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Abstract

It is in general challenging to provide confidence intervals for individual variables in high-
dimensional regression without making strict or unverifiable assumptions on the design matrix.
We show here that a “group-bound” confidence interval can be derived without making any
assumptions on the design matrix. The lower bound for the regression coefficient of individual
variables can be derived via linear programming. The idea also generalises naturally to groups
of variables, where we can derive a one-sided confidence interval for the joint effect of a group.
While the confidence intervals of individual variables are by the nature of the problem often very
wide, it is shown to be possible to detect the contribution of groups of highly correlated pre-
dictor variables even when no variable individually shows a significant effect. The assumptions
necessary to detect the effect of groups of variables are shown to be weaker than the weakest
known assumptions to detect the effect of individual variables.

1 Introduction

High-dimensional linear models have been studied extensively in the last years. The `1-penalised
Lasso-estimator [Tibshirani, 1996] has received a majority of the attention, partially due to pairing
attractive computational properties with variable selection. The properties of the Lasso estimator
have been studied among many other works in a series of papers including Greenshtein and Ritov
[2004], Zhang and Huang [2008] and Bickel et al. [2009]. For a good overview see Bühlmann and
van de Geer [2011]. Computational algorithms include Osborne et al. [2000] and Efron et al. [2004].

To fix notation, assume we have a random response vector Y ∈ Rn with expected value E(Y)
and a design matrix X ∈ Rn×p (vectors and matrices are shown in boldface throughout). Let
β∗ ∈ Rp be the `1-sparsest Basis Pursuit [Chen et al., 2001] solution to the noise-free problem

β∗ = argminβ∈Rp ‖β‖1 such that E(Y) = Xβ. (1)

While we assume that there is at least a single solution for the latter equality for p > n, we take
β∗ to be an arbitrary member of the set of solutions if the solution is not unique in (1). The
observations Y are now corrupted by some noise ε so that Y = Xβ∗ + ε, which is drawn i.i.d.
from a noise distribution with known distributional form but unknown noise level. If we are not
interested in the `1-sparsest regression vector (1) but, for example, the `0-sparsest vector then we do
need weak assumptions to show equivalence between the solutions, namely the nullspace condition
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in the case of the `0-sparsest solution which is discussed in Section 3.3. For the following, however,
we will work on inference about the `1-sparsest optimal regression vector (1) and will try to produce
confidence intervals with correct coverage that are valid for all designs.

Statistical inference about β∗ in terms of significance tests and confidence intervals for the solu-
tion in (1) has only recently received substantial attention. While the overall stability of estimated
sparse solutions was sometimes analysed and exploited for better structure discovery [Meinshausen
and Bühlmann, 2010, Shah and Samworth, 2013, Lim and Yu, 2013], formal significance tests were
provided in Wasserman and Roeder [2009] and Meinshausen et al. [2009]. They relied on sample
splitting of the data. On one half of the data, the Lasso or a similar sparse estimation procedure
selects a model which has to be assumed to include the true set of non-zero coefficients in β∗ with
high probability. The small set of selected variables can then be formally tested with traditional
tests on the second half of the data. An issue with this approach is that its validity relies in general
on a so-called beta-min condition. The condition requires that the smallest non-zero value of β∗

is bounded away from zero by a potentially non-negligible amount. In contrast, Lockhart et al.
[2013] derived a test for variables along the Lasso solution path. For each variable that enters the
model one can test whether the new variable is significant, conditional on all important variables
being included in the model. An alternative approach for unconditional confidence intervals uses
the fact that the optimal regression coefficient can also be expressed as being proportional to the
cross-product of the residuals of a variable and the response, where the residual is with respect to
a regression on all other variables. This has been exploited in an interesting way in Zhang and
Zhang [2011], van de Geer et al. [2013] and Javanmard and Montanari [2013]. These approaches
rely typically on specific assumptions about the design, the compatibility condition [van de Geer
and Bühlmann, 2009] being the weakest assumption. It is, however, still a strong condition and
often violated in practice due to high correlation between variables.

Here, we propose a confidence interval (and related test) that provides valid error control without
making any assumptions about the design matrix. The approach also extends naturally to groups
of variables G ⊆ {1, . . . , p} and can provide error confidence intervals for the norms ‖β∗G‖q for
any q ≥ 1, using only convex optimisation or linear programming in the specific case of q = 1.
Likewise, tests of the null hypothesis H0,G : β∗G ≡ 0 can be performed, where βG ∈ R|G| is the
vector of coefficients of variables in group G. Grouping of variables in high-dimensional regression
is natural and some estimators exploit a group structure [Yuan and Lin, 2006, Meier et al., 2008].
While sup-norm bounds on the coefficients as in Lounici [2008] can be used to construct confidence
intervals for groups of variables, the proposed procedure is to the best of our knowledge the first
to combine the following properties:

(a) The confidence intervals are valid under any design matrix X even in the high-dimensional
case as long as are interested in the `1-sparsest regression vector (1).

(b) The test has a hierarchical monotonicity property in that if we can reject H0,G : βG ≡ 0 at
some level for a group of variables G ⊆ {1, . . . , p}, then the test will also reject H0,G′ at the
same level if G ⊆ G′. Furthermore, the test is adjusted for multiplicity and the level is valid
simultaneously for all possible subsets of variables G ⊆ {1, . . . , p}.

(c) The power of the test is not affected by high or perfect correlation between variables in the
same group. If we can reject H0,G, then the test will also reject H0,G if we add a copy of a
variable in G to the design and include it in the group G. We show that the design conditions
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needed to detect interesting groups of variables are substantially weaker than the conditions
needed to detect individually important variables with other approaches.

The tests rely, though, on knowledge of the distributional form of the error term. To keep the
exposition as simple as possible, we will assume that error are rotationally invariant and most
examples are provided for Gaussian noise with unknown noise level, but extensions to more heavy-
tailed error distributions are possible. The construction of the confidence interval is proposed and
shown to provide valid error control in Section 2. Some empirical results are shown in Section 4,
before concluding with a brief discussion in Section 5.

2 Confidence intervals for groups of variables

Suppose G ⊆ {1, . . . , p} is a group of variables and we want to have a one-sided confidence interval
for the `q-norm of the coefficients in the group, ‖β∗G‖q, for some q ≥ 1 or a test for the joint effect
of the group, ‖XGβ

∗
G‖2. The groups can correspond to individual variables, but the desire to test

group of multiple variables arises naturally for highly correlated designs. Each individual variable is
unlikely to be significant since its effect can typically be explained by some other highly correlated
variable. However, when grouping highly correlated variables, we are often able to detect a joint
group effect even if we are unable to say which variables in the group are responsible.

Any construction of a test for the null hypothesis

H0,G : β∗G ≡ 0

has to rest on the fact that β∗ is the sparsest approximation of Xβ = E(Y). We will work with the
`1-norm (q = 1) but similar constructions are possible for q ≥ 2. Define the Basis Pursuit solution
[Chen et al., 2001] as b(X,Y) : Rn 7→ Rp,

b(X,Y) = argminβ∈Rp ‖β‖1 such that Xβ = Y. (2)

If the solution is not unique, an arbitrary member of the set of solutions is returned. Now, we
know that β∗ is by definition the Basis Pursuit solution for the noise-free signal E(Y), that is
β∗ = b(X,Y− ε) and we will exploit this in the following. Specifically, let Cα ⊆ Rp+n for some set
Nα ⊆ Rn be defined as

Cα :=
{

(β,η) ∈ (Rp,Rn)
∣∣ η ∈ Nα and β = b(X,Y + η)

}
, (3)

where the (possibly random) set Nα has to fulfil P(−ε ∈ Nα) ≥ 1− α. Using such a set, define the
lower “group-bound” of the one-sided confidence interval for ‖βG‖1 as

TG := min(β,η)∈Cα‖βG‖1. (4)

We suppress the dependence on α in TG for notational simplicity. We can then show correct
coverage in the following sense.

