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@ Get a (limited) overview of different approaches to handle data-sets
with (many) more variables than observations.
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Linear model in high dimensions

Example

e Can the concentration of a (specific) component be predicted from
spectra?

@ Can the yield of a plant be predicted from its gene expression data?

o We have
» a response variable Y (yield)
» many predictor variables x(), ... x(™) (gene expr.)

@ The easiest model is a linear model.
Y, = x;,8° + E; i=1...n,

@ But... we typically have many more predictor variables than
observations (m > n)! l.e. the model is high-dimensional



Linear model in high dimensions

High-dimensional models are more problematic because we can not
compute the linear regression.

o If we want to use all predictor variables, we can’t fit the model
because it would give a perfect fit.

o Mathematically, the matrix (X7 X) € R™*™ can not be inverted. 4

Therefore, we need methods that can deal with this new situation.



Stepwise Forward Selection of Variables

A simple approach is stepwise forward regression.
It works as follows:
o Start with empty model, only consisting of intercept.
@ Add the predictor to the model that has the smallest p-value. For

that reason fit all models with just one predictor and compare
p-values.

@ Add all possible predictors to the model of the last step, expand the
model with the one with smallest p-value.

e Continue until some stopping criterion is met.

Pro’s: Easy
Con’s: Unstable: small perturbation of data can lead to (very) different
results, may miss “best” model.



Principal Component Regression

Idea: Perform PCA on (centered) design matrix X.

PCA will give us a "new" design matrix Z. Use first p < m columns.
Perform an ordinary linear regression with the “new data”.

Pro’s

New design matrix Z is orthogonal (by construction).

Con’s

We have not used Y when doing PCA. It could very well be that some of
the “last” principal components are useful for predicting Y'!

Extension

Select those principal components that have largest (simple) correlation
with the response Y.



Ridge Regression

@ Ridge regression “shrinks” the regression coefficients by adding a
penalty to the least squares criterion.

E)\ = argﬁmin LY — XﬁH% + )\Zﬁjz ,
B j=1

where A > 0 is a tuning parameter that controls the size of the
penalty.

@ The first term is the usual residual sum of squares.
@ The second term penalizes the coefficients.

@ Intuition: Trade-off between goodness of fit (first-term) and penalty
(second term).



Ridge Regression

@ There is a closed form solution

B, = (XTX+ )Xy,

where | is the identity matrix.

@ Even if X7 X is singular, we have a unique solution because we add
the diagonal matrix Al

@ )\ is the tuning parameter
» For A = 0 we have the usual least squares fit (if it exists).

» For A — oo we have E\A — 0 (all coefficients shrunken to zero in the
limit).



Lasso

@ Lasso = Least Absolute Shrinkage and Selection Operator.

@ This is similar to Ridge regression, but “more modern”.

gzargﬁmm LY = XBI5+AD> 1Bl ¢
Z j=1

@ It has the property that it also selects variables, i.e. many
components of 3 are zero (for large enough ).
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Statistical Consulting Service

Get help/support for
o planning your experiments.

e doing proper analysis of your data to answer your scientific
questions.

Information available at

http://stat.ethz.ch/consulting
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