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Summary. What is the difference of a prediction that is made with a causal model and a
non-causal model? Suppose we intervene on the predictor variables or change the whole
environment. The predictions from a causal model will in general work as well under inter-
ventions as for observational data. In contrast, predictions from a non-causal model can
potentially be very wrong if we actively intervene on variables. Here, we propose to exploit
this invariance of a prediction under a causal model for causal inference: given different ex-
perimental settings (for example various interventions) we collect all models that do show
invariance in their predictive accuracy across settings and interventions. The causal model
will be a member of this set of models with high probability. This approach yields valid
confidence intervals for the causal relationships in quite general scenarios. We examine
the example of structural equation models in more detail and provide sufficient assump-
tions under which the set of causal predictors becomes identifiable. We further investigate
robustness properties of our approach under model misspecification and discuss possible
extensions. The empirical properties are studied for various data sets, including large-scale
gene perturbation experiments.
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1. Introduction

Inferring cause-effect relationships between variables is a primary goal in many applica-

tions. Such causal inference has its roots in different fields and various concepts have

contributed to its understanding and quantification. Among them are the framework of

potential outcomes and counterfactuals [cf. Dawid, 2000, Rubin, 2005]; or structural equa-

tion modelling [cf. Bollen, 1989, Robins et al., 2000, Pearl, 2009] and graphical modeling

[cf. Lauritzen and Spiegelhalter, 1988, Greenland et al., 1999, Spirtes et al., 2000], where

the book by Pearl [2009] provides a nice overview. Richardson and Robins [2013] make a

connection between the frameworks using single-world intervention graphs.

A typical approach for causal discovery, in the context of unknown causal structure, is

to characterise the Markov equivalence class of structures (or graphs) [Verma and Pearl,

1991, Andersson et al., 1997, Tian and Pearl, 2001, Hauser and Bühlmann, 2012], estimate



the correct Markov equivalence class based on observational or interventional data [Spirtes

et al., 2000, Chickering, 2002, Castelo and Kocka, 2003, Kalisch and Bühlmann, 2007, He

and Geng., 2008, Hauser and Bühlmann, 2015, cf.], and finally infer the identifiable causal

effects or provide some bounds [Maathuis et al., 2009, VanderWeele and Robins, 2010,

cf.]. More recently, within the framework of structural equation models, interesting work

has been done for fully identifiable structures exploiting additional restrictions such as

non-Gaussianity [Shimizu et al., 2006], nonlinearity [Hoyer et al., 2009, Peters et al., 2014]

or equal error variances [Peters and Bühlmann, 2014]. Janzing et al. [2012] exploit an

independence between causal mechanisms.

We propose here a new method for causal discovery. The approach of the paper is

to note that if we consider all “direct causes” of a target variable of interest, then the

conditional distribution of the target given the the direct causes will not change when

we interfere experimentally with all other variables in the model except the target itself.

This does not necessarily hold, however, if some of the direct causes are ignored in the

conditioning.† We exploit, in other words, that the conditional distribution of the target

variable of interest (often also termed “response variable”), given the complete set of corre-

sponding direct causal predictors, has to remain identical under interventions on variables

other than the target variable. This invariance idea is closely linked to causality and has

been discussed, for example, under the term “autonomy” and “modularity” [Haavelmo,

1944, Aldrich, 1989, Hoover, 1990, Pearl, 2009, Schölkopf et al., 2012] or also “stability”

[Dawid and Didelez, 2010] [Pearl, 2009, Sec. 1.3.2]. While it is well-known that causal

models have an invariance property, we try to exploit this fact for inference. Our proposed

procedure gathers all submodels that are statistically invariant across environments in a

suitable sense. The causal submodel consisting of the set of variables with a direct causal

effect on the target variable will be one of these invariant submodels, with controlled high

probability, and this allows to control the probability of making false causal discoveries.

Our method is tailored for (but not restricted to) the setting where we have data

from different experimental settings or regimes [Didelez et al., 2006]. For example, two

different interventional data samples, or a combination of observational and interventional

data [cf. He and Geng., 2008] belong to such a scenario. For known intervention targets,

Cooper and Yoo [1999] incorporate the intervention effects as mechanism changes [Tian

and Pearl, 2001] into a Bayesian framework and Hauser and Bühlmann [2015] modify

the greedy equivalence search [Chickering, 2002] for perfect interventions. Our framework

does not require to know the location of interventions. For this setting, Eaton and Murphy

[2007] use intervention nodes with unknown children and Tian and Pearl [2001] consider

changes in marginal distributions, while Dawid [2012, 2015] make use of different regimes

for a decision-theoretic approach. In contrast to these approaches, our framework does

not require the fitting of graphical, structural equation or potential outcome models and

comes with statistical guarantees. Further advantages are indicated below in Section 1.2.

We primarily consider the situation with no hidden (confounder) variables that in-

fluence the target variable. A rigorous treatment with hidden variables would be more

involved [see Richardson and Spirtes, 2002, for graphical language] but we provide an ex-

ample with instrumental variables in Section 5 to illustrate that the method could also

work more generally in the context of hidden variables. We do not touch very much on

†We thank a referee for suggesting this succinct description of the main idea.
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Fig. 1. An example including three environments. The invariance (1) and (2) holds if we con-
sider S∗ = {X2, X4}. Considering indirect causes instead of direct ones (e.g. {X2, X5}) or an
incomplete set of direct causes (e.g. {X4}) may not be sufficient to guarantee invariant prediction.

the framework of feedback models [Lauritzen and Richardson, 2002, Mooij et al., 2011,

Hyttinen et al., 2012, cf.], although a constrained form of feedback is allowed. It is an open

question whether our approach could be generalised to include general feedback models.

1.1. Data from multiple environments or experimental settings
We consider the setting where we have different experimental conditions e ∈ E and have

an i.i.d. sample of (Xe, Y e) in each environment, where Xe ∈ Rp is a predictor variable

and Y e ∈ R a target variable of interest. While the environments e ∈ E can be created

by precise experimental design for Xe (for example by randomising some or all elements

ofXe), we are more interested in settings where such careful experimentation is not possible

and the different distributions ofXe in the environments are generated by unknown and not

precisely controlled interventions. If a subset S∗ ⊆ {1, . . . , p} is causal for the prediction

of a response Y , we assume that

for all e ∈ E : Xe has an arbitrary distribution and (1)

Y e = g(Xe
S∗ , ε

e), εe ∼ Fε and εe ⊥⊥ Xe
S∗ , (2)

where g : R|S∗| × R → R is a real-valued function in a suitable function class, Xe
S∗ is the

vector of predictors Xe with indices in a set S∗ and both the error distribution εe ∼ Fε and

the function g are assumed to be the same for all the experimental settings. Equations (1)

and (2) can also be interpreted as requiring that the conditionals Y e |Xe
S∗ and Y f |Xf

S∗

are identical for all environments e, f ∈ E (this equivalence is proved in Section 6.1).

An example of a set of environments can be seen in Figure 1. The invariance (1) and (2)

holds if the set S∗ consists of all direct causes of the target variable Y and if we do not

intervene on Y , see Proposition 1.

Sections 5, 6.2 and 6.3 discuss violations and possible relaxations of this assumption.

