
The deviations of the observed Y; from the fitted values 7; = & + sz are called

residuals R; =Y, — ; and are “estimators” of the random errors E;.

They lead to an estimate of the standard deviation o of the error,

1 n
2 2
7 n—2i:1 ’

Test of the null hypothesis § = [y: The test statistic

T = B‘(fﬁo . se(B) = 1/62/SSx
se

has a t-distribution with n — 2 degrees of freedom under the null-hypothesis.

This leads to the confidence interval of
B+ g5z, se(3).

The “confidence band” for the value of the regression function connects the end
points of the confidence intervals for E(Y |z) = a + (z.

A prediction interval shall include a (yet unknown) value Yj of the response variable
for a given x( — with a given “statistical certainty” (usually 95%). Connecting the end
points for all possible xy produces the “prediction band”.

2.2 Multiple Linear Regression

Compared to the simple linear regression model we now have several predictors
1) (m)
A AULR

The multiple linear regression model is

Yi = Bo+ /3’136@(1) T 62:10?) + ...+ ﬁmxl(m) + E;
E; ~ N(Oan)a FE; independent.

In matrix notation:
Y=XB+E, E~N,(00I),

where the response vector Y € R"™, the design matrix X € R"™ P the parameter
vector 3 € RP and the error vector £ € R" for p =m + 1 (number of parameters).

Y1 1 xii a:g; x%m; Bo E,
o BN P R R N -
Y, LD L@ fm E,

Different rows of the design matrix X are different observations. The variables (pre-
dictors) can be found in the corresponding columns.



2.2 Multiple Linear Regression 5

Estimation is again based on least squares, leading to

B: (XTX)—IXTX’

i.e. we have a closed form solution.

From the distribution of the estimated coefficients,
By~ N (B0 (XTX)7T)

t-tests and confidence intervals for individual coefficients can be derived as in the linear
regression model. The test statistic

_M 3) = . /& T x\—
=) Se(ﬂj)_\/a2 (x7x) 1>jj

follows a t-distribution with n — (m + 1) parameters under the null-hypothesis Hy :
Bi = Bjo-

The standard deviation ¢ is estimated by

5 =

! > R

n—pr:3

Table 2.2.c shows a typical computer output, annotated with the corresponding
mathematical symbols.

The multiple correlation R is the correlation between the fitted values 7; and the
observed values Y;. Its square measures the portion of the variance of the Y;’s that is
“explained by the regression”, and is therefore called coefficient of determination:

R? =1-SSg/SSy,

where SSp =371 (Yi — 5:)% SSy = 31, (Y; - V)2,

Coefficients:

Value Bj Std. Error t value Pr(>ltl)
(Intercept) 19.7645 2.6339 7.5039 0.0000
pH -1.7530 0.3484 -5.0309 0.0000
1SAR -1.2905 0.2429 -5.3128 0.0000

Residual standard error: ¢ = 0.9108 on n —p = 120 degrees of freedom
Multiple R-Squared: R? = 0.5787

Analysis of variance

Df Sum of Sq Mean Sq F Value Pr(F)
Regression m= 2 SSp= 136.772 68.386 T = 82.43 0.0000
Residuals n—p= 120 SSp= 99.554 &2 = 0.830 p-value
Total 122 SSy = 236.326

Table 2.2.c: Computer output for a regression example, annotated with mathematical symbols.
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The model is called linear because it is linear in the parameters fy, ..., G-

It could well be that some predictors are non-linear functions of other predictors (e.g.,
z? = (x(l))Q). It is still a linear model as long as the parameters appear in linear
form!

In general, it is not appropriate to replace a multiple regression model by many simple
regressions (on single predictor variables).

In a multiple linear regression model, the coefficients describe how Y is changing when
varying the corresponding predictor and keeping the other predictor variables
constant. l.e., it is the effect of the predictor on the response after having subtracted
the effect of all other predictors on Y. Hence we need to have all predictors in the
model at the same time in order to estimate this effect.

Many applications The model of multiple linear regression model is suitable for
describing many different situations:

e Transformations of the predictors (and the response variable) may turn origi-
nally non-linear relations into linear ones.

e A comparison of two groups is obtained by using a binary predictor variable.
Several groups need a “block of dummy variables”. Thus, nominal (or cate-
gorical) explanatory variables can be used in the model and can be combined
with continuous variables.

e The idea of different linear relations of the response with some predictors in
different groups of data can be included into a single model. More generally, in-
teractions between explanatory variables can be incorporated by suitable terms
in the model.

e Polynomial regression is a special case of multiple linear (!) regression (see
example above).

The F-Test for comparison of models allows for testing whether several coefficients
are zero. This is needed for testing whether a categorical variable has an influence on
the response.

2.3 Residual Analysis

The assumptions about the errors of the regression model can be split into

(a) their expected values are zero: E(E;) = 0 (or: the regression function is
correct),

(b) they have constant variance, Var(E;) = 02,
(c) they are normally distributed,
(d) they are independent of each other.

These assumptions should be checked for
e deriving a better model based on deviations from it,

e justifying tests and confidence intervals.

Deviations are detected by inspecting graphical displays. Tests for assumptions play
a less important role.
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b Fitting a regression model without examining the residuals is a risky exer-

cise!

¢ The following displays are useful:

(a)

Non-linearities: Scatterplot of (unstandardized) residuals against fitted values
(Tukey-Anscombe plot) and against the (original) explanatory variables.
Interactions: Pseudo-threedimensional diagram of the (unstandardized) resid-
uals against pairs of explanatory variables.

Equal scatter: Scatterplot of (standardized) absolute residuals against fitted
values (Tukey-Anscombe plot) and against (original) explanatory vari-
ables. Usually no special displays are given, but scatter is examined in the
plots for (a).

Normal distribution: QQ-plot (or histogram) of (standardized) residuals.
Independence: (unstandardized) residuals against time or location.

Influential observations for the fit: Scatterplot of (standardized) residuals
against leverage.
Influential observations for individual coefficients: added-variable plot.

Collinearities: Scatterplot matrix of explanatory variables and numerical out-
put (of RJZ or VIF; or “tolerance”).

d Remedies:

Transformation (monotone non-linear) of the response: if the distribu-
tion of the residuals is skewed, for non-linearities (if suitable) or unequal vari-
ances.

Transformation (non-linear) of explanatory variables: when seeing non-
linearities, high leverages (can come from skewed distribution of explanatory
variables) and interactions (may disappear when variables are transformed).

Additional terms: to model non-linearities and interactions.

Linear transformations of several explanatory variables: to avoid collinearities.
Weighted regression: if variances are unequal.

Checking the correctness of observations: for all outliers in any display.

Rejection of outliers: if robust methods are not available (see below).

More advanced methods:

Generalized least squares: to account for correlated random errors.

Non-linear regression: if non-linearities are observed and transformations of vari-
ables do not help or contradict a physically justified model.