Theorem 1 The one-sided interval [TG,∞) is a valid 1− α confidence interval for ‖β∗G‖1, simul-
taneously valid for all subsets of variables G ⊆ {1, . . . , p},

P
(
∀G ⊆ {1, . . . , p} : TG ≤ ‖β∗G‖1

)
≥ 1− α.
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Proof: The proof follows very directly. The event −ε ∈ Nα is equivalent to the event (β∗,−ε) ∈
Cα since β∗ = b(X,Y− ε) = b(X,E(Y)). The event (β∗,−ε) ∈ Cα on the other hand implies that
TG ≤ ‖β∗G‖1 for all subsets G ⊆ {1, . . . , p} by construction of the statistics (4). Hence,

P
(
∀G ⊆ {1, . . . , p} : TG ≤ ‖β∗G‖1

)
≥ P

(
(β∗,−ε) ∈ Cα

)
= P(−ε ∈ Nα) ≥ 1− α (5)

and [TG,∞) is a valid 1 − α confidence interval for ‖β∗G‖1, simultaneously for all subsets of the
variables. �

An immediate consequence is that the null hypothesis H0,G : β∗G ≡ 0 can be rejected at level α
for all groups G for which TG > 0 and the probability of erroneously rejecting a group is bounded
by the chosen level. No adjustment for multiplicity is necessary. The type I error is controlled
simultaneously for all groups at the chosen level.

The problem with the estimator is that the optimisation in (4) with feasible region Cα of (3)
can be cumbersome if Cα is not a convex set. We will strive to find a tight convex relaxation of
Cα in (3). The results of Theorem 1 are clearly still valid if we use a set C̄α for which Cα ⊆ C̄α.
However, if the set C̄α is very large, the method will become unduly conservative. To take an
example, we could take Nα to be an appropriate `2-ball and replace the constraint β = b(X,Y +η)
with the linear constraint Y + η = Xβ. Then (β,η) ∈ Cα would be identical to a `2-constraint
on the residuals, ‖Y −Xβ‖2 ≤ λ for some λ > 0. The minimum in (4) would then be 0 for most
high-dimensional designs with p > n as the effect of variables in a group G could always identically
be replicated by some variables in {1, . . . , p} \G.

We will thus aim to find a convex set Nα for which P(−ε ∈ Nα) ≥ 1−α is exact (or the bound
is very tight) and a close convex approximation to (3). Rather than using an `2-ball for Nα, it will
turn out to be computationally attractive to use the convex hull of a number of randomly sampled
points on an `2-sphere. The Basis Pursuit constraint in (3) can then easily be relaxed to yield a
convex set C̄α, for which efficient optimisation routines are available.

2.1 Convex hull constraint

We use as constraint Nα in (3) a convex hull of a finite number of points. Let e(1), . . . , e(m) be m
samples from a rotationally-invariant distribution in Rn and rescaled such that ‖e(j)‖2 = 1 for all
1 ≤ j ≤ m. We can for example sample from a standard Gaussian distribution but the results are
identical under any other rotationally invariant distribution. Let E ∈ Rn×2m be the matrix with
columns

E·j =

{
e(dj/2e) if j odd

−e(dj/2e) if j even
(6)

Define the convex hull of these 2m vectors, if rescaled by a factor µ ≥ 0 byNm,µ := convex hull(µE),
where the convex hull is understood column-wise, such that it can be parameterised as

Nm,µ =
{
η ∈ Rn

∣∣∣η = µ ·Eγ for some γ ∈ R2m
+ with

2m∑
k=1

γk ≤ 1
}
. (7)

The origin is by construction an element of Nm,µ. An illustration of Nm,µ for m = 3 vertices in a
two-dimensional problem is given in the right panel of Figure 1. Suppose the number of points m
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Figure 1: Left: the convex region (7) around the observations Y that contains E(Y) with high
probability. Right: the equivalent property (8) that the noise and the (random) convex region Nm,µ

have to satisfy. Here the number of vertices is m = 3 (the negative counterparts are not counted
in m).

and the scaling factor µ are chosen such that

P(ε ∈ Nm,µ) ≥ 1− α. (8)

If the noise distribution is completely known, then one can for example simulate from the l.h.s.
in (8) to ensure that the constraint is satisfied. For a known noise distribution, the noise vector
is clearly a pivotal quantity and this is exploited in the argument above and could possibly be
extended to fiducial-type inference [Cisewski and Hannig, 2012, Wang et al., 2012, Taraldsen and
Lindqvist, 2013]. We will return later to the question of the choice of m and µ if the variance of
the noise is unknown (as it will be in practice). If we chose Nα in (14) as Nm,µ, defined in (7), with
appropriate values of µ and m, the region Cα in (3) becomes

Cm,µ :=
{

(β,γ) ∈ (Rp,R2m
+ )
∣∣∣ 2m∑
k=1

γk = 1 and β = b(X,Y + µ ·Eγ)
}
. (9)

As discussed above, the set Cm,µ is not necessarily convex. To obtain a convex relaxation, let

β(k) = b(X,Y + µ ·Eγ(k)) (10)

be the Basis Pursuit solution for a vector Y + µ ·Eγ(k), where γ
(k)
j = 1{j = k} for 1 ≤ j, k ≤ 2m.

In Figure 1, this would correspond to the Basis Pursuit solution at the six vertices of the shaded
regions in the left panel. Let lk = ‖β(k)‖1 be the `1-norm of the corresponding Basis Pursuit
solutions for k = 1, . . . , 2m. By definition of Basis Pursuit, we have, as long as min1≤k≤m γk ≥ 0
and

∑2m
k γk ≤ 1,

‖b(X,Y + µ ·Eγ)‖1 ≤
2m∑
k=1

γklk,
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since the convex mixture β̃ =
∑2m

k=1 γkβ
(k) is a feasible solution to Xβ̃ = Y +µ ·Eγ, with `1-norm

bounded by the convex mixture of the individual `1-norms, ‖β̃‖1 ≤
∑2m

k=1 γk‖β
(k)‖1. Using this

bound, we define a convex relaxation of (9) as

C̄m,µ :=
{

(β,γ) ∈ (Rp,R2m
+ )
∣∣∣ 2m∑
k=1

γk = 1 and ‖β‖1 ≤
2m∑
k=1

γklk and Xβ = Y + µ ·Eγ
}
. (11)

The optimisation in (4) with the set Cα can then be cast as a linear programming problem. The
general case of q ≥ 1 can be solved with standard convex optimisation routines but we will not go
into more detail and mostly discuss the case of q = 1. If we are just interested in testing the null
hypothesis βG ≡ 0 rather than building confidence intervals, we can use either value of q ≥ 1 and
the choice q = 1 offers the computationally most efficient solution for testing.

In the following, we will always understand the estimator TG to be the solution of (4), using
the set C̄m,µ in (11). We will discuss in the following how the values of m and µ can be chosen to
guarantee (8) when the noise level of the error distribution is unknown.

2.2 Unknown noise level

So far, we have assumed that we know the noise distribution and can thus guarantee (8) to be true.
Even if the distributional form is approximately known, the noise level itself is in general unknown
in practice. A challenge when implementing the procedure is thus that we have to determine the
number of vertices m ∈ N and the scale factor µ ≥ 0 in a way such that (8) is satisfied at the
desired level α. If either the underlying distribution of the noise were known or the `2-norm of the
realised noise were known, it is straightforward to satisfy constraint (8).