1.2. New contribution
The main and novel idea is that we can use the invariance of the causal relationships

under different settings e ∈ E for statistical estimation, which opens a new road for causal

discovery and inference.
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For the sake of simplicity, we will mostly focus on a linear model with a target or

response variable and various predictor variables, where Equation (1) is unchanged and (2)

then reads Y e = µ+Xeγ∗+εe, with µ a constant intercept term. The set S∗ of predictors

is then given by the support of γ∗, that is S∗ := {k; γ∗k 6= 0}. Assumption 1 in Section 2

summarises all requirements. Proposition 1 shows that structural equation models with

the traditional notion of interventions [Pearl, 2009] satisfy Assumption 1 if we choose the

set S∗ to be the parents of Y . Proposition 6 in Appendix D sheds some light on the

relationship to potential outcomes.

Obtaining confidence statements for existing causal discovery methods is often diffi-

cult as one would need to determine the distribution of causal effects estimators after

having searched and estimated a graphical structure of the model. It is unknown how

one could do this, except relying on data-splitting strategies which have been found to

perform rather poorly in such a setting [Bühlmann et al., 2013]. We propose in Section

3 a new method for the construction of (potentially) conservative confidence statements

for causal predictors S∗ and of (potentially) conservative intervals for γ∗j for j = 1, . . . , p

without a-priori knowing or assuming a causal ordering of variables. The method provides

confidence intervals without relying on assumptions such as faithfulness or other identi-

fiability assumptions. If a causal effect is not identifiable from the given data, it would

automatically detect this fact and not make false causal discoveries.

Another main advantage of our methodology is that we do not need to know how

the experimental conditions arise or which type of interventions they induce. We only

assume that the intervention does not change the conditional distribution of the target

given the causal predictors (no intervention on the target or a hidden confounder): it is

simply a device exploiting the grouping of data into blocks, where every block corresponds

to an experimental condition e ∈ E . We will show in Section 3.2 that such grouping

can be misspecified and the coverage statements are still correct. This is again a major

bonus in practice as it is often difficult to specify what an intervention or change of

environment actually means. In contrast, for a so-called do-intervention for structural

equation models [Pearl, 2009] it needs to be specified on which variables it acts. Interesting

areas of applications include studies where observational data alone are not sufficient to

infer causal effects but randomised studies are infeasible to conduct.

We believe that the method’s underlying invariance principle is rather general. How-

ever, for simplicity, we present our main results for linear Gaussian models, including some

settings with instrumental variables and hidden variables.

1.3. Organization

The invariance assumption is formulated and discussed in Section 2. Using this invariance

assumption, a general way to construct confidence statements for causal predictors and

associated coefficients is derived in Section 3. Two specific methods are shown, using

regression effects for various sets of predictors as the main ingredient. Identifiability results

for structural equation models are given in Section 4. The relation to instrumental variables

and the behaviour in presence of hidden variables is discussed in Section 5. We will discuss

extensions to the nonlinear model (2) in Section 6.1 and extenstions to intervened targets

in Section 6.2. Some robustness property against model misspecifications is discussed in
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Section 6.3.

Simulations and applications to a biological gene perturbation data set and an educa-

tional study related to instrumental variables are presented in Section 7. We discuss the

results and provide an outlook in Section 8.

1.4. Software
The methods are available in the package InvariantCausalPrediction for the R-language

[R Core Team, 2014].

2. Assumed invariance of causal prediction

We formulate here the invariance assumption and discuss the notion of identifiable causal

predictors. Let E denote again the index set of |E| possible interventional or experimental

settings. As stated above, we have variables (Xe, Y e) with a joint distribution that will

in general depend on the environment e ∈ E . In the simplest case, |E| = 2, and we have

for example in the first setting observational data and interventions of some (possibly

unknown) nature in the second setting.

Our discussion will rest on the following assumption. We assume the existence of a

model that is invariant under different experimental or intervention settings. Let for any

set S ⊆ {1, . . . , p}, XS be the vector containing all variables Xk, k ∈ S.

Assumption 1 (Invariant prediction). There exists a vector of coefficients γ∗ =

(γ∗1 , . . . , γ
∗
p)t with support S∗ := {k : γ∗k 6= 0} ⊆ {1, . . . , p} that satisfies

for all e ∈ E : Xe has an arbitrary distribution and

Y e = µ+Xeγ∗ + εe, εe ∼ Fε and εe ⊥⊥ Xe
S∗ , (3)

where µ ∈ R is an intercept term, εe is random noise with mean zero, finite variance and

the same distribution Fε across all e ∈ E.

The distribution Fε is not assumed to be known in general. If not mentioned otherwise, we

will always assume that an intercept µ is added to the model (3). To simplify notation, we

will from now on refrain from writing the intercept down explicitly. We discuss the invari-

ance assumption with the help of some examples in Figure 1 and 2; see also Appendix A

for another artificial example.

We observe each unit i in only one experimental setting. The distribution of the error

εe is assumed to stay identical across all environments (though see Sections 6.2 and 6.3 for

approaches when this assumption is violated). It is in general not possible to estimate the

correlation between the noise variables εei and εfi for a single unit i in different hypothetical

environments e and f , as the outcome is observed for only one environment [Dawid, 2006,

2012]. Knowledge of the correlation would be necessary to answer counterfactual questions

about the outcome. Knowledge of the correlation is not necessary for our method.

We deliberately avoid the term “causality” in Assumption 1 in order to keep it purely

mathematical. Proposition 1 establishes a link to causality by showing that the parents

of Y in a structural equation model (SEM) satisfy Assumption 1. In other words, the

variables that have a direct causal effect on Y in a SEM form a set S∗ for which As-

sumption 1 is satisfied. This must not necessarily be true for the variables that have an
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Fig. 2. Some examples from the gene-knockout experiments in Kemmeren et al. [2014], which
will be discussed in more detail in Section 7.2. Each panel shows the distribution of a target
gene activity Y (on the respective y-axis), conditional on a predictor gene activity X (shown on
respective x-axis). Blue crosses show observational data and red dots show interventional data.
The interventions do not occur on any of the shown genes. The conditional distribution of Y , given
X, is not invariant for the examples in the first row, while invariance cannot be rejected for the two
examples in the bottom row. Take the example of the bottom left panel. The variance of the
activity of gene YMR321C is clearly higher for interventional than observational data, so we can
reject that the invariance assumption holds for the empty set S = ∅. However, if conditioning on
the activity X of gene YPL273W , the conditional distribution of the activity Y of gene YMR321C

is not significantly different between interventional and observational data, so that the set S =

{YPL273W } fulfils the invariance assumption (3), at least approximately.
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(in)direct effect on Y , i.e., the ancestors of Y . However, the set S∗ is not necessarily

unique. For a given set of experimental conditions E , there can be multiple vectors γ∗ that

satisfy (3). For example, if only observational data are available, i.e. all environments are

identical, it is apparent that for any model (3) the distribution Fε of the residuals εe does

not depend on e. If additionally (X,Y ) have a joint Gaussian distribution and X and Y

are not independent, for example, then one can find a solution γ∗ to (3) for every subset

S∗ ⊆ {1, . . . , p}. The inference we propose works for any possible choice among the set of

solutions. We can at most identify the subset of S∗ that is common among all possible

solutions of (3), see Section 4 for settings with complete identifiability.

It is perhaps easiest to think about the example of a linear structural equation model

(SEM), as defined in Section 4.1, see also Figure 8 in Appendix A. We show in the following

proposition that the set of parents of Y in a linear SEM is a valid set S∗ satisfying (3).

Proposition 1. Consider a linear structural equation model, as formally defined in

Section 4.1, for the variables (X1 = Y,X2, . . . , Xp, Xp+1), with coefficients (βjk)j,k=1,...,p+1,

whose structure is given by a directed acyclic graph. The independence assumption on the

noise variables in Section 4.1 can here be replaced by the strictly weaker assumption that

εe1 ⊥⊥ {εej ; j ∈ AN(1)} for all environments e ∈ E, where AN(1) are the ancestors of Y .