Robust regression: should always be used, suitable in the presence of outliers
and/or long-tailed distributions.

Note that correlations among errors lead to wrong test results and confidence intervals
which are most often too short.
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3 Nonlinear Regression

3.1 Introduction

The Regression Model Regression studies the relationship between a variable of
interest Y and one or more explanatory or predictor variables z). The general

model is
Y;‘ = h(l‘gl),x?), 0G0 ,a:l(m); 91, 02, ey Qp) + Ei.

Here, h is an appropriate function that depends on the predictor variables and pa-
rameters, that we want to summarize with vectors z = [:vl(l),:cz(-Q),...,xZ(-m)]T and
0 = [91,02,...,9p]T. We assume that the errors are all normally distributed and
independent, i.e.

Ei~N (0, 02) , independent.

The Linear Regression Model In (multiple) linear regression, we considered functions
h that are linear in the parameters 6;,

haM, 2@ 20005, ,0,) = 60,70 + 0,50 + .+ 0,57,

where the ZU) can be arbitrary functions of the original explanatory variables x).
There, the parameters were usually denoted by [3; instead of 0;.

The Nonlinear Regression Model In nonlinear regression, we use functions h that
are not linear in the parameters. Often, such a function is derived from theory. In
principle, there are unlimited possibilities for describing the deterministic part of the
model. As we will see, this flexibility often means a greater effort to make statistical
statements.

Puromycin The speed of an enzymatic reaction depends on the concentration of a
substrate. As outlined in Bates and Watts (1988), an experiment was performed to
examine how a treatment of the enzyme with an additional substance called Puromycin
influences the reaction speed. The initial speed of the reaction is chosen as the response
variable, which is measured via radioactivity (the unit of the response variable is
count /min?; the number of registrations on a Geiger counter per time period measures
the quantity of the substance, and the reaction speed is proportional to the change per
time unit).

The relationship of the variable of interest with the substrate concentration x (in ppm)
is described by the Michaelis-Menten function

91$
0y + x '

h(x;0) =

An infinitely large substrate concentration (z — oo) leads to the “asymptotic” speed
;. It was hypothesized that this parameter is influenced by the addition of Puromycin.
The experiment is therefore carried out once with the enzyme treated with Puromycin
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Figure 3.1.e: Biochemical Oxygen Demand. (a) Data and (b) typical shape of the regression
function.

and once with the untreated enzyme. Figure 3.1.d shows the data and the shape of
the regression function. In this section only the data of the treated enzyme is used.

Biochemical Oxygen Demand To determine the biochemical oxygen demand, stream
water samples were enriched with soluble organic matter, with inorganic nutrients
and with dissolved oxygen, and subdivided into bottles (Marske, 1967, see Bates and
Watts, 1988). Each bottle was inoculated with a mixed culture of microorganisms,
sealed and put in a climate chamber with constant temperature. The bottles were
periodically opened and their dissolved oxygen concentration was analyzed, from which
the biochemical oxygen demand [mg/1] was calculated. The model used to connect the
cumulative biochemical oxygen demand Y with the incubation time x is based on
exponential decay:
h(z;0) = 6, (1 — 679293) .

Figure 3.1.e shows the data and the shape of the regression function.
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Figure 3.1.f: Membrane Separation Technology. (a) Data and (b) a typical shape of the regres-
sion function.
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Membrane Separation Technology See Rapold-Nydegger (1994). The ratio of proto-
nated to deprotonated carboxyl groups in the pores of cellulose membranes depends on
the pH-value x of the outer solution. The protonation of the carboxyl carbon atoms
can be captured with 3 C-NMR. We assume that the relationship can be written with
the extended “Henderson-Hasselbach Equation” for polyelectrolytes

91—y)
1 =035+6
0810 (y_92 3tbio,

where the unknown parameters are 61,602 and 63 > 0 and 64 < 0. Solving for y leads

to the model 05+6
01 =+ 92 1073 T0aTi
}/;: = h((I,‘Z,Q) + E”L - 1 + 10634—941‘1'

The regression function h(z;, ) for a reasonably chosen 6 is shown in Figure 3.1.f next
to the data.

A Few Further Examples of Nonlinear Regression Functions
e Hill model (enzyme kinetics): h(z;,6) = 011‘?3/(92 + 259)
For A3 =1 this is also known as the Michaelis-Menten model (3.1.d).
e Mitscherlich function (growth analysis): h(z;,0) = 61 + 02 exp(f3z;).

e From kinetics (chemistry) we get the function

h(z),z); 9) = exp(~012}" exp(—02/2}”))).

e Cobbs-Douglas production function
0 0
p (0 @ 0) =y (o) ()"

Since useful regression functions are often derived from the theoretical background of
the application of interest, a general overview of nonlinear regression functions is of
very limited benefit. A compilation of functions from publications can be found in
Appendix 7 of Bates and Watts (1988).

Linearizable Regression Functions Some nonlinear regression functions can be lin-
earized by transformations of the response variable and the explanatory variables.
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For example, a power function
h(z;0) = 0,272

can be transformed to a linear (in the parameters!) function
In(h(z;60)) = In(61) + 62 In () = o + Bi3

where Gy = In(f1), /1 = 02 and ¥ = In(x). We call the regression function h
linearizable, if we can transform it into a function that is linear in the (unknown)
parameters by (monotone) transformations of the arguments and the response.

Here are some more linearizable functions (see also Daniel and Wood, 1980):

h(x;0) = 1/(61 + 02 exp(—z)) — 1/h(x;0) = 01 + 02 exp(—x)
h(x,Q):Gx/(02+ x) — 1/h(2;0) = 1/61 + 02/6, 1

h(z;0) =61z — In(h (z;6)) =In(61) + 62 In(x)
h(z;0) = 01 exp(629()) — In(h (2;0)) = In(61) + O29(x)

h(w;0) = exp(=61z) exp(—02/2?))  —— In(In(h(x;0))) =In(=6:) + In(zV) — 62/2
h(z;0) =0, (zV)” (2)" — In(h(2;0)) = In(61) + 02 In(zD) + 05 In(z®) .

The last one is the Cobbs-Douglas Model from 3.1.g.

A linear regression with the linearized regression function of the example above is
based on the model
In(Y;) = Bo + b1 + E;

where the random errors E; all have the same normal distribution. We transform this
model back and get

with E; = exp(E;). The errors E;, i = 1,...,n, now have a multiplicative effect and
are log-normally distributed! The assumptlons about the random deviations are thus
now drastically different than for a model that is based directly on h,

Y; =6, -2 + E},

with random deviations E; that, as usual, contribute additively and have a specific
normal distribution.

A linearization of the regression function is therefore advisable only if the assumptions
about the random errors can be better satisfied — in our example, if the errors actually
act multiplicatively rather than additively and are log-normally rather than normally
distributed. These assumptions must be checked with residual analysis.