(i) If the distribution of the noise ε were known, then a suitable strategy uses a fixed scaling
factor

µ = Cq1−α(‖ε‖2), (12)

where C > 1 is a fixed constant and q1−α(‖ε‖2) the (1 − α)-quantile of the distribution of
‖ε‖2. We could then determine the l.h.s. of (8) as a function of the number of vertices m
by simulation and choose m large enough to satisfy (8). If C > 1, the number of vertices
necessary will always be finite and we will use a default value of C = 3.

(ii) If the `2-norm ‖ε‖2 of the realised noise were known, one could choose as scaling factor a small
multiple, µ = C‖ε‖2 with C > 1 with a default again of C = 3) and choose m so that (8)
is satisfied. There will always be a finite number of m for which the property is satisfied as
long as C > 1 as the convex hull will then contain the `2-ball with radius ‖ε‖2 for m→∞).

In general, neither the exact distribution nor the realised norm ‖ε‖2 are known.
Assume that an initial estimator of β̂ is available which has not made use of the current data

(we return to an implementation using sample splitting further below). The residuals are then
R = Y−Xβ̂. The `2-norm of the residuals is ‖R‖2 = ‖d + ε‖2, where d := X(β∗− β̂). The norm
of the residuals ‖R‖2 often provides a good upper bound for ‖ε‖2, although it can obviously happen
that ‖R‖2 < ‖ε‖2 and we will have to work a bit more to deal with this scenario. However, since
‖R‖2 is typically approximately equal and often slightly larger than ‖ε‖2, we will fix the scaling
factor µ at 3‖R‖2 for the following and then have to determine the number of vertices m such that

π(d) := P
(
ε ∈ Nm,3‖d+ε‖2

)
≥ 1− α. (13)

6



Table 1: The number of vertices per sample point, m/n, necessary to achieve the desired confi-
dence 1− α for sample size n for unknown noise level.

n = 5 10 15 20 25 30 40 50

α = .05 2.8 3.4 4.7 6.5 8.8 12 23.5 41.8
α = .025 3.4 3.9 5.2 7.1 9.7 13.2 25.8 46
α = .01 5.6 4.8 6 8.6 10.7 14.5 28.4 50.6
α = .005 14.6 5.5 7 9.5 11.8 16 31.2 55.7

The issue is that the vector d = X(β∗ − β̂) is unknown. In can often be assumed to be small, but
even this is hard to establish with tight bounds in practice. We can, however, use the rotational
invariance of the noise distribution to see that π(d) in (13) is just a function of the size κ := ‖d‖2
of d and not its orientation d/‖d‖2, and hence π(d) = π(κu), where u is a vector with unit length
and can without limitation of generality be chosen to be the n-dimensional vector with entries
ui = 1{i = 1} for all 1 ≤ i ≤ n. The l.h.s. of (13) can be bounded by

min
d∈Rn

π(d) ≥ min
κ≥0

π(κu) = min
κ≥0

P
(
ε ∈ Nm,3‖κu+ε‖2

)
≥ P

(
ε ∈ Nm,3minκ≥0 ‖κu+ε‖2

)
, (14)

where the inequality holds since the origin is contained in all Nm,µ by construction and we thus
have that Nm,µ1 ⊆ Nm,µ2 for all µ1 ≤ µ2. It remains to show that the r.h.s. in (14) is greater than
1− α. Let µ∗ ≥ 0 be defined as

µ2∗ =

{
‖ε‖22 if ε1 ≥ 0

‖ε‖22 − ε21 if ε1 < 0

By definition, minκ≥0 ‖κu + ε‖2 = µ2∗. If we now choose m so that

P(ε ∈ Nm,3µ∗) ≥ 1− α, (15)

then we guarantee (13) and thus (8). Crucially, the l.h.s. of (15) can be determined by simulation,
where both the noise ε and the convex region N are randomly generated. Specifically, the unknown
bias d of the initial estimator does not enter into (15).

Up to this point, we have not made use of the distributional form of the error distribution
except for rotational invariance. If we now assume a Gaussian distribution with unknown noise
level σ2, then we can use simulations of the l.h.s. of (15) to determine the number of vertices m
necessary as a function of sample size n only. Note that the l.h.s. is invariant under a change in σ2

(since the region N scales linearly with the noise level) and we can simulate under, say, σ = 1 or
any other arbitrary noise level.

Some results are given in Table 1. We use as scaling factor a constant µ = 3‖R‖2, that is three
times the `2-norm of the residuals. The number of vertices per sample, m/n, to reach a guaranteed
level α in (8) were computed, using 5000 simulations. The number of vertices m = m(n) necessary
for a given sample size is generally increasing super-linearly in n, manifesting itself in a monotonous
increase of the ratio m(n)/n in Table 1. The only exception are very small values of n and small
values α, where the ratio m(n)/n is decreasing up to a sample size n = 10 and increasing afterwards
(since the difference between µ∗ and ‖ε‖2 can be substantial for a small sample size).
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We reiterate that the values in Table 1 are valid for all noise levels under the assumption of
Gaussian noise, irrespective of how the initial estimator β̂ was computed under which the norm of
the residuals R are derived (as long as the estimator did not make use of the current data). If the
initial estimator β̂ is very imprecise, the coverage will in general be better than 1− α (since ‖R‖2
will be substantially larger than ‖ε‖2). The procedure will thus be unduly conservative if the initial
estimator has a substantial error, but the level is guaranteed in all circumstances.

2.3 Summary of the procedure

In summary, the procedure works as follows, given an initial estimator β̂ that has been computed
on a separate dataset.

1. Compute the residuals R = Y −Xβ̂ and set µ = 3‖R‖2.

2. Set the number of vertices m = m(n) to satisfy (15), for example using the values in Table 1.

3. Simulate the 2m vertices as in (6) to get the n× (2m)-dimensional matrix E.

4. Solve estimator (4) over the convex area (11) with the values of µ and m as found in steps 1
and 2. If TG = 0 in (4), we cannot reject the null hypothesis βG ≡ 0. Otherwise [TG,∞) is a
non-trivial one-sided 1− α confidence interval for ‖βG‖1.

Given an initial estimator β̂, the procedure can thus give a 1− α one-sided confidence interval
for the `1-norm of the coefficients in the group under without making any assumption on the design
matrix.

We will address possible generalisations of (b) further below, after discussing an integrated
procedure that computes the initial estimator and the confidence intervals on the same dataset
by using repeated data-splitting, and projections for faster computation. The final procedure is
implemented as function groupLowerBound in the R-package hdi [R Development Core Team, 2005].

2.4 Data splitting

The procedure as above depends on an initial estimator that is not making use of the available
data. In practice, we want to derive the estimator on the same dataset. One can use data splitting
to derive the confidence interval in the spirit of Wasserman and Roeder [2009] and Meinshausen
et al. [2009]. For a given split of the n samples into two parts of equal size (or as close as possible
if n odd), we compute the initial estimator β̂ on the first part of the data and use it on the second
half according to Section 2.3.

The randomness introduced by this data split is unnecessary. And so is the randomness intro-
duced by the selection of the random support vectors e(1), . . . , e(m) in the construction of E in (6).