Then Assumption 1 holds for the parents of Y , namely S∗ = PA(1), and γ∗ = β1,· as

defined in Section 4.1, under the following assumption:

for each e ∈ E: the experimental setting e arises by one or several interventions

on variables from {X2, . . . , Xp+1} but interventions on Y are not allowed; here,

we allow for do-interventions [Pearl, 2009] (see also Section 4.2.1, and note

that the assigned values can be random, too), or soft-interventions [Eberhardt

and Scheines, 2007] (see also Sections 4.2.2 and 4.2.3).

Proof. It follows by the definition of the interventions in Section 4.2 and because the

interventions do not act on the target variable Y , that Y e =
∑

j∈PA(1) β1,jX
e
j + εeY for all

e ∈ E , where εeY = εe1 is independent of XPA(1) and has the same distribution for all e ∈ E .

Thus, Assumption 1 holds.

We remark that Proposition 1 can be generalised to include some hidden variables: the

exact statement is given in Proposition 4 in Appendix B.

Instead of allowing only do- or soft-interventions in Proposition 1, we can allow for

more general interventions which could change the structural equations for X2, . . . , Xp+1

(including for example a change in the graphical structure of the model among the vari-

ables X2, . . . , Xp+1), as long as the conditional distribution of Y e given Xe
S∗ remains the

same. Such a weaker requirement is sometimes referred to as “modularity” [Pearl, 2009]

or what is called “autonomy” [Haavelmo, 1944, Aldrich, 1989]; structural equations are

autonomous if whenever we replace one of them due to an intervention, all other structural

equations do not change, they remain invariant. The remaining part of the condition in

Proposition 1 about excluding interventions on the target variable Y is often verifiable in

many applications; see Sections 6.2 and 6.3 for violations of this assumption.

Proposition 1 refers to standard linear SEMs that do not allow for feedback cycles.

We may, however, include feedback into the SEM and consider equilibrium solutions of

the new set of equations. The independence assumption between εe and Xe
S∗ allows for
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some feedback cycles in the linear SEM. The independence assumption prohibits, however,

cycles that include the target variable Y . We will leave it as an open question to what

extent the approach can be generalised to more general forms of feedback models.

It is noteworthy that our inference is valid for any set that satisfies Assumption 1 and

not only parents in a linear SEM. For the following statements we do not specify whether

the set S∗ refers to the set of parents in a linear SEM or any other set that satisfies (3),

as the confidence guarantees will be valid in either case. Proposition 6 in Appendix D

discusses some relationship to the potential outcome framework.

2.1. Plausible causal predictors and identifiable causal predictors
In general, (γ∗, S∗) is not the only pair that satisfies the assumption of invariance in (3).

We therefore define for γ ∈ Rp and S ⊆ {1, . . . , p} the null hypothesis H0,γ,S(E) as

H0,γ,S(E) : γk = 0 if k /∈ S and

{
∃Fε such that for all e ∈ E
Y e = Xeγ + εe, where εe ⊥⊥ Xe

S and εe ∼ Fε.
(4)

As stated above, we have dropped the constant intercept notationally. The variables

that appear in any set S that satisfies H0,S(E), we call plausible causal predictors.

Definition 1 (Plausible causal predictors and coefficients).

(i) We call the variables S ⊆ {1, . . . , p} plausible causal predictors under E if the fol-

lowing null hypothesis holds true:

H0,S(E) : ∃γ ∈ Rp such that H0,γ,S(E) is true. (5)

(ii) The identifiable causal predictors under interventions E are defined as the following

subset of plausible causal predictors

S(E) :=
⋂

S :H0,S(E) is true

S =
⋂

γ∈Γ(E)

{k : γk 6= 0}. (6)

Here, Γ(E) is defined in (13) below (the second equation in (6) can be ignored for now).

Under Assumption 1, H0,γ∗,S∗(E) is true and therefore S∗ are plausible causal predictors,

that is H0,S∗(E) is correct, too. The identifiable causal predictors are thus a subset of the

true causal predictors,

S(E) ⊆ S∗.

This fact will guarantee the coverage properties of the estimators we define below. Fur-

thermore, the set of identifiable causal predictors under interventions E is growing mono-

tonically if we enlarge the set E ,

S(E1) ⊆ S(E2) for two sets of environments E1, E2 with E1 ⊆ E2.

In particular, if |E| = 1 (for example, there is only observational data), then S(E) = ∅
because H0,∅(E) will be true. The set of identifiable causal predictors under a single

environment is thus empty and we make no statement as to which variables are causal.

In Section 4, we examine conditions for structural equation models (see Proposition 1)

under which S(E) is identical to the parents of Y we thus have complete identifiability of

the causal coefficients. In practice, the set E of experimental settings might often be such

that S(E) identifies some but not all parents of Y in a SEM.
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2.2. Plausible causal coefficients
We have seen that the null hypothesis (4) H0,γ,S(E) is in general not only fulfilled for γ∗

and its support S∗ but also potentially for other vectors γ ∈ Rp. This is true especially if

the experimental settings E are very similar to each other. If we consider again the extreme

example of just a single environment, |E| = 1, and a multivariate Gaussian distribution

for (X,Y ), we can find for any set S ⊆ {1, . . . , p} a vector γ with support S that fulfills

the null hypothesis H0,γ,S(E), namely by using the regression coefficient when regressing

Y on XS . If the interventions that produce the environments E are stronger and we have

more of those environments, the set of vectors that fulfill the null becomes smaller. We

call vectors that fulfill the null hypothesis plausible causal coefficients.

Definition 2 (Plausible causal coefficients). We define the set ΓS(E) of plau-

sible causal coefficients for the set S ⊆ {1, . . . , p} and the global set Γ(E) of plausible causal

coefficients under E as

ΓS(E) := {γ ∈ Rp : H0,γ,S(E) is true}, (7)

Γ(E) :=
⋃

S⊆{1,...,p}

ΓS(E). (8)

Thus,

Γ(E1) ⊇ Γ(E2) for two sets of environments E1, E2 with E1 ⊆ E2.

The global set of plausible causal coefficients Γ(E) is, in other words, shrinking as we

enlarge the set E of possible experimental settings.

The null hypothesis H0,S(E) in (5) can be simplified. Writing

βpred,e(S) := argminβ∈Rp:βk=0 if k/∈S E(Y e −Xeβ)2 (9)

for the least-squares population regression coefficients when regressing the target of interest

onto the variables in S in experimental setting e ∈ E , we obtain the equivalent formulation

of the null hypothesis for set S ⊆ {1, . . . , p},

H0,S(E) :

{
∃β ∈ Rp and ∃Fε such that for all e ∈ E we have

βpred,e(S) ≡ β and Y e = Xeβ + εe, where εe ⊥⊥ Xe
S and εe ∼ Fε.

(10)

We conclude that

ΓS(E) =

{
∅ if H0,S(E) is false

βpred,e(S) otherwise.
(11)

In other words, the set of plausible causal coefficients for a set S is either empty or

contains only the population regression vector. We will make use of this fact further below

in Section 3 when computing empirical estimators.

3. Estimation of identifiable causal predictors

We would like to estimate the set S(E) of identifiable causal predictors (6) when observ-

ing the distribution of (Xe, Y e) under different experimental conditions e ∈ E . At the

same time, we might be interested in obtaining confidence intervals for the linear causal

coefficients.
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Recall again the definition (5) of the null hypothesis H0,S(E). Suppose for the moment

that a statistical test for H0,S(E) with size smaller than a significance level α is avail-

able. Then the construction of an estimator Ŝ(E) and confidence sets Γ̂(E) for the causal

coefficients can work as follows.