* Note: For linear regression it can be shown that the variance can be stabilized with certain trans-
formations (e.g. log(+),v/*). If this is not possible, in certain circumstances one can also perform a
weighted linear regression. The process is analogous in nonlinear regression.
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We have almost exclusively seen regression functions that only depend on one predictor
variable x. This was primarily because it was possible to graphically illustrate the
model. The following theory also works well for regression functions h(z;f) that
depend on several predictor variables z = [:p(l), A IL‘(m)].

3.2 Parameter Estimation

The Principle of Least Squares To get estimates for the parameters § = [0y, 02, ...,
OP}T, one applies — like in linear regression — the principle of least squares. The sum
of the squared deviations

n

S0) == (yi —mi(0))>  where n;(0) := h(z;;0)

=1

should be minimized. The notation that replaces h(x;;6) with n;(8) is reasonable
because [z;, y;] is given by the data and only the parameters § remain to be determined.

Unfortunately, the minimum of S(f) and hence the estimator have no explicit solu-
tion (in contrast to the linear regression case). Iterative numeric procedures are
therefore needed. We will sketch the basic ideas of the most common algorithm. It is
also the basis for the easiest way to derive tests and confidence intervals.

Geometrical lllustration The observed values Y = [Y1, Ya,..., Y,]7 define a point
in n-dimensional space. The same holds true for the “model values” 7(8) =
[7]1 (Q) ) 112 (Q) 3o Tin (Q)]T for a given 6.

Please take note: In multivariate statistics where an observation consists of m variables
z\) 7=1,2...,m, it’s common to illustrate the observations in the m-dimensional
space. Here, we consider the Y- and n-values of all n observations as points in the
n-dimensional space.

Unfortunately, geometrical interpretation stops with three dimensions (and thus with
three observations). Nevertheless, let us have a look at such a situation, first for simple
linear regression.

As stated above, the observed values Y = [Yl,Yz,Yg]T determine a point in three-
dimensional space. For given parameters Gy = 5 and 31 = 1 we can calculate the model
values 7; (@) = (o + f17; and represent the corresponding vector n (@) = 6ol + Sz
as a point. We now ask: Where are all the points that can be achieved by varying
the parameters? These are the possible linear combinations of the two vectors 1
and z: they form a plane “spanned by 1 and z”. By estimating the parameters
according to the principle of least squares, the squared distance between Y and 7 (g)
is minimized. This means that we are looking for the point on the plane that is
closest to Y . This is also called the projection of Y onto the plane. The parameter
values that correspond to this point 7 are therefore the estimated parameter values

é = [Bo, B1]T. An illustration can be found in Figure 3.2.c.

Now we want to fit a nonlinear function, e.g. h(z;0) = 01 exp(1 — 022), to the same
three observations. We can again ask ourselves: Where are all the points 7 (6) that
can be achieved by varying the parameters #; and 627 They lie on a two-dimensional
curved surface (called the model surface in the following) in three-dimensional space.
The estimation problem again consists of finding the point 7 on the model surface that
is closest to Y. The parameter values that correspond to this point 7 are then the
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N2 |y2
N2l Yo

Figure 3.2.c: [llustration of simple linear regression. Values of 7 @) = By + frz for varying
parameters [(p, 51] lead to a plane in three-dimensional space. The right plot also shows the
point on the surface that is closest to ¥ = [Y1, Ya, ¥3]. It is the fitted value § and determines

the estimated parameters @ .

estimated parameter values 0= [51, §2]T. Figure Figure 3.2.d illustrates the nonlinear

case.

16 18 20
N2y

14
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N1l ys

Figure 3.2.d: Geometrical illustration of nonlinear regression. The values of 7 (6) = h(z;01,02)
for varying parameters [01, 65] lead to a two-dimensional “model surface” in three-dimensional
space. The lines on the model surface correspond to constant 77 and 73, respectively.
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Biochemical Oxygen Demand (cont’d) The situation for our Biochemical Oxygen
Demand example can be found in Figure 3.2.e. Basically, we can read the estimated
parameters directly off the graph here: 01 is a bit less than 21 and 0 is a bit larger
than 0.6. In fact the (exact) solution is § = [20.82,0.6103] (note that these are the
parameter estimates for the reduced data set only consisting of three observations).

20

18

16
2|y

14

12

10

N1l ys

Figure 3.2.e: Biochemical Oxygen Demand: Geometrical illustration of nonlinear regression.
In addition, we can see here the lines of constant 6, and 65, respectively. The vector of the

estimated model values § = h (gc; QA) is the point on the model surface that is closest to Y .

Approach for the Minimization Problem The main idea of the usual algorithm for
minimizing the sum of squares (see 3.2.a) is as follows: If a preliminary best value §(®)
exists, we approximate the model surface with the plane that touches the surface at
the point 7 (Q(Z)) =h (E;Q(Z)) (the so called tangent plane). Now, we are looking for
the point on that plane that lies closest to Y . This is the same as estimation in a
linear regression problem. This new point lies on the plane, but not on the surface
that corresponds to the nonlinear problem. However, it determines a parameter vector
0+ that we use as starting value for the next iteration.

Linear Approximation To determine the tangent plane we need the partial derivatives

_ Omi(0)
T

that can be summarized by an n x p matrix A. The approximation of the model
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surface 7(¢) by the tangent plane at a parameter value 0* is

:(0) = n;(0%) + A (0%) (01 — 07) + .. + AP (67) (6, — 02)

or, in matrix notation,

n(@) ~n(@") + A @) (@ —-0") .
If we now add a random error, we get a linear regression model

Y=A@0)G+E

with “preliminary residuals” Y; = Y; — n; (§*) as response variable, the columns of A
as predictors and the coefficients §; = 6; — 07 (a model without intercept [y ).

Gauss-Newton Algorithm The Gauss-Newton algorithm starts with an initial value
0 for @, solving the just introduced linear regression problem for * = (9 to find a
correction 8 and hence an improved value L) =90 4 B. Again, the approximated

model is calculated, and thus the “preliminary residuals” ¥ —n (Q(l)) and the partial

derivatives A Q(l)) are determined, leading to . This iteration step is continued
until the the correction 8 is small enough.

It can not be guaranteed that this procedure actually finds the minimum of the sum
of squares. The better the p-dimensional model surface can be locally approximated
by a p-dimensional plane at the minimum 0= (51, - ,OAp)T and the closer the initial
value 0 is to the solution, the higher are the chances of finding the optimal value.

* Algorithms usually determine the derivative matrix A numerically. In more complex problems the
numerical approximation can be insufficient and cause convergence problems. For such situations
it is an advantage if explicit expressions for the partial derivatives can be used to determine the
derivative matrix more reliably (see also Chapter 3.6).

Initial Values An iterative procedure always requires an initial value. Good initial
values help to find a solution more quickly and more reliably. Some possibilities to
arrive at good initial values are now being presented.