We can repeat the data splitting K times to obtain the statistics T
(1)
G , . . . , T

(K)
G according to (4)

and then obtain the 1− α confidence for ‖βG‖1 as

[(1− ε)-quantile1≤k≤KT
(k)
G ,∞), (16)

which retains the desired 1 − α coverage if individual tests in the K splits are conducted at level
qε, as shown in Meinshausen et al. [2009]. For example, we can use ε = 0.5 and use the median of

all realisations of T
(k)
G . Empirically, it tends to be more powerful (yet also computationally more
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demanding) to use higher quantiles of the distribution. We settle here for a compromise of ε = 0.1
and use the 90%-quantile, where the individual test are conducted at level α/10. The aggregated
result will then not depend on an arbitrary split of the dataset and the random sampling of the
support vectors.

2.5 Heavy-tailed error distributions

Table 1 shows the necessary number of vertices m = m(n) to guarantee the coverage property (8)
and was derived under the assumption of Gaussian noise with unknown noise level σ2. For other
error distributions, we have to consider two cases. As long as the error is still rotationally invariant,
we can simply simulate in the same way as above for a Gaussian error in (15) to obtain a suitable
value of m = m(n) as we have only made use of rotational invariance leading up to (15). For
non-rationally invariant distributions, we will have to find other ways of taking the step from (13)
to (14) that deals with the unknown bias d in the prediction of the initial estimator. It seems
conceivable such steps can be found for a variety of other distributions. One possibility is to find
a probabilistic lower bound µ̂ for ‖ε‖2 such that P(µ̂ > ‖ε‖2) < α/2. We would then use the ball
Nm,3µ̂ and would have to choose the number of vertices such that (15) holds with probability at least
1 − α/2, where we can use µ∗ = 3‖ε‖2 in (15), which is known in the simulation. Combining the
two possible errors with a union bound will guarantee overall the desired level. Another possibility
is to use support vectors along the axes instead of randomly sampled support vectors on the sphere.
Then the convex region Nm,µ will correspond exactly to the region with bounded `1-norm, which
might be more suitable for heavy tailed error distributions and yield less conservative estimators.

2.6 Projection

Property (5) and Theorem 1 rests solely on the fact that β∗ is by assumption the Basis Pursuit
solution to the noiseless signal, that is

β∗ = b(X,E(Y)),

with the Basis Pursuit solution defined as in (2). Let A be any linear operator A ∈ Rs×n with
s ≤ n. Let β∗,A be the sparsest solution of the projected data

β∗,A = b(AX,AE(Y)). (17)

If β∗ ≡ β∗A (we will discuss conditions for this further below), property (5) and Theorem 1 are still
valid. Moreover, if ε has a rotationally invariant distribution, and we use a matrix A with orthog-
onal and unit-length rows, then the error Aε will again be rotationally invariant and independent.
Specifically, if εi, 1 ≤ i ≤ n are i.i.d. Gaussian, then (Aε)j , 1 ≤ j ≤ s will again be i.i.d. Gaussian
(it is not strictly necessary that the columns of A have unit-norm but we will assume so anyway
for simplicity in the following).

Working with the projected data has two potential advantages

1) Computing the estimator (3) is faster since the problem is now only p + 2m(s)-dimensional
instead of the original p+ 2m(n)-dimensional problem, where m(n) is the number of vertices
necessary to guarantee (8). Since m(·) generally scales super-linear in its argument (see
Table 1), this can lead to considerable computational advantages.
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2) The convex relaxation in (11) might be less conservative in the lower-dimensional setting and
the procedure hence more powerful.

A potential issue is the loss of power if the projection A is not chosen suitably. For example, A
can correspond to subsampling s observations out of the total of n observations if each row of A is
identically 0 except for a single 1 entry and this choice of the projection will lead to a substantial
loss in power if s � n. This problem is alleviated, however, if we chose the estimated signal
direction Xβ̂ as one of the rows of A. If we are using a projection in the numerical results, we
will hence assume that the rows of A are the unit-norm base vectors of the space spanned by Xβ̂
and s− 1 vectors in Rn, whose entries are drawn i.i.d. from a standard Gaussian distribution.

The numerical results suggest that the procedure is very insensitive to the choice of s in general.
We will give exact conditions necessary for success in the following section.

3 Estimation accuracy

We will look at properties of the design that need to be satisfied for the estimator (4) to have power
close to 1 to detect groups of variables that contribute substantially to the overall signal. We will
use the projected data approach, as discussed in the last section, with an orthonormal projection
matrix. While we do not need to make assumptions on the design to show the correct coverage of
the confidence interval [TG,∞) as in Theorem 1, some additional assumptions on the design are
needed for showing the estimation accuracy. For example, if there exists a variable outside of G
that is perfectly correlated with a variable in group G, we can not hope to get sharp bounds on
‖β∗G‖1 as the problem is not identifiable. The same situation does not pose a problem for coverage,
though, as the method would always choose the most conservative possibility among all possible
solutions. The design assumption we will need to impose are, however, weaker than all known
conditions to detect individual variables in the high-dimensional setting.

3.1 Compatibility condition

The weakest condition for rates of convergence and variable-wise confidence intervals rest on the
compatibility condition [van de Geer and Bühlmann, 2009]. We will be able to weaken the condition
for the group case. Assume S0 to be the set of variables that have a non-zero effect S0 = {k : β∗k 6=
0}. (Alternatively, we could let S0 be the set of variables that have a sufficiently large non-zero
effect and which we do want to detect with the test.) Let L > 0 be a constant. The compatibility
constant φcc is defined as in van de Geer and Bühlmann [2009] for a design X as

φ2cc(L) := min
{
|S0|‖Xβ‖22 : ‖βSc0‖1 ≤ L‖βS0

‖1 and ‖βS0
‖1 ≥ 1

}
. (18)

The multiplication with |S0| could be left out but facilitates comparisons with eigenvalues con-
strained by the `2-norm instead of the `1-norm. The compatibility condition requires φcc to be
bounded away from zero for, typically, a value L ≥ 3. All known conditions for consistency of the
Lasso and convergence of confidence intervals imply the compatibility condition for some value of
L ≥ 1 [van de Geer and Bühlmann, 2009].

3.2 Group effect compatibility condition

The compatibility condition is really geared towards detection of individual variables. It often
fails for real data due to high correlation between variables. Here, we define the group effect
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compatibility constant that leads to weaker assumptions if we are just interested in the effect of a
group of variables.

Definition 1 (Group effect compatibility constant) The group effect compatibility constant
φgcc for a group G ⊆ {1, . . . , p} is defined as

φ2gcc(L,G) := min
{
|S0|‖Xβ‖22 : ‖βGc∩Sc0‖1 ≤ L(‖βS0

‖1 − ‖βG∩Sc0‖1) and νG(β) ≥ 1
}
, (19)

where
νG(β) := min

ς∈S

∑
k∈G

ςkβk, (20)

and S ⊆ [−1, 1]p is defined as the subgradient of the `1-norm evaluated at β∗:

S :=
{
ς ∈ [−1, 1]p : ςk = sign(β∗k) if k ∈ S0 and ςk ∈ [−1, 1] otherwise

}
.

The dependence on the design and on sign(β∗) has been suppressed for sake of notational simplicity
in the definition of compatibility constant. The constant is not to be confused with the group Lasso
compatibility constant, which is adapted to study the group Lasso estimator [Bühlmann and van de
Geer, 2011] and not directly comparable to the compatibility constants discussed here.