Generic method for invariant prediction

1) For each set S ⊆ {1, . . . , p}, test whether H0,S(E) holds at level α (we will discuss

later concrete examples).

2) Set Ŝ(E) as

Ŝ(E) :=
⋂

S:H0,S(E) not rejected

S. (12)

3) For the confidence sets, define

Γ̂(E) :=
⋃

S⊆{1,...,p}

Γ̂S(E), (13)

where

Γ̂S(E) :=

{
∅ H0,S(E) can be rejected at level α

Ĉ(S) otherwise.
(14)

Here, Ĉ(S) is a (1 − α)-confidence set for the regression vector βpred(S) that is

obtained by pooling the data.

As an example, consider again Figure 2. Taking the example in the bottom left panel,

we cannot reject H0,S(E) for S = {YPL273W }. Hence we can see already from this plot

that Ŝ(E) is either empty or that Ŝ(E) = {YPL273W }. The latter case happens if no

further set of variables is accepted that does not include the activity of gene YPL273W

as predictor.

A justification for pooling the data in (14) is given in Section 3.2. (The construction

is also valid if the confidence set is based only on data from a single environment, but a

confidence set for the pooled data will be smaller in general.) This defines a whole family

of estimators and confidence sets as we have flexibility in the test we are using for the null

hypothesis (5) and how the confidence interval Ĉ(S) is constructed.

If the test and pooled confidence interval have the claimed size and coverage probability,

we can guarantee coverage of the true causal predictors and the true causal coefficient, as

shown below in Theorem 1.

Theorem 1. Assume that the estimator Ŝ(E) is constructed according to (12) with a

valid test for H0,S(E) for all sets S ⊆ {1, . . . , p} at level α in the sense that for all S,

supP :H0,S(E) true P [H0,S(E) rejected] ≤ α. Consider now a distribution P over (Y,X) and

consider any γ∗ and S∗ such that Assumption 1 holds. Then, Ŝ(E) satisfies

P
[
Ŝ(E) ⊆ S∗

]
≥ 1− α.

If, moreover, for all (γ, S) that satisfy Assumption 1, the confidence set Ĉ(S) in (14)

satisfies P [γ ∈ Ĉ(S)] ≥ 1− α then the set Γ̂(E) (13) has coverage at least level 1− 2α:

P
[
γ∗ ∈ Γ̂(E)

]
≥ 1− 2α.
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Proof. The first property follows immediately since

P
[
Ŝ(E) ⊆ S∗

]
= P

[ ⋂
S:H0,S(E) not rejected

S ⊆ S∗
]
≥ P

[
H0,S∗(E) not rejected

]
≥ 1− α,

where the last inequality follows by the assumption that the test for H0,S is valid at level α

for all sets S ⊆ {1, . . . , p}. The second property follows since

P
[
γ∗ /∈ Γ̂(E)

]
≤ P

[
H0,S∗(E) rejected or γ∗ /∈ Ĉ(S∗)

]
≤ α+ α = 2α.

The confidence sets thus have the correct (conservative) coverage. The estimator of the

causal predictors will, with probability at least 1− α, not erroneously include non-causal

predictors. Note that the statement is true for any set of experimental or intervention

settings. In the worst case, the set Ŝ(E) might be empty but the error control is valid

nonetheless.

Since Theorem 1 holds for any γ∗, S∗ which fulfil Assumption 1, and assuming the

setting of Proposition 1, we obtain the corresponding confidence statements for the causal

coefficients and causal variables in a linear structural equation model, that is for γ∗ = β1,·
and S∗ = PA(1) in the notation of Proposition 1.

Remark 1. (i) We obtain the following empirical version of (6):

Ŝ(E) =
⋂

γ∈Γ̂(E)

{k : γk 6= 0} =
⋂

S:H0,S(E) not rejected at α

S (15)

provided that if H0,S(E) is not rejected, then for all γ ∈ Γ̂S(E) we have supp(γ) ⊆ S

and H0,supp(γ)(E) is not rejected either.

(ii) In (14), we have constructed confidence sets Γ̂S(E) based on a test for H0,S(E). Alter-

natively, confidence sets Γ̂S(E) may be available that are not based on a test procedure

for H0,S(E). In this case, we may take them as a starting point and define Ŝ(E) us-

ing the first equality in (15), instead of (12). Analogously to Theorem 1, the correct

coverage property of Γ̂S∗(E) then implies confidence statements for Γ̂(E) and Ŝ(E).

3.1. Two concrete proposals
The missing piece in the generic procedure given by (12) and (13) is a test for H0,S(E)

that is valid at level α for any given set of variables S ⊆ {1, . . . , p} and thus implies

P
[
H0,S∗(E) rejected

]
≤ α.

To specify a concrete procedure and derive its statistical properties, we assume throughout

the paper that the data consist of n independent observations. Within each experimental

setting e, we assume that we receive ne independent and identically distributed data points

from (Xe, Y e) and thus,
∑

e∈E ne = n.

We now propose a way to construct such a test, but acknowledge that different choices

are possible. Our construction will be based on the fact that the causal coefficients are

identical to the regression effects in all experimental settings e ∈ E if we consider only

variables in the set S∗ of causal predictors.
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For experimental setting e ∈ E and a subset S of variables, define the regression coef-

ficients βpred,e(S) ∈ Rp as above in (9). Define further the population residual standard

deviations when regressing Y e on variables Xe
S as

σe(S) := [E(Y e −Xeβpred,e(S))2]1/2.

These definitions are population quantities. The corresponding sample quantities are

denoted with a hat. As mentioned above, under Assumption 1, for S = S∗, the regression

effects are identical to the causal coefficients: for all e ∈ E,

βpred,e(S∗) ≡ γ∗ and σe(S∗) ≡ Var(Fε)
1/2.

To get a test valid at level α for all subsets S of predictor variables, we first weaken H0,S(E)

in (10) to

H̃0,S(E) : ∃(β, σ) ∈ Rp×R+ such that βpred,e(S) ≡ β and σe(S) ≡ σ for all e ∈ E . (16)

The null hypothesis H̃0,S(E) is true whenever the original null hypothesis (10) is true. As

in (14), we set

Γ̂S(E) :=

{
∅ H̃0,S(E) can be rejected at level α

Ĉ(S) otherwise.

We now give a concrete example which we will use in the numerical examples under

the assumption of Gaussian errors and that the design matrix Xe of all ne samples in

experimental setting e ∈ E has full rank. (We write the design matrix in bold letters, as

opposed to the random variables Xe.) The whole procedure is then a specific version of

the general procedure given further above, where we use a specific test in the first step

(the second step is unchanged).

Method I: Invariant prediction using test on regression coefficients

1) For each S ⊆ {1, . . . , p} and e ∈ E :

(i) Let Ie with ne = |Ie| be the set of observations where experimental setting e ∈ E was

active. Likewise, let I−e = {1, . . . , n} \ Ie with n−e := |I−e| be the set of observations

when using only observations where experimental setting e ∈ E was not active. Let

Xe,S be the ne × (1 + |S|)-dimensional matrix when using all samples in Ie and all

predictor variables in S, adding an intercept term to the design matrix as mentioned

previously. If S = ∅, the matrix consists only of a single intercept column. Analogously,

X−e,S is defined with the samples in I−e. Let Ŷe be the predictions for observations in

set Ie when using the OLS estimator computed on samples in I−e and let D := Ye− Ŷe
be the difference between the actual observations Ye on Ie and the predictions.