Initial Value from Prior Knowledge As already noted in the introduction, nonlinear
models are often based on theoretical considerations of the corresponding application
area. Already existing prior knowledge from similar experiments can be used to get
an initial value. To ensure the quality of the chosen initial value, it is advisable to
graphically represent the regression function h(x;#) for various possible initial values
0 = 0° together with the data (e.g., as in Figure 3.2.k, right).

Initial Values via Linearizable Regression Functions Often — because of the distri-
bution of the error term — one is forced to use a nonlinear regression function even
though it would be linearizable. However, the linearized model can be used to get
initial values.

In the Puromycin example the regression function is linearizable: The reciprocal values
of the two variables fulfill
_ 1 1 1 621 _
PSR o e AT
The least squares solution for this modified problem is QA = [Bo, 31]T = (0.00511, 0.000247)T
(Figure 3.2.k, left). This leads to the initial values

0\ =1/8, =196, 0 = 3,/Bo = 0.048.
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Figure 3.2.k: Puromycin. Left: Regression function in the linearized problem. Right: Regres-
sion function h(x; @) for the initial values § = §(0) (—-—-— ) and for the least squares estimation
0=0(—).

Initial Values via Geometric Interpretation of the Parameter It is often helpful to
consider the geometrical features of the regression function.

In the Puromycin Example we can derive an initial value in another way: 6; is the
response value for x = co. Since the regression function is monotonically increasing, we
can use the maximal y;-value or a visually determined “asymptotic value” HEO = 207
as initial value for ;. The parameter 0, is the z-value, such that y reaches half of
the asymptotic value ;. This leads to 650) =0.06.

The initial values thus result from a geometrical interpretation of the parameters and
a rough estimate can be determined by “fitting by eye”.

Membrane Separation Technology (cont’d) In the Membrane Separation Technology
example we let z — 00, so h(z;8) — 61 (since 04 < 0); for x — —o0, h(z;0) — 05.
From Figure 3.1.f (a) we see that 67 ~ 163.7 and 6, ~ 159.5. Once we know 6; and
03, we can linearize the regression function by

_ 6" — y)
y:=logyg| ——= | =03+ 04z .
( . 9(0)

This is called a conditional linearizable function. The linear regression model leads
to the initial value 9;(30) =1.83 and 9510) = —0.36.
With this initial value the algorithm converges to the solution 9:1 = 163.7, 52 = 159.8,
03 = 2.675 and A, = —0.512. The functions h(-;6()) and h(-;0) are shown in Figure
3.2.m (b).

* The property of conditional linearity of a function can also be useful to develop an algorithm
specifically suited for this situation (see e.g. Bates and Watts, 1988).

3.3 Approximate Tests and Confidence Intervals

The estimator § is the value of § that optimally fits the data. We now ask which
parameter values 6 are compatible with the observations. The confidence region is
the set of all these values. For an individual parameter 6; the confidence region is a
confidence interval.
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Figure 3.2.m: Membrane Separation Technology. (a) Regression line that is used for deter-
mining the initial values for 63 and 6. (b) Regression function h(x; 8) for the initial value
0=00 (——- ) and for the least squares estimator 6 = 0 (—).

The following results are based on the fact that the estimator 0 is asymptotically (mul-
tivariate) normally distributed. For an individual parameter that leads to a “Z-Test”
and the corresponding confidence interval; for multiple parameters the corresponding
Chi-Square test is used and leads to elliptical confidence regions.

The asymptotic properties of the estimator can be derived from the linear approx-
imation. The problem of nonlinear regression is indeed approximately equal to the
linear regression problem mentioned in 3.2.g

Y=A@)B+E,

if the parameter vector 8* that is used for the lin(iarization is close to the solution. If
the estimation procedure has converged (i.e. * = @), then 3 = 0 (otherwise this would
not be the solution). The standard error of the coefficients E — or more generally the

covariance matrix of E — then approximate the corresponding values of QA .

Asymptotic Distribution of the Least Squares Estimator It follows that the least
squares estimator @ is asymptotically normally distributed

0% N,V (),

with asymptotic covariance matrix V (8) = 02(A (0)7 A (0))~!, where A (0) is the
n X p matrix of partial derivatives (see 3.2.g).

To explicitly determine the covariance matrix V (), A () is calculated using 0 instead
of the unknown . For the error variance o2 we plug-in the usual estimator

V(0) =5 (A(é)TA(é))

-1

where

5 S() 1

=20 S (w-n(d))

n=prPi3

Hence, the distribution of the estimated parameters is approximately determined and
we can (like in linear regression) derive standard errors and confidence intervals, or
confidence ellipses (or ellipsoids) if multiple variables are considered jointly.
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The denominator n—p in the estimator 2

to ensure that the estimator is unbiased. Tests and confidence intervals were not based
on the normal and Chi-square distribution but on the t- and F-distribution. They
take into account that the estimation of o2 causes additional random fluctuation. Even
if the distributions are no longer exact, the approximations are more exact if we do this
in nonlinear regression too. Asymptotically, the difference between the two approaches
goes to zero.

was already introduced in linear regression

Membrane Separation Technology (cont’d) A computer output for the Membrane
Separation Technology example can be found in Table 3.3.d. The parameter esti-
mates are in column Estimate, followed by the estimated approximate standard er-
ror (Std. Error) and the test statistics (t value), that are approximately ¢,,_, dis-
tributed. The corresponding p-values can be found in column Pr(>|t|). The esti-
mated standard deviation ¢ of the random error E; is here labelled as “Residual
standard error”.

As in linear regression, we can now construct (approximate) confidence intervals. The
95% confidence interval for the parameter 6, is

163.706 + %5 - 0.1262 = 163.706 =+ 0.256.

Formula: delta ~ (T1 + T2 % 10°(T3 + T4 * pH)) / (10°(T3 + T4 * pH) + 1)

Parameters:
Estimate Std. Error t value Pr(> [¢])
T1 163.7056 0.1262 1297.256 < 2e-16
T2 159.7846 0.1594 1002.194 < 2e-16
T3 2.6751 0.3813 7.015 3.65e-08
T4 -0.5119 0.0703 -7.281 1.66e-08

Residual standard error: 0.2931 on 35 degrees of freedom

Number of iterations to convergence: 7
Achieved convergence tolerance: 5.517e-06

Table 3.3.d: Summary of the fit of the Membrane Separation Technology example.

Example e Puromycin (cont’d) In order to check the influence of treating an enzyme with

Puromycin a general model for the data (with and without treatment) can be for-

mulated as follows:
v — (01 + 032;)x;

Oy + 04z + 1

where z is the indicator variable for the treatment (z; = 1 if treated, z; = 0 otherwise).

+ Ei?