For all G ⊆ {1, . . . , p} and L ≥ 1, the group compatibility constant is lower-bounded by the
compatibility constant,

φ2gcc(L,G) ≥ φ2cc(L). (21)

This property follows from the following observations. For any group G ⊆ {1, . . . , p}, the bound
νG(β) ≤ ‖βS0

‖1 holds true. The condition νG(β) ≥ 1 thus implies the corresponding condition
‖βS0

‖1 ≥ 1 in the compatibility constant. Furthermore, for any L ≥ 1, ‖βGc∩Sc0‖1 ≤ L(‖βS0
‖1 −

‖βG∩Sc0‖1) implies the inequality ‖βSc0‖1 ≤ L‖βS0
‖1. The feasible set in (19) is thus a subset of

the feasible set in (18), which proves property (21).
Any lower bound we impose on the group effect compatibility constant (19) will thus be a weaker

condition than the same lower bound on the compatibility constant (18). To take an extreme
example, assume we have two almost perfectly correlated variables in a group G, where both
variables have either the same sign or at least not opposite signs in the regression coefficient β∗.
As the correlation between the two variables approaches 1, the compatibility constant will take the
value 0. To see this, one can use a β that uses coefficients of the same magnitude but opposite
signs on the two variables. With this β, the `1-norm is positive and Xβ ≡ 0 for perfectly correlated
variables and the compatibility constant thus vanishes. In contrast, νG(β) remains at 0 for the same
vector and the group effect compatibility constant will retain a positive value even if both variables
are perfectly correlated. (If, however, two almost perfectly correlated variables take the opposite
sign in the regression coefficient, then both constants will approach 0 with increasing correlation,
as the joint effect of the two variables will be difficult to detect, even if we are just interested in
the effect of the group as a whole.)

We note that we can also leverage the hierarchical property of the statistic TG evident from (4),
namely that TG ≥ TG′ for all G,G′ ⊆ {1, . . . , p} with G′ ⊆ G. With this hierarchical property we
could weaken the assumption of a lower bound on φ2gcc(L,G) by instead assuming a lower bound
on maxG′:G′⊆G φ

2
gcc(L,G

′). We refrain from developing this further, though, for sake of notational
brevity.
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3.3 Assumptions

Here, we will formulate two conditions on the design for testing the effect of a set of groups
G ⊂ P({1, . . . , p}), where each G ⊆ {1, . . . , p}.

(A I) There exists ϕ1 > 0 a subset S ⊆ {1, . . . , p} of variables with |S| = s such that the corre-
sponding predictor matrix has full rank. In other words, let (AX)S be the matrix formed by
the columns of the full design belonging to variables in the set S. The minimal singular value
of this matrix is bounded from below by ϕ1 > 0.

(A II) For L = 2, there exists a ϕ2 > 0 for design AX such that

min
G∈G

φ2gcc(L,G) ≥ ϕ2
2.

Some discussion of these assumptions: the first one, (A I), is a very weak condition since it just
requires the existence of a single set of s variables that have a full rank in the projected predictor
matrix. The stronger assumption is (A II). It requires a lower bound on the group effect compatibility
constant for all groups in G, where the signs derive from the optimal regression coefficient. Using
the group effect compatibility constant φgcc makes the assumption much weaker, though, than the
typically required lower bound on the compatibility constant φcc itself that is necessary for confidence
bounds for individual variables [Zhang and Zhang, 2011, van de Geer et al., 2013, Javanmard and
Montanari, 2013]. Per definition of the group effect compatibility condition,

min
G∈G

φ2gcc(L,G) ≥ φ2cc(L).

The value of L for most results is chosen as L = 3. While the exact value does not matter too much,
we chose L = 2 here but any value larger than 1 would yield similar results. Note that φ2cc(1) > 0
is also sometimes called the nullspace condition used to show equivalence of the `1 and `0-sparsest
solutions to the regression problem, see for example Raskutti et al. [2010] and references therein.
In particular, the nullspace condition implies that the `1-sparsest solution, as defined as in (17), is
equal to the `0-sparsest solution of the noise-free data.

As discussed in the previous section, the group effect compatibility constant will not be unduly
diminished by highly correlated variables that appear in the same group. This is also evident from
the empirical results in the section with numerical results. In the presence of highly correlated
variables, assumption (A II) can thus be significantly weaker then the otherwise necessary lower
bound on the compatibility constant as we ask for the effect of whole groups of variables instead of
the effect of individual variables.

3.4 Estimation accuracy

Under the made assumptions, the procedure will be shown to have a near-optimal detection thresh-
old for groups of variables. Specifically, the lower bound TG for the `1-norm of a group G of variables
(or indeed a set of groups) is shown to have a non-asymptotic estimation error that scales like 1/

√
n

with sample size.

Theorem 2 Let G ⊆ P({1, . . . , p}) be a set of groups G ⊆ {1, . . . , p} such that Assumptions (A I)
and (A II) are satisfied. Assume the errors εi, i = 1, . . . , n are independent and either have a
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mean-zero Gaussian distribution with variance σ2 > 0 or are sub-Gaussian and are dominated in
absolute value by such a distribution and µ is chosen as in (12). For any chosen γ ∈ (0, 0.2), with
probability at least 1− γ, the lower bound TG at level α satisfies

∀G ∈ G : TG ≥ ‖β∗G‖1 −
Mσ√
n
, where M2 = 20s log

( 1

min{α, γ}
)

max
{ s
ϕ2
1

,
|S0|
ϕ2
2

}
.

A proof is given in the Appendix. Note that the bound is valid simultaneous for all groups in the
set G. The complementary bound (TG ≤ ‖β∗‖1 with probability at least 1 − α simultaneously for
all groups) is equivalent to the coverage property shown in Theorem 1. Regarding the assumptions:

(a) The two assumptions (A I) and (A II) are just necessary to show the power of the approach.
The coverage property of the confidence intervals (Theorem 1) are still valid even if the two
assumptions are not satisfied.

(b) The condition about the group effect compatibility condition is weaker than the corresponding
condition about the compatibility condition that is necessary to detect individual variables.

The theorem implies that the power to detect groups will have optimal rates under conditions
that can be substantially weaker than the conditions needed for a good power of detecting individual
variables. The number of variables enters only through the compatibility constant ϕ2. The theorem
also shows the simultaneous nature of the bound: with a high probability, all groups with sufficiently
large signal strength will be detected.

4 Numerical Results

The procedure is evaluated on simulated and real data. Sample splitting with 11 splits and
90%-quantile aggregation as per (16) is used, as implemented in the R-package hdi and func-
tion groupLowerBound, where the initial estimator is computed with the 10-fold cross-validated
Lasso solution as found in the glmnet package [Friedman et al., 2009]. The optimisation (4) over
the set (11) is implemented with the limSolve package [Soetaert et al., 2009] in R [R Development
Core Team, 2005].

As we are not making any assumption on the design and the examples are high-dimensional in
the sense that p > n, it could be suspected that the power of the method will be very weak against
any reasonable alternative. While there is clearly a price to pay for the assumption-free confidence
intervals, we will explore to which extent we can get non-trivial bounds.

4.1 Simulated data

Six simple simulations settings are used initially with p predictor variables and sample size n.
The predictor variables are randomly drawn (independently across observations) from a Gaussian
distribution Np(0,Σ), where Σ has a block structure. Each block consists of B variables. All
diagonal elements of Σ are equal to 1. The within-block correlation is ρw and the between-block
correlation between all variables is ρb. The response is simulated as Y = Xβ∗ + ε, where the
noise has i.i.d. Gaussian entries with standard deviation σ > 0. The optimal regression vector β∗

has 0 entries, except for the B/2 even variables {2, 4, 6, . . . , B} within the first block which have
entries of value τ > 0 (B is always chosen to be an even number). The settings of p, n,B, ρw, ρb, τ

13



Table 2: The simulation settings
Variable p n B ρw ρb τ

Setting (i) 200 50 10 0.99 0.00 0.5
Setting (ii) 200 200 20 0.999 0.00 1.0
Setting (iii) 1000 300 50 0.8 0.10 2.0
Setting (iv) 200 100 50 0.99 0.10 2.0
Setting (v) 300 200 100 0.999 0.00 1.0
Setting (vi) 300 200 100 0.995 0.50 1.0

vary across the settings as shown in Table 2. The noise level σ is varied for each setting between
σ = 0.001 and σ = 20 to study the influence of a varying signal-to-noise ratio on the results.