(ii) Under Gaussian errors, if (16) is true for a set S, then [Chow, 1960]

DtΣ−1D D

σ̂2 ne
∼ F (ne, n−e − |S| − 1), (17)

where σ̂2 is the estimated variance on the set I−e on which the OLS estimator is

computed. The covariance matrix ΣD is given by

ΣD = 1ne + Xe,S(Xt
−e,SX−e,S)−1Xt

e,S ,

letting 1n be the identity matrix in n-dimensions. For any set S, we reject the null

hypothesis H̃0,S(E) if the p-value of (17) is below α/|E| for any e ∈ E .

12



2) As in the generic algorithm, using (12).

3) If we do reject a set S we set Γ̂S(E) = ∅. Otherwise, we set Γ̂S(E) to be a (1 − α)-

confidence interval for βpred(S) when using all data simultaneously. For simplicity, we will

use a rectangular confidence region where the constraint for βpred(S)k is identically 0 if

k /∈ S and for coefficients in S given by (β̂pred(S))S±t1−α/(2|S|),n−|S|−1 ·σ̂ diag((Xt
SXS)−1),

where XS is the design matrix of the pooled data when using variables in S, t1−α;q is the

(1−α)-quantile of a t-distribution with q degrees of freedom, and σ̂2 the estimated residual

variance.

A justification of the pooling in step 3 is given in Section 3.2. The procedure above

has some shortcomings. For example, the inversion of the covariance matrix in (17) might

be too slow if we have to search many sets and the sample size is large. One can then

just work with a random subsample of the set Ie of size, say, a few hundred, to speed

up the computation. It also depends on the assumption of Gaussian errors, although this

could be addressed by using rank tests or other nonparametric procedures. Lastly, it is

not straightforward to extend this approach to classification and nonlinear models.

We thus provide a second possibility. The fast approximate version below is not fitting a

model on each experimental setting separately as in Method I, but is just fitting one global

model to all data and comparing the distribution of the residuals in each experimental

setting. This is ignoring the sampling variability of the coefficient estimates but leads to

a faster procedure.

Method II: Invariant prediction using fast(er) approximate test on residuals

1) For each S ⊆ {1, . . . , p} and e ∈ E :

(i) Fit a linear regression model on all data to get an estimate β̂pred(S) of the optimal

coefficients using set S of variables for linear prediction in regression. Let R = Y −
Xβ̂pred(S).

(ii) Test the null hypothesis that the mean of R is identical for each set Ie and e ∈ E ,

using a two-sample t-test for residuals in Ie against residuals in I−e and combing via

Bonferroni correction across all e ∈ E . Furthermore, test whether the variances of R are

identical in Ie and I−e, using an F-test, and combine again via Bonferroni correction

for all e ∈ E . Combine the two p-values of equal variance and equal mean by taking

twice the smaller of the two values. If the p-value for the set S is smaller than α, we

reject the set S.

2) As in the generic algorithm, using (12).

3) If we do reject a set S we set Γ̂S(E) = ∅. Otherwise, we set Γ̂S(E) to be the conventional

(1 − α)-confidence region for βpred(S) when using all data simultaneously. For simplicity,

we will use rectangular confidence regions, exactly as in step 3 of Method I.

Besides a computational advantage, the method can also easily be extended to nonlinear

and logistic regression models. For logistic regression, one can test the residuals R =

Y − f̂(X) for equal mean across the experimental settings, for example.

3.2. Data pooling
So far, we have assumed that the set E of experimental settings is given and fixed. An

experimental setting e ∈ E can for example correspond to
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(i) observational data;

(ii) a known intervention of a certain type at a known variable;

(iii) a random intervention at an unknown and random location;

(iv) observational data in a changed environment.

We have used data pooling in Methods I and II to get confidence intervals for the regression

coefficients (which is not necessary but increases power in general). A justification of

this pooling is in order. The joint distribution of (Xe
S∗ , Y

e) will vary in general with

e ∈ E . Under Assumption 1, however, the conditional distribution Y e |Xe
S∗ is constant as

a function of e ∈ E , see Section 6.1. As long as our tests and confidence intervals require

only an invariant conditional distribution for S∗ (which is the case for the procedures given

above), we can pool data from various e ∈ E .

To make it more precise, assume there is a set of countably many experimental settings

or interventions J and (Xj , Y j) follow a certain distribution Fj for each j ∈ J . Then

each encountered experimental setting e can be considered to be equivalent to a probability

mixture distribution over the experimental settings in J , that is

Fe =
∑
j∈J

wejFj ,

where wej corresponds to the probability that an observation under setting e follows the

distribution Fj . We can then pool two experimental settings e1 and e2, for example,

thereby creating a new experimental setting with the averaged weights (we1 + we2)/2.

Pooling is a trade-off between identifiability and statistical power, assuming that As-

sumption 1 holds for the settings from J . The richer the set E of experimental settings,

the smaller the set Γ(E) of plausible causal coefficients will be and the larger the set of

identifiable causal predictors S(E). By pooling data, we make the set of identifiable causal

variables smaller, that is S(E) is shrinking as we reduce the number |E| of different set-

tings. The trade-off can either be settled a-priori (for example if we know that we have

“sufficiently” many observations in each known experimental setting, we would typically

not pool data) or one can try various pooling procedures and combine all results, after

adjusting the level α to account for the increased multiplicity of the associated testing

problem. Section 4 discusses conditions on the interventions under which all true causal

effects are identifiable.

3.3. Splitting purely observational data
In the case of purely observational data, the null hypothesis (4) is correct for γ = 0 and

S = ∅. Therefore, S(E) = ∅ and Ŝ(E) = ∅ with high probability, i.e., our method stays

conservative and does not make any causal claims.

In a reverse operation to data pooling across experiments, the question arises whether

we can identify the causal predictors by artificially separating data into several blocks

although the data have been generated under only one experimental setting (e.g. the data

are purely observational). If the distribution is generated by a SEM (see Section 4.1), we

may consider a variable U that is not Y and known to be a non-descendant of the target

variable Y , that is, there is no directed path from Y to U , for example as it precedes Y

chronologically. (This is similar as in an instrumental variable setting, see Section 5.) We
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may now split the data by conditioning on this variable U or any function h(U). Our

method then still has the correct coverage for any function h(U) as long as U is a non-

descendant of Y , because the conditional distribution of Y given its true causal predictors

XS∗ does not change and for all z in the image of h,

Y |XS∗
d
= Y |XS∗ , h(U) = z (18)

Note that U might or might not be part of the set XS∗ but we expect the method to have

more power if it is not. Equation (18) is a direct implication of the local Markov property

that is satisfied for a SEM [Pearl, 2009, Theorem 1.4.1]. The confidence intervals remain

valid but the implication on (partial) identifiability of the causal predictors remains as an

open question.

Even without data splitting, there might still be some directional information in the

data set that is not exploited by our method; this may either be information in the

conditional independence structure [Spirtes et al., 2000, Chickering, 2002], information

from non-Gaussianity [Shimizu et al., 2006], nonlinearities [Hoyer et al., 2009, Peters et al.,

2014, Bühlmann et al., 2014], equal error variances [Peters and Bühlmann, 2014] or shared

information between regression function and target variable [Janzing et al., 2012]. Our

method does not exploit these sources of identifiability. We believe, however, that it might

be possible to incorporate the identifiability based on non-Gaussianity or nonlinearity.