Table 3.3.e shows that the parameter 6, is not significantly different from 0 at the 5%
level since the p-value of 0.167 is larger then the level (5%). However, the treatment
has a clear influence that is expressed through 63; the 95% confidence interval covers
the region 52.398 £9.5513-2.09 = [32.4, 72.4] (the value 2.09 corresponds to the 97.5%
quantile of the t19 distribution).
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Formula: velocity ~ (T1 + T3 * (treated == T)) * conc/(T2 + T4 * (treated
== T) + conc)

Parameters:
Estimate Std. Error t value Pr(> [t])
T1 160.280 6.896 23.242 2.04e-15
T2 0.048 0.008 5.761 1.50e-05
T3 52.404 9.551 5.487 2.71e-05
T4 0.016 0.011 1.436 0.167

Residual standard error: 10.4 on 19 degrees of freedom

Number of iterations to convergence: 6
Achieved convergence tolerance: 4.267e-06

Table 3.3.e: Computer output of the fit for the Puromycin example.

f Confidence Intervals for Function Values Besides the parameters, the function value
h(zo,0) for a given xg is often of interest. In linear regression the function value

h(go,ﬁ) = a{B =t no is estimated by 7y = ggé and the corresponding (1 — «)
confidence interval is

N to N

Mo £ a4, o5 - s€ (70)

where

se (o) = 6 /25 (X7 X)Ly,

Using asymptotic approximations, we can specify confidence intervals for the func-
tion values h(zo;8) for nonlinear h. If the function 7 (Q) = h(xo,Q) is linearly
approximated at 0 we get

Oh(zo, 0)

0(0) ~ no(60) + ad (0 — 6) where ag = 50

If zg is equal to an observed z;, ap equals the corresponding row of the matrix A
from 3.2.g. The (1 — «) confidence interval for the function value no () := h(xo,0) is

then approximately
m(8) = 2,50 (0 (8)).

w(m(@) =7al (42) 4 (0) @

Again, the unknown parameter values are replaced by the corresponding estimates.

where

g Confidence Band The expression for the (1 — «) confidence interval for ny(f) :=
h(xg, 8) also holds for arbitrary zy. As in linear regression, it is illustrative to represent
the limits of these intervals as a “confidence band” that is a function of zg. See Figure
3.3.g for the confidence bands for the examples “Puromycin” and “Biochemical Oxygen
Demand”.

Confidence bands for linear and nonlinear regression functions behave differently: For
linear functions the confidence band has minimal width at the center of gravity of the
predictor variables and gets wider the further away one moves from the center (see
Figure 3.3.g, left). In the nonlinear case, the bands can have arbitrary shape. Because
the functions in the “Puromycin” and “Biochemical Oxygen Demand” examples must
go through zero, the interval shrinks to a point there. Both models have a horizontal
asymptote and therefore the band reaches a constant width for large = (see Figure
3.3.g, right).
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Figure 3.3.g: Left: Confidence band for an estimated line for a linear problem. Right: Confi-
dence band for the estimated curve h(x,#) in the oxygen demand example.

Prediction Interval The confidence band gives us an idea of the function values h(x)
(the expected values of Y for a given x). However, it does not answer the question
where future observations Y for given xy will lie. This is often more interesting
than the question of the function value itself; for example, we would like to know where
the measured value of oxygen demand will lie for an incubation time of 6 days.

Such a statement is a prediction about a random variable and should be distin-
guished from a confidence interval, which says something about a parameter, which
is a fixed (but unknown) number. Hence, we call the region prediction interval or
prognosis interval. More about this in Chapter 3.7.

Variable Selection In nonlinear regression, unlike in linear regression, variable selection
is usually not an important topic, because

e there is no one-to-one relationship between parameters and predictor variables.
Usually, the number of parameters is different than the number of predictors.

e there are seldom problems where we need to clarify whether an explanatory
variable is necessary or not — the model is derived from the underlying theory
(e.g., “enzyme kinetics”).
However, there is sometimes the reasonable question whether a subset of the parame-
ters in the nonlinear regression model can appropriately describe the data (see example
“Puromycin”).

3.4 More Precise Tests and Confidence Intervals

The quality of the approximate confidence region that we have seen so far strongly
depends on the quality of the linear approximation. Also, the convergence properties
of the optimization algorithm are influenced by the quality of the linear approximation.
With a somewhat larger computational effort we can check the linearity graphically
and — at the same time — we can derive more precise confidence intervals.
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Figure 3.4.c: Nominal 80 and 95% likelihood contours ( ) and the confidence ellipses from
the asymptotic approximation (———-). + denotes the least squares solution. In the Puromycin

example (left) the agreement is good and in the oxygen demand example (right) it is bad.

F-Test for Model Comparison To test a null hypothesis 8 = 8* for the whole parameter
vector or also ¢; = 67 for an individual component, we can use an F'-test for model
comparison like in linear regression. Here, we compare the sum of squares S(6*) that
arises under the null hypothesis with the sum of squares S (QA) (for n — oo the F- test
is the same as the so-called likelihood-ratio test, and the sum of squares is, up to a
constant, equal to the negative log-likelihood).

Let us first consider a null-hypothesis 8 = 8* for the whole parameter vector. The test
statistic is

o n=pS07) ~ 5@) (s
)

Searching for all null-hypotheses that are not rejected leads us to the confidence region

{e]s@) <s@ (1+:254)}.

p,n—p-

where ¢ = qfﬁ’g_p is the (1 — «) quantile of the F-distribution with p and n — p
degrees of freedom.

In linear regression we get the same (exact) confidence region if we use the (multi-
variate) normal distribution of the estimator 3. In the nonlinear case the results are
different. The region that is based on the F -test is not based on the linear approxi-
mation in 3.2.g and hence is (much) more exact.

Confidence Regions for p=2 For p = 2, we can find the confidence regions by cal-
culating S(€) on a grid of § values and determine the borders of the region through
interpolation, as is common for contour plots. Figure 3.4.c illustrates both the con-
fidence region based on the linear approximation and based on the F'-test for the
example “Puromycin” (left) and for “Biochemical Oxygen Demand” (right).

For p > 2 contour plots do not exist. In the next chapter we will introduce graphical
tools that also work in higher dimensions. They depend on the following concepts.
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F-Test for Individual Parameters Now we focus on the the question whether an indi-
vidual parameter 6}, is equal to a certain value 67 . Such a null hypothesis makes no
statement about the remaining parameters. The model that fits the data best for a
fixed 0), = 0}, is given by the least squares solution of the remaining parameters. So,
S(01,...,0%,...,6p) is minimized with respect to 6;, j # k. We denote the minimum
by S), and the minimizer 0; by 9~j. Both values depend on ;. We therefore write
Sy (6%) and 6; (05).

The test statistic for the F-test (with null hypothesis Hy : 0, = 6 ) is given by

5 Sk(0:)— S (6
Ty =(n—p) W

It follows (approximately) an F ,_, distribution.

We can now construct a confidence interval by (numerically) solving the equation
T, = qg 92”7 for 6;. It has a solution that is less than 6) and one that is larger.

t-Test via F-Test In linear regression and in the previous chapter we have calculated
tests and confidence intervals from a test value that follows a ¢-distribution (¢-test for
the coefficients). Is this another test?