Figure 2 shows the results for 200 simulations of each setting. The empirical covariance matrices
of a realisation of each setting are shown in the leftmost column of Figure 2. The remaining columns
show the frequency with which the null hypothesis H0,G is rejected for various groups, starting with
the singleton G = {2} up to G = {1, . . . , p}. For the first four groups, the null hypothesis is false,
while it is true for the last group, which contains all variables that have a 0 component in the
optimal regression vector.

Results for three competing methods for α = 0.05 are shown: the proposed group effect estima-
tor (“G”), with a default value of s = 10 for the projected dimension. The Ridge effect estimator
proposed in Bühlmann [2012] (“R”) and the Lasso-based test of individual variables of van de Geer
et al. [2013] (“L”). The latter two tests are designed for individual variables and we reject the group
null H0,G if we can reject any of the elements of G after a Bonferroni multiplicity adjustment.

The main observations are:

1. The proposed tests has the correct coverage for all designs (as expected from Theorem 1) but
is conservative: the last group, corresponding to a true null hypothesis, is never rejected.

2. The other two tests, in contrast, work only under specific design assumptions, which are
difficult to verify in practice but which are likely to be violated in these settings due to the
high correlation between variables. The type I error (frequency of rejection of the last group,
which has a true zero effect) is much higher than the specified α = 0.05, especially for high
signal-to-noise ratios.

3. The proposed group effect estimator has no power to detect the signal in the individual
variable {2}, whereas the other two tests reject the null hypothesis for this variable for
high signal-to-noise ratios (but see the point above: they also frequently reject true null
hypotheses).

4. The power to detect signal in groups of variables (the second and third group in Figure 2
contains groups with true signal) is often substantially higher with the proposed group effect
estimator than with alternatives. This is as expected from Theorem 2, as the high correlation
between variables in tested groups is compatible with the assumption needed for the Theorem,
as discussed in Section 3.2.
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Figure 2: The six rows correspond to the simulation settings (i)-(vi). The first column shows an
empirical correlation matrix, where white corresponds to a value of 1 and orange to 0. The block
structure is visible in all settings. The remaining columns show the frequency with which the null
hypothesis H0,G can be rejected for different groups. The last group contains all variables with
vanishing signal and its null hypothesis is true, whereas the null is false for the first three groups.
The results for three different methods are shown: the proposed group effect estimator (“G”; red
solid line), the ridge-based (“R”, green broken line) and lasso-based (“L”, blue dotted line) tests
for individual variables that are adapted to the group setting.
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Table 3: Jaccard index of rejections as a function of the projected dimension s compared with the
default value s = 10

s = 2 3 4 5 10 15 20 25

Setting (i) 1.00 1.00 0.96 1.00 1.00 0.96 0.95 0.96
Setting (ii) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Setting (iii) 0.97 0.97 0.96 0.97 1.00 0.96 0.97 0.97
Setting (iv) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Setting (v) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Setting (vi) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

It remains to study the effect of the dimension s of the projection. The results above in Figure 2
were shown for a default value of s = 10. The results were also computed for s ∈ {2, 3, 4, 5, 15, 20, 25}
to study how much they vary across this range. Note that s = 25 is the maximal possible value
since we use sample splitting and the minimal value of n is 50, which means we have then only 25
samples at our disposal within each half of the data. Instead of re-producing the plots, Table 3
shows a condensed version. There are 4 examined groups, with 17 noise levels and 200 simulations
for each setting. Each setting thus corresponds to 13600 possible rejections. Each values of s
corresponds to a subset Rs ⊆ {1, . . . , 13600} of rejections made with this value. We record the set
of rejections under s′ = 10 and under different values of s and compare via their Jaccard index as
|Rs ∩ Rs′ |/|Rs ∪ Rs′ |. A Jaccard index of 1 thus corresponds to all decisions being identical. For
most settings, across all simulations and settings, more then 2000 rejections can be made with the
default value and a value of 1 thus corresponds to a remarkable similarity between the results. The
lowest value in the table is a Jaccard index of 0.95. Even with this lower value, rejections differ
for at most 5% of all simulation settings and the influence of s on the properties of the procedure
is thus small in practice, justifying a default value that does not have to be adjusted in each new
setting.

The loss or gain in power when using a smaller value of s is mainly determined by two opposing
effects. On the one hand, information is lost by projecting into a lower-dimensional space. This
will diminish the power for small values of s. On the other hand, the convex relaxation of the set
Cα in (11) becomes less conservative in smaller dimensions. Smaller values of s thus mitigate the
impact of the convex relaxation and can lead to increased power. Which of the two effects is stronger
will be problem-specific but the empirical results suggest that the two effect are weak and that the
choice of s does not matter much from a statistical perspective. Error control is conservative for
all values of s: groups that fulfil the null hypothesis are never selected more frequently than in a
proportion α of all simulations. The speed savings of a lower value of the dimensionality s of the
projection can be considerable, though. Specifically, computing the estimator for a single realisation
and a single data-split takes for s = 5 in a setting with p = 100 and n = 50 an average of 1.07
seconds. Increasing the dimension to the default value of s = 10 almost triples the computational
time to 2.7 seconds, and this increases to 6.46, 13.79 and 29.19 seconds for values s = 15, 20 and
s = 25 (which corresponds to no projection since, with data-splitting, there are just 25 observations
in a single half of the data) on a desktop computer with a single 3.4 GHz CPU.

It is evident that the procedure provides error control (as already proven in Theorem 1) and
has a decent chance to detect significant groups of variables, even if the variables within a group
are highly correlated. In fact, the variables could be perfectly correlated in each block (ρ = 1) and
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Figure 3: Left: the cluster dendrogram for hierarchical clustering of the 2000 variables with the
vitamin expression data (sample size n = 115). One can test all clusters in a top-down manner.
Once a cluster cannot be rejected, all child nodes cannot be rejected as well and the procedure
does not need to proceed along the subtree of a non-rejected cluster. Middle: the height of each
cluster G is shown proportional to the number of its members. The area of the red circles at each
cluster node are proportional to the lower bound on the `1-norm ‖β∗G‖1 and the area of a cluster
node is proportional to the number of variables it contains. Twenty-four clusters have a non-zero
bound and three of them are non-overlapping (blue arrows). Right: a close-up of the shaded area
in the middle panel, showing that two non-overlapping clusters have been selected in this part of
the dendrogram.

the results would be almost identical as in setting (i), as expected from Theorem 2. This setting of
perfect colinearity violates all typical design assumption necessary to get confidence intervals, yet
we still have a non-negligible power to detect the effect of the group as a whole with the proposed
procedure.