3.4. Computational requirements
The construction of the confidence regions for the set of plausible causal coefficients and

the identifiable causal predictors requires to go through all possible sets of variables in

step 1) of the procedures given above. The computational complexity of the brute force

scheme seems to grow super-exponentially with the number of variables.

There are several aspects to this issue. Firstly, we often do not have to go through

all sets of variables. If we are looking for a non-empty set Ŝ(E), it is worthwhile in

general to start generating the confidence regions Γ̂S(E) for the empty set S = ∅, then

for all singletons and so forth. If the empty set is not rejected, we can stop the search

immediately, as then Ŝ(E) = ∅. If the empty set is rejected, we can stop early as soon as

we have accepted more than one set S and the sets have an empty overlap (as Ŝ = ∅ in

this case no matter what other sets are accepted). The method can thus finish quickly if

Ŝ = ∅. However, in a positive case (where we do hope to get a non-empty confidence set)

we will still have to go through all sets of variables eventually. There are two options to

address the computational complexity.

The first option is to limit a-priori the size of the set of causal predictors. Say we are

willing to make the assumption that the set of causal variables is at most s < p. Then we

just have to search over all subsets of size at most s and incur a computational complexity

that grows like O(ps) as a function of the number of variables.

A second option (which can be combined with the first one) is an adaptation of the

confidence interval defined above, in which the number of variables is first reduced to a

subset of small size that contains the causal predictors with high probability. Let B̂ ⊆
{1, . . . , p} be, for the pooled data, an estimator of the variables with non-zero regression

coefficient when using all variables as predictors. For example, B̂ could be the set of
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variables with non-zero regression coefficient with square-root Lasso estimation [Belloni

et al., 2011], Lasso [Tibshirani, 1996] or boosting [Schapire et al., 1998, Friedman, 2001,

Bühlmann and Yu, 2003] with cross-validated penalty parameter. If the initial screening is

chosen such that the causal predictors are contained with high probability, P
[
S∗ ⊆ B̂

]
≥

1 − α, and we construct the confidence set Ŝ(E) as above, but just letting S be a subset

of B̂ instead of {1, . . . , p}, it will have coverage at least 1 − 2α. Sufficient assumptions

of such a coverage (or screening) condition are discussed in the literature [e.g. Bühlmann

and van de Geer, 2011]. If the second option is combined with the first option, the

computational complexity would then scale like O(qs) instead of O(ps), where q is the

maximal size of the set B̂ of selected variables. For the sake of simplicity, we will not

develop this argument further here but rather focus on the identifiability results for the

low(er)-dimensional case.

4. Identifiability results for structural equation models

The question arises whether the proposed confidence sets for the causal predictors can

recover an assumed true set of causal predictors. Such identifiability issues are discussed

next. Sections 4.1 and 4.2 describe possible data generating mechanisms and Section 4.3

provides corresponding identifiability results.

4.1. Linear Gaussian SEMs
We consider linear Gaussian structural equation models (SEMs) [e.g. Wright, 1921, Dun-

can, 1975]. We assume that each element e ∈ E represents a different interventional setup.

Let the first block of data (e = 1) always correspond to an “observational” (linear) Gaus-

sian SEM. Here, a distribution over (X1
1 , . . . , X

1
p+1) is said to be generated from a Gaussian

SEM if

X1
j =

∑
k 6=j

β1
j,kX

1
k + ε1

j , j = 1, . . . , p+ 1, (19)

with ε1
j

iid∼ N (0, σ2
j ), j = 1, . . . , p + 1. The corresponding directed graph is obtained by

drawing arrows from variables X1
k on the right-hand side of (19) with β1

jk 6= 0 to the

variables X1
j of the left-hand side. This graph is assumed to be acyclic. Without loss

of generality let us assume that Y 1 := X1
1 is the target variable and we write X :=

(X2, . . . , Xp+1). We further assume that all variables are observed; this assumption can

be weakened, see Proposition 4 in Appendix B and Section 5.

The parents of Y are given by

PA(Y ) = PA(1) = {k ∈ {2, . . . , p+ 1} : β1
1,k 6= 0}.

Here, we adapt the usual notation of graphical models [e.g. Lauritzen, 1996]. For example,

we write PA(j), DE(j), AN(j) and ND(j) for the parents, descendants, ancestors and

non-descendants of Xj , respectively.

Let us assume that the other data blocks are generated by a linear SEM, too:

Xe
j =

∑
k 6=j

βej,kX
e
k + εej , j = 1, . . . , p+ 1, e ∈ E . (20)
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Assumption 1 states that the influence of the causal predictors remains the same under

interventions, that is Y e = Xeγ∗ + ε1
1 for γ∗ = (β1

1,2, . . . , β
1
1,p+1)t and εe1

d
= ε1

1 for e ∈ E .

The other coefficients βej,k and noise variables εej , j 6= 1, however, may be different from

the ones in the observational setting (19). Within this setting, we now define various sorts

of interventions.

4.2. Interventions
We next discuss three different types of interventions that all lead to identifiability of the

causal predictors for the target variable.

4.2.1. Do-interventions

These types of interventions correspond to the classical do-operation from Pearl [2009,

e.g.]. In the e-th experiment, we intervene on variables Ae ⊆ {2, . . . , p+ 1} and set them

to values aej ∈ R, j ∈ Ae. For the observational setting e = 1, we have A1 = ∅. We specify

the model (20), for e 6= 1, as follows:

βej,k =

{
β1
j,k if j /∈ Ae

0 if j ∈ Ae,

and

εej
d
=

{
ε1
j if j /∈ Ae

aej if j ∈ Ae.

The do-interventions correspond to fixing the intervened variable at a specific value. The

following two types of interventions consider “softer” forms of interventions which might

be more realistic for certain applications.

4.2.2. Noise interventions

Instead of fixing the intervened variable at a specific value, noise interventions correspond

to “disturbing” the variable by changing the distribution of the noise variable. This is an

instance of what is sometimes called a “soft intervention” [e.g. Eberhardt and Scheines,

2007]. We now consider a kind of soft intervention, in which we scale the noise distributions

of variables Ae ⊆ {2, . . . , p + 1} by a factor Aej , j ∈ Ae. Alternatively, we may also shift

the error distribution by a variable Cej . More precisely, we specify the model in (20), for

e 6= 1, as follows:

βej,k = β1
j,k for all j,

and

εej
d
=

{
ε1
j if j /∈ Ae

Aejε
1
j if j ∈ Ae,

or εej
d
=

{
ε1
j if j /∈ Ae

ε1
j + Cej if j ∈ Ae.

The factors Aej and the shifts Cej are considered as random but may be constant with

probability one. They are assumed to be independent of each other and independent of

all other random variables considered in the model except for Xe
k for k ∈ DE(j).
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4.2.3. Simultaneous noise interventions

The noise interventions above operate on clearly defined variables Ae which can vary

between different experimental settings e ∈ E . In some applications, it might be difficult to

change or influence the noise distribution at a single variable but instead one could imagine

interventions that change the noise distributions at many variables simultaneously. As a

third example, we thus consider a special case of the preceding Section 4.2.2, in which we

pool all interventional experiments into a single data set. That is, |E| = 2 and, for all

j ∈ {2, . . . , p+ 1},
βe=2
j,k = βe=1

j,k (21)

and

εe=2
j

d
= Ajε

e=1
j or εe=2

j
d
= εe=1

j + Cj .

The random variables Aj ≥ 0 are assumed to have a distribution that is absolutely contin-

uous w.r.t. Lebesgue measure with EA2
j <∞ and to be independent of all other variables

and among themselves. The pooling can either happen explicitly or, as stated above, as we

cannot control the target of the interventions precisely and a given change in environment

might lead to changes in the error distributions in many variables simultaneously. As an

example we mention gene knock-out experiments with off-target effects in biology [e.g.