It turns out that the test statistic of the t-test in linear regression turns into the test
statistic of the F'-test if we square it. Hence, both tests are equivalent. In nonlinear
regression, the F'-test is not equivalent to the t-test discussed in the last chapter
(3.3.d). However, we can transform the F'-test to a t-test that is more accurate than
the one of the last chapter (that was based on the linear approximation):

From the test statistic of the F'-test, we take the square-root and add the sign of
Hk - ;:;7

Ty (0}) := sign (9k - 9k) = .
Here, sign(a) denotes the sign of a and as earlier, 62 = S (QA> /(n — p). This test
statistic is (approximately) t,,—, distributed.

In the linear regression model, T} is — as already pointed out — equal to the test
statistic of the usual t-test,
_ O — 0y

(@)

Confidence Intervals for Function Values via F'-test With this technique we can
also determine confidence intervals for a function value at a point xy. For this we re-
parameterize the original problem so that a parameter, say ¢1, represents the function
value h(zg) and proceed as in 3.4.d.

Ty (0%)

3.5 Profile t-Plot and Profile Traces

Profile t-Function and Profile t-Plot The graphical tools for checking the linear ap-
proximation are based on the just discussed t-test, that actually doesn’t use this
approximation. We consider the test statistic T (3.4.e) as a function of its arguments
0 and call it profile t-function (in the last chapter the arguments were denoted
with 6}, now for simplicity we leave out the *). For linear regression we get, as can be
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seen from 3.4.e, a straight line, while for nonlinear regression the result is a monotone
increasing function. The graphical comparison of Tj(6) with a straight line is the
so-called profile t-plot. Instead of 6, it is common to use a standardized version

0, — 0y,

e (1)

on the horizontal axis because it is used in the linear approximation. The comparison
line is then the “diagonal”, i.e. the line with slope 1 and intercept 0.

O (Or) =

The more the profile t-function is curved, the stronger the nonlinearity in a neighbor-
hood of 6. Therefore, this representation shows how good the linear approximation
is in a neighborhood of é\k (the neighborhood that is statistically important is ap-
proximately determined by |0x(0;)| < 2.5). In Figure 3.5.a it is evident that in the
Puromycin example the nonlinearity is minimal, while in the Biochemical Oxygen
Demand example it is large.

In Figure 3.5.a we can also read off the confidence intervals according to 3.4.e. For con-
venience, the probabilites P (T} < t) of the corresponding t-distributions are marked
on the right vertical axis. For the Biochemical Oxygen Demand example this results
in a confidence interval without upper bound!

Likelihood Profile Traces The likelihood profile traces are another useful graphical
tool. Here the estimated parameters 6;, j # k for fixed 6, (see 3.4.d) are considered

as functions égk) (O) .

The graphical representation of these functions would fill a whole matrix of diagrams,
but without diagonals. It is worthwhile to combine the “opposite” diagrams of this
matrix: Over the representation of ggk) (0x) we superimpose 0~,(€] )(Qj) in mirrored form
so that the axes have the same meaning for both functions.

Figure 3.5.b shows one of these diagrams for both our two examples. Additionally,
contours of confidence regions for [f1,602] are plotted. It can be seen that that the
profile traces intersect the contours at points where they have horizontal or vertical
tangents.
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Figure 3.5.a: Profile ¢-plot for the first parameter for both the Puromycin (left) and the Bio-
chemical Oxygen Demand example (right). The dashed lines show the applied linear approx-
imation and the dotted line the construction of the 99% confidence interval with the help of
T1(61).
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Figure 3.5.b: Likelihood profile traces for the Puromycin and Oxygen Demand examples, with
80%- and 95% confidence regions (gray curves).

The representation does not only show the nonlinearities, but is also useful for the un-
derstanding of how the parameters influence each other. To understand this, we
go back to the case of a linear regression function. The profile traces in the individual
diagrams then consist of two lines, that intersect at the point [51, 52] . If we standardize
the parameter by using dx (0;) from 3.5.a, one can show that the slope of the trace
6\ co
ék, The “reverse line” 955 ) (0;) then has, compared with the horizontal axis, a slope
of 1/cy;. The angle between the lines is thus a monotone function of the correlation.
It therefore measures the collinearity between the two predictor variables. If the
correlation between the parameter estimates is zero, then the traces are orthogonal to

each other.

(0)) is equal to the correlation coeflicient cj; of the estimated coefficients GAj and

For a nonlinear regression function, both traces are curved. The angle between them
still shows how strongly the two parameters 6; and 6 interplay, and hence how their
estimators are correlated.

Membrane Separation Technology (cont’d) All profile ¢-plots and profile traces can
be put in a triangular matrix, as can be seen in Figure 3.5.c. Most profile traces are
strongly curved, meaning that the regression function tends to a strong nonlinearity
around the estimated parameter values. Even though the profile traces for 63 and 64
are straight lines, a further problem is apparent: The profile traces lie on top of each
other! This means that the parameters f3 and 64 are strongly collinear. Parameter
0, is also collinear with f3 and 64, although more weakly.

* Good Approximation of Two Dimensional Likelihood Contours The profile traces can be used to
construct very accurate approximations for two dimensional projections of the likelihood contours
(see Bates and Watts, 1988). Their calculation is computationally less demanding than for the
corresponding exact likelihood contours.

3.6 Parameter Transformations

Parameter transformations are primarily used to improve the linear approximation
and therefore improve the convergence behavior and the quality of the confidence
interval.
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Figure 3.5.c: Profile ¢-plots and Profile Traces for the Example “Membrane Separation Tech-
nology”. The + in the profile ¢-plot denotes the least squares solution.

We point out that parameter transformations, unlike transformations of the response
variable (see 3.1.h), do not change the statistical part of the model. Hence, they are
not helpful if the assumptions about the distribution of the random error are violated.
It is the quality of the linear approximation and the statistical statements based on it
that are being changed!

Sometimes the transformed parameters are very difficult to interpret. The important
questions often concern individual parameters — the original parameters. Nevertheless,
we can work with transformations: We derive more accurate confidence regions for the
transformed parameters and can transform them (the confidence regions) back to get
results for the original parameters.

Restricted Parameter Regions Often, the admissible region of a parameter is re-
stricted, e.g. because the regression function is only defined for positive values of a
parameter. Usually, such a constraint is ignored to begin with and we wait to see
whether and where the algorithm converges. According to experience, parameter esti-
mation will end up in a reasonable range if the model describes the data well and the
data contain enough information for determining the parameter.
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Sometimes, though, problems occur in the course of the computation, especially if the
parameter value that best fits the data lies near the border of the admissible region.
The simplest way to deal with such problems is via transformation of the parameter.