4.2 Vitamin expression data

Next, we take a gene expression dataset, which was kindly provided by DSM Nutritional Products.
As described in Meinshausen and Bühlmann [2010], we have for n = 115 samples a continuous
response variable measuring the logarithm of the vitamin B12 production rate of Bacillus Subtilis.
Along with this information, the expression levels of p = 4088 genes have been measured, covering
essentially the whole genome of Bacillus Subtilis. The results in Meinshausen and Bühlmann [2010]
indicate that Lasso-selection of individual genes is very unstable. We do not touch upon the fact
that maybe a causal analysis might be more appropriate here by providing more suitable targets
for mutation than a regression analysis [Maathuis et al., 2010], but simply consider the question
whether we can find groups of genes that can be shown to have a significant predictive effect in
a sparse linear model. As searching all possible groups of genes will be infeasible, we first cluster
the trees with hierarchical clustering, using average linkage. The distance between two genes i, j is
defined here, rather arbitrarily, as 1− |ρi,j |, where ρi,j is the empirical correlation between the two
genes.
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We can now test all clusters in this tree (including the singletons of individual genes) at level α
in an efficient way by a top-down procedure. Starting at the root node G = {1, . . . , p}, we compute
a lower bound for ‖β∗G‖1. If this is non-zero, we can reject the global null hypothesis that there
is no predictive power in the optimal linear model. Next, we compute lower bounds for the child
cluster nodes of the root node and continue to descend into the tree in this way. Once a cluster is
not significant, we can stop searching the whole sub-tree of this cluster node as the lower bound
of ‖β∗G′‖q will vanish for all G′ ⊆ G if the lower bound of ‖β∗G‖q is zero (irrespective of the value
q ≥ 1). One could also provide a family-wise error control by testing at level α/p · |G| at each
cluster G [Meinshausen, 2008], which would amount to a Bonferroni-style correction at the level of
individual nodes and the usual level α at the root node but we simply test all groups at the same
level α here without making a multiplicity adjustment (which would in any case be small with
the mentioned scheme in the top layers of the hierarchy). The method is implemented as function
clusterLowerBound in R-package hdi.

An example is shown in Figure 3, where we have first chosen 2000 of the 4088 genes at random
in order to not overwhelm the visual displays. We also just use three data-splits and a projection
to s = 10 observations to ease the computational burden (it then takes about 2 hours to compute
the complete solution on the tree, although it might be possible to get a more efficient linear
programming implementation which could reduce the computational time). The dendrogram on
the right visualises the 24 clusters that have a non-zero lower bound on their `1-norms. Three of
the clusters are disjoint. The three non-overlapping significant clusters contain 3, 44 (these are the
two non-overlapping clusters shown in the close-up on the right) and 1443 genes respectively.

The root node G = {1, . . . , p} has always the largest lower bound on ‖β∗G‖1, which here has
a value of just over 22. It means that the optimal sparse solution has an `1-norm of at least
22 at confidence level 0.95. The lower bounds for the `1-norms for the three non-overlapping
significant clusters of sizes 3, 44 and 1443 have lower bounds on their `1-norms of 1.2, 11.4 and
2.1 respectively. The results might look disappointing in that we are not able to reject individual
genes. Given that selection of individual genes is very unstable with Lasso estimation [Meinshausen
and Bühlmann, 2010], it is nevertheless interesting that three non-overlapping clusters G of genes
(one just consisting of three genes) can be shown to have a non-zero effect ‖β∗G‖1 without having
made any assumption on the design matrix itself.

5 Discussion

We have shown that it is possible to construct confidence intervals for the optimal sparse regression
coefficients of variables in a high-dimensional setting without making any assumption on the design
matrix (such as a restricted eigenvalue condition or compatibility condition). These assumptions
are typically necessary for showing optimal convergence rates [Bühlmann and van de Geer, 2011]
and also to show correct coverage. They are typically not verifiable in practice. While some results
can also be derived under verifiable assumptions [Juditsky and Nemirovski, 2011], there is still the
possibility that the conditions fail to hold. The proposed procedure can in contrast be applied to
all design matrices.

Detecting significant individual variables is typically very difficult in high-dimensional settings
due to the presence of clusters of highly correlated variables. The procedure naturally handles
confidence intervals for whole groups of variables. The lower bound on the confidence interval for
the group effect can be computed with convex optimisation (and linear programming in the special

18



case of q = 1). All clusters in a hierarchical clustering tree can be efficiently tested in a top-down
approach by starting at the root node and descending into the tree, stopping whenever a cluster of
variables is not significant any longer. We have shown that non-trivial bounds can be obtained for
groups of highly or even perfectly correlated variables.

The power of the corresponding testing procedure has been explored empirically. In addition,
the theoretical results show that the procedure has high power of detecting important groups of
variables as long as the so-called group effect compatibility condition is fulfilled, which is a strictly
weaker version of the condition necessary to detect the effect of individual variables. If variables
are highly correlated within a tested group, the typical assumptions fail to hold, while the group
effect compatibility condition is usually still fulfilled. This is also corroborated by the empirical
results. Non-trivial bounds emerge in high-dimensional settings as long as the signal-to-noise ratio
is sufficiently large and we test at the right granularity by choosing groups of variables that are
large enough to include all highly correlated variables of its members.

6 Appendix

6.1 Additional Lemma

Lemma 1 Let Y(k) = Y + µ · Eγ(k) be the k = 1, . . . , 2m vertices, as defined just after (10),
constructed at level α. With probability at least 1 − γ for γ ∈ (0, 0.2), simultaneously for all
k ∈ {1, . . . , 2m},

‖AY(k) −AE(Y)‖22 ≤ 20 log
( 1

min{γ, α}
)
s
σ2

n
(22)

Proof: We can decompose as

‖AY(k) −AE(Y)‖22 ≤ 2‖AY(k) −AY‖22 + 2‖AY −AE(Y)‖22. (23)

The second term on the right hand side of (23) is equal to ‖Aε‖22. If the errors have a Gaussian
distribution, then A will have independent normal entries (using the assumption of an orthonormal
A) and (Aε)j ∼ N (0, σ2/n) for j = 1, . . . , s. The second term has thus, for Gaussian errors and if
divided by σ2/n, a χ2

s-distribution. For γ ∈ (0, 0.2), the (1 − γ)-quantiles of Z/s, where Z ∼ χ2
s,

are smaller or equal to the (1− γ)-quantiles of a χ2
1-distributed random variable. For γ ∈ (0, 0.2),

the (1− γ)-quantile of
‖AY −AE(Y)‖22

sσ2/n

is thus bounded from above by the corresponding quantile of a χ2
1-distribution. The same is then

also true if sub-Gaussian errors are allowed with the appropriate σ2 > 0. Let qγ be the (1 − γ)-
quantile of a χ2

1-distributed random variable. Using a tail bound for the Gaussian-distribution,

qγ ≤ 2 log
( 2√

2πγ

)
. (24)

Hence, with probability at least 1− γ,

‖AY −AE(Y)‖22 ≤ 2 log
( 2√

2πγ

)
s
σ2

n
.
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The first term on the right hand side in (23), ‖AY(k)−AY‖22, is the distance between the observed
response and the vertices, which is exactly the value µ as per (7). The radius µ is chosen as in (12)
as C > 1 times the (1− α)-quantile of ‖ε‖2, which guarantees that a finite value of the number of
vertices for a fixed value of s is sufficient to guarantee the coverage property in (13). Thus, using
the bound (24) on the quantiles of the `2-norm of ‖Aε‖22 and the default value C = 3, we have that

µ2 = ‖AY(k) −AY‖22 ≤ 9qαs
σ2

n

and in total we have the left hand side of (23) is bounded with probability 1− γ for γ ∈ (0, 0.2) by

‖AY(k) −AE(Y)‖22 ≤ 2(qγ + 9qα)s
σ2

n
≤ 20 max{qα, qγ}s

σ2

n
≤ 20 log

( 1

min{γ, α}
)
s
σ2

n
,

which completes the proof.