Jackson et al., 2003, Kulkarni et al., 2006].

4.3. Identifiability results
The following Theorem 2 gives sufficient conditions for identifiability of the causal pre-

dictors. We then discuss some conditions under which the assumptions can or cannot be

relaxed further below. Proofs can be found in Appendix F.

Theorem 2. Consider a (linear) Gaussian SEM as in (19) and (20) with interven-

tions. Then, with S(E) as in (6), all causal predictors are identifiable, that is

S(E) = PA(Y ) = PA(1) (22)

if one of the following three assumptions is satisfied:

i) The interventions are do-interventions (Section 4.2.1) with aej 6= E(X1
j ) and there

is at least one single intervention on each variable other than Y , that is for each

j ∈ {2, . . . , p+ 1} there is an experiment e with Ae = {j}.
ii) The interventions are noise interventions (Section 4.2.2) with 1 6= E(Aej)

2 < ∞,

and again, there is at least one single intervention on each variable other than Y . If

the interventions act additively rather than multiplicatively, we require ECej 6= 0 or

0 < VarCej <∞.

iii) The interventions are simultaneous noise interventions (Section 4.2.3). This

result still holds if we allow changing linear coefficients βe=2
j,k 6= βe=1

j,k in (21) with

(possibly random) coefficients βe=2
j,k .

The statements remain correct if we replace the null hypothesis (10) with its weaker ver-

sion (16).

These are examples for sufficient conditions for identifiability but there may be many

more. For example, one may also consider random coefficients or changing graph structures

(only the parents of Y must remain the same).
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Remark. In general, the conditions given above are not necessary. The following remarks,

however, provide two specific counter examples that show the necessity of some conditions.

i) We cannot remove the condition aej 6= E(X1
j ) from Theorem 2 i): the following

SEMs correspond to observational data in experiment e = 1, interventional data

with do(X2 = 0) in experiment e = 2, and interventional data with do(X3 = 0) in

experiment e = 3:

e = 1 : Y 1 = X1
2 +X1

3 + εY , X1
2 = ε2, X1

3 = −X1
2 + ε3,

e = 2 : Y 2 = X2
2 +X2

3 + εY , X2
2 = 0, X2

3 = −X2
2 + ε3,

e = 3 : Y 3 = X3
2 +X3

3 + εY , X3
2 = ε2, X3

3 = 0,

with ε2 and ε3 having the same distribution. Then, we cannot identify the correct

set of parents S∗ = {1, 2}. The reason is that even S = ∅ leads to a correct null

hypothesis (10).

ii) If we only check the null hypothesis (16) instead of the stronger version (10) (namely

whether the residuals have the same variance rather than the same distribution),

the condition E(Aej)
2 6= 1 is essential. Consider a two-dimensional observational

distribution from experiment e = 1 and an intervention distribution from experiment

e = 2:

e = 1 : X1 = εX , Y 1 = X1 + εY ,

e = 2 : X2 = A · εX , Y 2 = X2 + εY ,

with E(A)2 = 1 and εX , εY
iid∼ N (0, 1). Then we cannot identify the correct set of

parents PA(Y ) = {X} because again S = ∅ leads to the same residual variance and

therefore a correct null hypothesis (16). If we use hypothesis (10), however, condition

E(Aej)
2 6= 1 can be weakened (if densities exist), see the proof of Theorem 2 (iii).

In practice, we expect stronger identifiability results than Theorem 2. Intuitively, inter-

vening on (some of) the ancestors of Y should be sufficient for identifiability in many

cases. Note that the two counter-examples above are non-generic in the way that they

violate faithfulness [e.g. Spirtes et al., 2000]. The following theorem shows for some graph

structures (which need not to be known) that even one interventional setting with an

intervention on a single node may be sufficient, as long as the data generating model is

chosen “generically” (see Appendix A for an example).

Theorem 3. Assume a linear Gaussian SEM as in (19) and (20) with all non-zero

parameters drawn from a joint density w.r.t. Lebesgue measure. Let Xk0 be a youngest

parent of target variable Y = X1, that is there is no directed path from Xk0 to any other

parent of Y . Assume further that there is an edge from any other parent of Y to Xk0.

Assume that there is only one intervention setting, where the intervention took place on

Xk0, that is |E| = 2 and Ae=2 = {k0} (k0 does not need to be known).

Then, with probability one, all causal predictors are identifiable, that is

S(E) = PA(Y ) = PA(1)

if one of the following two assumptions is satisfied:
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i) The intervention is a do-intervention (Section 4.2.1) with ae=2
k0
6= EX1

k0
.

ii) The intervention is a noise intervention (Section 4.2.2) with 1 6= E(Ae=2
k0

)2 < ∞
or ECe=2

k0
6= 0, respectively.

It is, of course, also sufficient for identifiability if the interventional setting Ae=2 =

{k0} is just a member of a larger number of interventional settings. We anticipate that

more identifiability results of similar type can be derived in specific settings. Theorem 3

shows that interving on the youngest parent can reveal the whole set of parents of the

target variable so this intervention is in a sense the most informative intervention under

the made assumptions. Intervening on descendants of Y will, in contrast, only rule out

these variables as parents of Y . Some interventions are also completely non-informative;

intervening on a variable that is independent of all other variables (including the target)

will, for example, not help with identification of the set of parents of the target variable.

5. Instrumental and hidden variables with confounding

We now discuss an extension of the invariance idea that is suitable in the presence of hidden

variables. Instrumental variables can sometimes be used when the causal relationship of

interest is confounded and there are no randomised experiments available [Wright, 1928,

Bowden and Turkington, 1990, Angrist et al., 1996, Didelez et al., 2010]. For simplicity,

let us assume that I is binary. We assume that the SEM for a p-dimensional predictor X,

IX2 Y X1

H

Fig. 3. In this example of a graph of model that satisfies (23), variable Y has a direct causal effect
only on X2, while there is a feedback between Y and X1.

a univariate target variable Y of interest and a q-dimensional hidden variable H can be

written as

X = f(I,H, Y, η),

Y = Xγ∗ + g(H, ε), (23)

where γ∗ is the unknown vector of causal coefficients, f, g are unknown real-valued func-

tions and η and ε are random noise variables in p dimensions and one dimension respec-

tively. As it is commonly done for SEMs, we require the noise variables H, η, ε, I to be

jointly independent. Figure 3 shows an example of a SEM that satisfies (23).

Again, we are interested in the causal coefficient γ∗. Because of the hidden variable H,

however, regressing Y on X does not yield a consistent estimator for γ∗.
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Two remarks on the model (23) are in place. First, the model requires that I has no

direct effect on Y , which is standard assumption for instrumental variable models. For

a discussion on why a violation of this assumption usually leads to no false conclusions

(only a reduction in power), see Section 6.3. Second, the model (23) allows for feedback

between X and Y , that is the corresponding graph in a SEM is not required to be acyclic.

If feedback exists, the solutions are typically understood to be stable equilibrium solutions

of (23) but we will here only require that the solutions satisfy equations (23).

We can use I as an instrument in a classical sense and estimate γ∗ by the following

well-known two-stage least squares procedure [Angrist et al., 1996]: first we estimate the

influence of I on X and then we regress Y on the predicted values of X given I. For non-

linear models one can use two-stage predictor substitution or two-stage residual inclusion;

see [Terza et al., 2008] for an overview. If we strive for identification of γ∗, three limitations

with this approach are:

(i) The target Y is not allowed to be a parent of any component of X, i.e., f(I,H, Y, η) =

f(I,H, η). This also excludes the possibility of feedback between X and Y .