Examples

e The parameter € should be positive. Through a transformation § — ¢ = In(0),
0 = exp(¢) is always positive for all possible values of ¢ € R:

h(z,0) — h(z,exp(d)).

e The parameter should lie in the interval (a,b). With the log transformation
0=a+ (b—a)/(1+exp(—¢)), 6 can (for arbitrary ¢ € R) only take values in
(a,0).

e In the model

h(z,8) = 01 exp(—02x) + 03 exp(—047)

with 02,04 > 0 the parameter pairs (61,602) and (03,64) are interchangeable, i.e.
h(z,0) does not change. This can create uncomfortable optimization problems,
because the solution is not unique. The constraint 0 < 5 < 64 that ensures the
uniqueness is achieved via the transformation 0y = exp(¢2) und 04 = exp(¢p2)(1+
exp(¢4)). The function is now

h(z, (61, ¢2,03,¢4)) = 01 exp (—exp(d2)z) + O3 exp (—exp(P2)(1 + exp(¢s))z) -

Parameter Transformation for Collinearity A simultaneous variable and parameter
transformation can be helpful to weaken collinearity in the partial derivative vectors.
For example, the model h(z,0) = 01 exp(—602x) has derivatives

h h
8891 = exp(—baz) , 202 = —0xexp(—0az) .
If all x values are positive, both vectors
a; = (exp(—fax1),. .. exp(—bazn))”
ay = (—b1z1exp(—ba21),..., 012, exp(—bazy))”

tend to disturbing collinearity. This collinearity can be avoided if we use center-
ing. The model can be written as h(z;0) = 61 exp(—6b2(z — o + xo)) With the re-
parameterization ¢; := 01 exp (—62x0) and ¢ := 02 we get

h(w:9) = é1exp(~a(x — 20)) -

The derivative vectors are approximately orthogonal if we chose the mean value of the
x; for xq.

Membrane Separation Technology (cont’d) In this example it is apparent from the
approximate correlation matrix (Table 3.6.d, left half) that the parameters 63 and 6,
are strongly correlated (we have already observed this in 3.5.c using the profile traces).

If the model is re-parameterized to

91 + 92 100~3+04(zi—med(xj))

Yi

14 109~3+64(3&i—med(a:j))

with 65 = 03 4 64 med (xj), an improvement is achieved (right half of Table 3.6.d).
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01 0 03 01 B2 03
6> | —0.256 9~2 —0.256
03 | —0.434 0.771 03 0.323 0.679
04 0.515 —0.708 —0.989 | 64 0.515 —0.708 —0.312

Table 3.6.d: Correlation matrices for the Membrane Separation Technology example for the
original parameters (left) and the transformed parameters 63 (right).

Membrane Separation Technology (cont’d) The parameter transformation in 3.6.d
leads to a satisfactory result, as far as correlation is concerned. If we look at the
likelihood contours or the profile ¢-plot and the profile traces, the parameterization is
still not satisfactory.

An intensive search for further improvements leads to the following transformations
that turn out to have satisfactory profile traces (see Figure 3.6.e):

_ g+ 0,100 _ 0 — 0, 5

61::1—’_,\,720 5 92:: loglo <1~2 1063> 5
109 + 1 109 + 1

6732:93 + 94 med(xj) 54:21094 .

The model is now
_ 9~4(:pi—med(mj))
141004,

Y; = 6, + 10%

E;.
(wifmed(.’zj)) +

and we get the result shown in Table 3.6.e

Formula: delta ~ TT1 + 10°TT2 * (1 - TT4"pHR)/(1 + 10°TT3 * TT4"pHR)

Parameters:
Estimate Std. Error t value Pr(> |t])

TT1 161.60008 0.07389 2187.122 < 2e-16
TT2 0.32336 0.03133 10.322 3.67e-12
TT3 0.06437 0.05951 1.082 0.287
TT4 0.30767 0.04981 6.177 4.51e-07

Residual standard error: 0.2931 on 35 degrees of freedom

Correlation of Parameter Estimates:
TT1 TT2 TT3
TT2 -0.56
TT3 -0.77 0.64
TT4 0.15 0.35 -0.31

Number of iterations to convergence: 5
Achieved convergence tolerance: 9.838e-06

Table 3.6.e: Membrane Separation Technology: Summary of the fit after parameter
transformation.
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Figure 3.6.e: Profile ¢-plot and profile traces for the Membrane Separation Technology example
according to the given transformations.

More Successful Reparametrization It turned out that a successful reparametriza-
tion is very data set specific. A reason is that nonlinearities and correlations be-
tween estimated parameters depend on the (estimated) parameter vector itself. There-
fore, no generally valid recipe can be given. This makes the search for appropriate
reparametrizations often very difficult.

Confidence Intervals on the Original Scale (Alternative Approach) Even though
parameter transformations help us in situations where we have problems with conver-
gence of the algorithm or the quality of confidence intervals, the original parameters
often remain the quantity of interest (e.g., because they have a nice physical interpre-
tation). Consider the transformation § — ¢ = In(6). Fitting the model results in an
estimator gg and an estimated standard error 5'\(;. Now we can construct a confidence

interval for 8. We have to search all 6 for which In(6) lies in the interval
~ ot
Y gqo(.i]s;%'

Generally formulated: Let g be the transformation of ¢ to 6 = g(¢). Then

{9 s gt (9) € {(Z— 6\(’5(]6%757 Qg"‘ é\gqéﬁi{)%} }
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Figure 3.7.b: Cress Example. Left: Representation of the data. Right: A typical shape of
the applied regression function.

is an approximate 95% confidence interval for 6. If g=!(-) is strictly monotone in-
creasing, this confidence interval is identical to

{g ($ - qug.i{m) ' 9 <$+ 33‘1(%75)} -

However, this approach should only be used if the way via the F'-test from Chapter
3.4 is not possible.

3.7 Forecasts and Calibration

Forecasts

Besides the question of the set of plausible parameters (with respect to the given data,
which we also call training data set), the question of the range of future observations
is often of central interest. The difference between these two questions was already
discussed in 3.3.h. In this chapter we want to answer the second question. We assume
that the parameter 0 is estimated using the least squares method. What can we now
say about a future observation Yy at a given point xg?

Cress The concentration of an agrochemical material in soil samples can be studied
through the growth behavior of a certain type of cress (nasturtium). 6 measurements
of the response variable Y were made on each of 7 soil samples with predetermined
(or measured with the largest possible precision) concentrations z. Hence, we assume
that the z-values have no measurement error. The variable of interest is the weight
of the cress per unit area after 3 weeks. A “logit-log” model is used to describe the
relationship between concentration and weight:

04 ifte=0
h(z;0) = 0, if 2> 0
1+exp(f2+03 In(x)) ’

The data and the function h(-) are illustrated in Figure 3.7.b. We can now ask
ourselves which weight values will we see at a concentration of e.g. x¢g =37
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Approximate Forecast Intervals We can estimate the expected value E(Yy) = h(zo, 6)
of the variable of interest Y at the point xg by 7y := h(xo, GA) We also want to get an
interval where a future observation will lie with high probability. So, we do not only
have to take into account the randomness of the estimate 75, but also the random

error Fy. Analogous to linear regression, an at least approximate (1 — «) forecast

interval is given by
. by [ 12
7o + ql_;/g /G2 + (Se (770) ) .