Lemma 2 Let b(k), for k = 1, . . . , 2m, be the Basis Pursuit solutions b(k) = b(X,Y +µ ·Eγ(k)) at
the 2m vertices, as defined in (10) for level α. Under the assumptions of Lemma 1 and assumption
(A I), with probability at least 1− γ for γ ∈ (0, 0.2), simultaneously for all k ∈ {1, . . . , 2m},

‖b(k)‖1 ≤ ‖β∗‖1 +

√
20 log

( 1

min{α, γ}
) σs

ϕ1
√
n

Proof: By definition (10) of b(k),

b(k) = argminb‖b‖1 such that AXb(k) = AY(k). (25)

Let S be the set as defined in assumption (A I). Let Z be the s× s-matrix by keeping all s columns
in AX that are in the set S. Since Z has full rank by assumption (A I), ZTZ is invertible and
Z(ZTZ)−1ZT is hence the s× s identity matrix, so that

Z(ZTZ)−1ZT (AY(k) −AE(Y)) = (AY(k) −AE(Y)). (26)

Define b̃(k) by setting

b̃
(k)
j = β∗j if j /∈ S,

and b̃
(k)
S = β∗S + (ZTZ)−1ZT (AY(k) −AE(Y)).

Then, using the fact that AXβ∗ = E(Y), it follows from (26) that

AXb̃(k) = AY(k),

which means that b̃(k) is a feasible vector in (25) and hence

‖b(k)‖1 ≤ ‖b̃(k)‖1
≤ ‖β∗‖1 + ‖(ZTZ)−1ZT (AY(k) −AE(Y))‖1
≤ ‖β∗‖1 +

√
s‖(ZTZ)−1ZT (AY(k) −AE(Y))‖2

≤ ‖β∗‖1 + (
√
s/ϕ1)‖AY(k) −AE(Y)‖2 (27)

where the last inequality follows since the minimal singular value of Z is larger or equal to ϕ1 > 0
by assumption (A I). Now using Lemma 1, with probability at least 1− γ,

‖AY(k) −AE(Y)‖22 ≤ 20s log
( 1

min{α, γ}
)σ2
n
,

which, if used in (27), completes the proof.
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6.2 Proof of Theorem 2

Recall the definition of the lower bound in `1-norm, as defined in (4),

TG := min(β,η)∈Cα‖βG‖1,

where Cα is replaced in the optimisation with the convex constraint C̄m,µ, as defined in (11) with
the property that Cα ⊆ C̄m,µ. By definition of Cm,µ as a convex hull over the k = 1, . . . , 2m
vertices,

(β,η) ∈ C̄m,µ ⇒
{
‖AXβ −AE(Y)‖22 ≤ maxk ‖AY(k) −AE(Y)‖22

‖β‖1 ≤ maxk ‖β(k)‖1

Using Lemma 1 and 2, under the made assumption (A I), with probability at least 1− γ, the right
hand sides can be replaced with the relevant uniform bound over all vertices to get

(β,η) ∈ C̄m,µ ⇒
{
‖AXβ −AE(Y)‖22 ≤ ϕ2

1 (δ`)2/s
‖β‖1 ≤ ‖β∗‖1 + δ`

, (28)

where δ` > 0 is given by

δ`2 = 20 log
( 1

min{α, γ}
)
s2

σ2

ϕ2
1n
. (29)

The proof follows by contradiction. Assume there exists a group G ∈ G for which for

δT > max
{

1,
ϕ1

ϕ2

√
|S0|/s

}
δ`, (30)

the lower bound TG is too low by at least an amount of δT ,

TG ≤ ‖β∗G‖1 − δT (31)

We then show that both conditions in (28) cannot be satisfied simultaneously.
Specifically, we will assume the second condition about the sparsity of the coefficient vector

holds in (28) and show that the first condition in (28) is then violated. Define δ := β − β∗, where
β is the vector for which TG = ‖βG‖1 and for which there exists a η such that (β,η) ∈ C̄m,µ. The
strategy is now to show that for all groups G that fulfil the assumptions in the Theorem and for
which the lower inequality in (28) holds, both of the following statements are true

(I ) : ‖δGc∩Sc0‖1 ≤ 2
(
‖δS0‖1 − ‖δG∩Sc0‖1

)
, (32)

(II ) : νG(δ) ≥ δT. (33)

The inequality (I) in (32) implies via the definition of the group effect compatibility condition in (19)
that

‖AXδ‖22 ≥ ϕ2
2 ν

2
G(δ)/|S0|. (34)

Note that
AXδ = AX(β − β∗) = AXβ −AE(Y),
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where Y = Xβ as defined above and Xβ∗ = E(Y) per definition of β∗, it follows with (II) in (33)
that

‖AXβ −AE(Y)‖22 ≥ ϕ2
2 (δT )2/|S0|

> ϕ2
1(δ`)

2/s,

where the last inequality follows by (30). This leads to a contradiction with the first inequality
in (28) and thus proves that for all groups G ∈ G,

TG ≥ ‖β∗G‖1 − δT,

with probability at least 1 − γ, where δT is defined as in (31). This completes the proof, but it
remains to show (I ) in (32) and (II ) in (33).

Proof of (I). First the proof of (I ) in (32). Since β∗Sc0 ≡ 0 by definition of S0 as the set of
non-zero coefficients in β∗, and δ = β − β∗,

‖β‖1 ≥ ‖β∗S0
‖1 − ‖δS0‖1 + ‖δSc0‖1

= ‖β∗S0
‖1 − ‖δS0‖1 + ‖δG∩Sc0‖1 + ‖δGc∩Sc0‖1,

Combining with the assumed second condition in (28) (‖β‖1 ≤ ‖β∗‖1 + δ`) and using ‖β∗S0
‖1 =

‖β∗‖1,

‖δGc∩Sc0‖1 ≤ ‖δS0‖1 − ‖δG∩Sc0‖1 + δ`

=
(
‖δS0‖1 − ‖δG∩Sc0‖1

)(
1 +

δ`

‖δS0‖1 − ‖δG∩Sc0‖1
). (35)

The assumption (31) together with (30) implies ‖βG‖1 ≤ ‖β∗G‖1 − δ`. Since also

‖βG‖1 ≥ ‖β∗G∩S0
‖1 − ‖δG∩S0‖1 + ‖δG∩Sc0‖1, (36)

it follows with ‖β∗G∩S0
‖1 = ‖β∗G‖1 that

‖δG∩S0‖1 ≥ δ`+ ‖δG∩Sc0‖1,

and thus also ‖δS0‖1 ≥ δ` + ‖δG∩Sc0‖1. The factor on the right hand side of (35) is thus bounded
by (

1 +
δ`

‖δS0‖1 − ‖δG∩Sc0‖1
) ≤ 2

Using this in (35), we get the inequality

‖δGc∩Sc0‖1 ≤ 2
(
‖δS0‖1 − ‖δG∩Sc0‖1

)
,

which shows that (I ) in (32) is true.
Proof of (II). It remains to show (II ) in (33). A refinement of (36) yields

‖βG‖1 =
∑
k∈G
|βk| =

∑
k∈G
|β∗k + δk|

≥
∑

k∈G∩S0

(
|β∗k| − sign(β∗k)δk

)
+

∑
k∈G∩Sc0

|δk|

≥
∑

k∈G∩S0

|β∗k| −min
ς∈S

∑
k∈G

ςkδk,
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where S ⊆ [−1, 1]p is per Definition 1 the subgradient of the `1-norm evaluated at β∗. Thus

‖βG‖1 ≥ ‖β∗S0∩G‖1 − νG(δ) = ‖β∗G‖1 − νG(δ),

having used the definition of νG(δ) in (20). Since assumption (31) implies again ‖βG‖1 ≤ ‖β∗G‖1−
δT , it follows that νG(δ) ≥ δT , which completes the proof of (II ) in (33). Since we have now shown
(I ) and (II ), the proof of the theorem is complete.
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