The calculation of se(7y) can be found in 3.3.f.

* Derivation The random variable Yo is the value of interest for an observation with predictor
variable value xo. Since we do not know the true curve (actually only the parameters), we have no
choice but to study the deviations of the observations from the estimated curve,

Ro=Yo —h(20,8) = (Yo~ h(z0,0)) — (h(20,8) — h(z0,0)).

Even if 0 is unknown, we know the distribution of the expressions in parentheses: Both are nor-
mally distributed random variables and they are independent because the first only depends on the
“future” observation Yy, the second only on the observations Yi,...,Y, that led to the estimated
curve. Both have expected value 0; the variances add up to

Var(Ro) ~ o + oag (AT A) " ao.

The described forecast interval follows by replacing the unknown values by their corresponding
estimates.

Forecast Versus Confidence Intervals If the sample size n of the training data set is
very large, the estimated variance is dominated by the error variance 2. This means
that the uncertainty in the forecast is then primarily caused by the random error. The
second term in the expression for the variance reflects the uncertainty that is caused
by the estimation of 6.

It is therefore clear that the forecast interval is wider than the confidence interval for
the expected value, since the random error of the observation must also be taken into
account. The endpoints of such intervals are shown in Figure 3.7.i (left).

* Quality of the Approximation The derivation of the forecast interval in 3.7.c is based on the same
approximation as in Chapter 3.3. The quality of the approximation can again be checked graphically.

Interpretation of the “Forecast Band” The interpretation of the “forecast band” (as
shown in Figure 3.7.i), is not straightforward. From our derivation it holds that

P (Vg (w0) < Yo < Vi'(g)) = 0.95,

where V' (z¢) is the lower and Vi*(zg) the upper bound of the prediction interval for
h(zo). However, if we want to make a prediction about more than one future obser-
vation, then the number of the observations in the forecast interval is not binomially
distributed with 7 = 0.95. The events that the individual future observations fall in
the band are not independent; they depend on each other through the random borders
Vo and Vi. If, for example, the estimation of & randomly turns out to be too small,
the band is too narrow for all future observations, and too many observations would
lie outside the band.

Calibration
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The actual goal of the experiment in the cress example is to estimate the concen-
tration of the agrochemical material from the weight of the cress. This means that we
would like to use the regression relationship in the “wrong” direction. This will cause
problems with statistical inference. Such a procedure is often desired to calibrate
a measurement method or to predict the result of a more expensive measurement
method from a cheaper one. The regression curve in this relationship is often called a
calibration curve. Another keyword for finding this topic is inverse regression.

Here, we would like to present a simple method that gives useable results if simplifying
assumptions hold.

Procedure under Simplifying Assumptions We assume that the predictor values =z
have no measurement error. In our example this holds true if the concentrations of
the agrochemical material are determined very carefully. For several soil samples with
many different possible concentrations we carry out several independent measurements
of the response value Y. This results in a training data set that is used to estimate
the unknown parameters and the corresponding parameter errors.

Now, for a given value yq it is obvious to determine the corresponding zg value by
simply inverting the regression function:

Zo = h ™ (yo,0).

Here, h™! denotes the inverse function of h. However, this procedure is only correct
if h(-) is monotone increasing or decreasing. Usually, this condition is fulfilled in
calibration problems.

Accuracy of the Obtained Values Of course we now face the question about the
accuracy of Zg. The problem seems to be similar to the prediction problem. However,
here we observe yy and the corresponding value zg has to be estimated.

The answer can be formulated as follows: We treat xg as a parameter for which we
want a confidence interval. Such an interval can be constructed (as always) from a test.
We take as null hypothesis x = xg. As we have seen in 3.7.c, Y lies with probability
0.95 in the forecast interval

ot ~ 2
Ul PR &% + (se(Mo) )",

~

where 7y was a compact notation for h(xg, 8). Therefore, this interval is an acceptance
interval for the value Yy (which here plays the role of a test statistic) under the null
hypothesis x = xg. Figure 3.7.i illustrates all prediction intervals for all possible values
of xq for the given interval in the Cress example.

lllustration Figure 3.7.i (right) illustrates the approach for the Cress example: Mea-
sured values yo are compatible with parameter values zg in the sense of the test, if
the point [z, yo] lies in the (prediction interval) band. Hence, we can thus determine
the set of values of zy that are compatible with a given observation yg. They form
the dashed interval, which can also be described as the set

{a: :lyo — h(:Jc,QA)\ < qi’f;/g . \/62 us (se(h(w,é))f} ;

This interval is now the desired confidence interval (or calibration interval) for z.

If we have m values to determine yo, we apply the above method to go = Y72 yo;/m
and get

fo + i ntad) < fo2 + st 0))” i}
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Figure 3.7.i: Cress example. Left: Confidence band for the estimated regression curve (dashed)
and forecast band (solid). Right: Schematic representation of how a calibration interval is
determined, at the points yo = 650 and yo = 350. The resulting intervals are [0.4, 1.22] and
[1.73, 4.34], respectively.

In this chapter, only one of many possibilities for determining a calibration interval
was presented.

3.8 Closing Comments

Reason for the Difficulty in the Biochemical Oxygen Demand Example Why did
we have so many problems with the Biochemical Oxygen Demand example? Let us
have a look at Figure 3.1.e and remind ourselves that the parameter #; represents the
expected oxygen demand for infinite incubation time, so it is clear that it is difficult
to estimate 6, because the horizontal asymptote is badly determined by the given
data. If we had more observations with longer incubation times, we could avoid the
difficulties with the quality of the confidence intervals of 6.

Also in nonlinear models, a good (statistical) experimental design is essential. The
information content of the data is determined through the choice of the experimental
conditions and no (statistical) procedure can deliver information that is not contained
in the data.

Bootstrap For some time the bootstrap has also been used for determining confidence,
prediction and calibration intervals. See, e.g. Huet, Bouvier, Gruet and Jolivet (1996)
where also the case of non-constant variance (heteroscedastic models) is discussed. It
is also worth taking a look at the book of Carroll and Ruppert (1988).

Correlated Errors Here we always assumed that the errors F; are independent. Like in
linear regression analysis, nonlinear regression models can also be extended to handle
correlated errors and random effects.
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Statistics Programs Today most statistics packages contain a procedure that can
calculate asymptotic confidence intervals for the parameters. In principle it is then
possible to calculate “t-profiles” and profile traces because they are also based on the
fitting of nonlinear models (on a reduced set of parameters).

Literature Notes This chapter is mainly based on the book of Bates and Watts (1988).
A mathematical discussion about the statistical and numerical methods in nonlinear
regression can be found in Seber and Wild (1989). The book of Ratkowsky (1989) con-
tains many nonlinear functions A(-) that are primarily used in biological applications.