(ii) The conditional expectation E(X | I) is not allowed to be constant for I ∈ {0, 1}.
(iii) The predictor X has to be univariate for a univariate instrument I, that is p = 1 is

required.

What happens if we interpret the two different values of I as two experimental settings?

In other words: what happens if I plays the role of the indicator of environment (that

we call E at the end of Section 6.1) and we apply the method described above? We can

define E as two distinct environments by collecting all samples with I = 0 in the first

environment and all samples with I = 1 in the second environment. Of course, another

split into distinct environments is also possible and allowed as long as the split into distinct

environments is not a function of Y , a descendant of Y or the hidden variables H.

We stated in Proposition 1 that SEMs (with interventions) satisfy the assumptions

of invariant predictions if there are no hidden variables between the target variable and

the causal predictors. Because here there is the hidden variable H we cannot justify our

method using Proposition 1 (nor with Proposition 4 in general). However, the invariant

prediction procedure (3) can be extended to cover models of the form (23) as these models

fulfil

for all e ∈ E : Xe has an arbitrary distribution

Y e = Xeγ∗ + g(He, εe), (24)

with unknown causal coefficients γ∗ ∈ Rp and unknown function g : Rq × R→ R.

In the absence of hidden variables, the residuals Y e − Xeγ∗ are independent of the

causal predictors Xe
S∗ = Xe

supp(γ∗) and have the same distribution across all environments.

In the presence of hidden variables, we cannot require independence of the residuals and

the causal predictors XS∗ but can adapt the null hypothesis H0,S in (5) to the weaker form

H0,S,hidden(E) : ∃γ ∈ Rp such that γk = 0 if k /∈ S and

the distribution of Y e −Xeγ is identical for all e ∈ E . (25)

Testing the null hypothesis (25) is computationally more challenging than for the corre-

sponding null hypothesis in the absence of hidden confounders (5). In contrast to (5), we
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cannot attempt to find for a given set S the vector γ by regressing Y e on Xe. The reason

is that even if (25) holds, it does not require the residuals Y e−Xeγ to be independent of

Xe
supp(γ).

Suppose nevertheless that we have a test for the null hypothesis H0,S,hidden(E) and

define in analogy to (12) the estimated set of causal predictors as

Ŝ(E) =
⋂

S:H0,S,hidden(E) not rejected

S. (26)

Then the coverage property follows immediately in the following sense.

Proposition 2. Consider model (23) and let S∗ = {k : γ∗k 6= 0}. Suppose the test for

H0,S,hidden(E) is conducted at level α and Ŝ is defined as in (26). Then

P [Ŝ(E) ⊆ S∗] ≥ 1− α.

Proof. The hypothesis H0,S,hidden(E) is obviously true for S∗ as Y e−Xeγ∗ = g(He, εe)

and the distribution of g(He, εe) is invariant across the environments e ∈ E (defined by I)

as I is independent of H and ε.

The method has thus guaranteed coverage for model (23) even if the necessary as-

sumptions (i)-(iii) for identification under a two-stage instrumental-variable approach are

violated. The power of the procedure depends again on the type of interventions, the func-

tion class and the chosen test for the null hypothesis. We can ask for specific examples

whether Ŝ(E) = S∗ in the population limit.

Proposition 3. Assume as a special case of (23) a shift in the variance of X under

I = 1 compared to I = 0 observations:

X = f(H, η) + Z · 1I=1

Y = Xγ∗ + g(H, ε), (27)

where the p-dimensional mean-zero random variable Z is independent of H, ε, η and I and

has a full-rank covariance matrix. Then γ∗ and S∗ are identifiable in a population sense.

Specifically, if the test of H0,S,hidden(E) has power 1 against any alternative, then

P [Ŝ(E) = S∗] ≥ 1− α.

A proof is given in Appendix E. Note that the causal variables and coefficients can be

identified for (27), even though the model violates the above-mentioned assumptions (ii)

and (iii) for identifiability with a classical two-stage instrumental variable analysis: X can

be of arbitrary dimension even though the instrumental variable I is univariate and there

is no shift in E(X | I) between I = 1 and I = 0.

A further advantage of the invariance approach might be that no test for a weak

influence of I on X is necessary. A weak instrument can lead to amplification of biases

in conventional instrumental variable regression [Hernán and Robins, 2006]. With the

invariance approach, the confidence intervals for γ∗ are naturally wide in case of a weak

influence of I on X, leading to small sets Ŝ of selected causal variables.

Ignoring the computational difficulties, this shows that the approach can be generalised

to include hidden variables that violate assumption (ii) c) in Proposition 4, for example by
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replacing (5) with the null hypothesis (25). As a possible implementation of the general

approach we must therefore test (25) for every set S ⊆ {1, . . . , p}. We are faced with a

formidable computational challenge because the coefficients γ∗ cannot be found by simple

linear regression anymore. One possibility is to place a stricter constraint on the form of

allowed interventions. For shifted soft interventions from Section 4.2.3, for example, such

an approach is described in Rothenhäusler et al. [2015]. For general interventions, we can

test (25) in a brute-force way by testing the invariance of the distribution over a grid of

γ-values. However, the computational complexity of this approach is exponential in the

predictor dimension and it would be valuable to identify computationally more efficient

ways of testing the null hypothesis (25).

6. Further extensions and model misspecification

6.1. Nonlinear models
We have shown an approach to obtain confidence intervals for the causal coefficients in

linear models. We might be interested in identifying the set of causal predictors S∗ in the

more general nonlinear setting (2). The equivalent null-hypothesis to (5) is then

H0,S,nonlin(E) :
There exists g : R|S| × R→ R and εe such that

Y e = g(Xe
S , ε

e), εe ∼ Fε and εe ⊥⊥ Xe
S for all e ∈ E .

(28)

It is interesting to note that S satisfies (28) if and only if it satisfies

H0,S,nonlin(E) :
∀e, f ∈ E the conditional distributions Y e |Xe

S = x and Y f |Xf
S = x

are identical for all x such that both cond. distr. are well-defined.

(29)

The “only if” part is immediate and for the “if” part we can use a similar idea as in

[Peters et al., 2014, Prop. 9], for example, and choose a Uniform([0, 1])-distributed ε and

g(a, b) = ge(a, b) := F−1
Y e |Xe

S=a(b), where FY e |Xe
S=a is the cdf of Y e |Xe

S = a.

As in the linear case, we can consider a SEM with environments corresponding to

different interventions and, again, the parents of Y satisfy the null hypothesis. More

precisely, we have the following remark.

Remark 2. Proposition 1 and Proposition 4 still hold if we replace linear SEMs (19)

with nonlinear SEMs

Yj = fj(XPA(j), εj), j = 1, . . . , p+ 1

and replace Assumption 1 with the assumption that there exists S∗ satisfying (28).

Proof. Again, the proof is immediate. Only the case with hidden variables requires an

argument. From the SEM, we are given Y e = f(Xe
S0 , Xe

S0
H
, ε̃e) with S0

H being the hidden

parents of Y and (Xe
S0

H
, ε̃e) ⊥⊥ Xe

S0 . We can then write Y e = g(XS0 , εe) for a uniformly

distributed εe that is independent of XS0 and g(x, n) := F−1
f(x,Xe

S0
H

,ε̃e)(n). The function g

does not depend on e because Xe
S0

H
and ε̃e have the same distribution for all e ∈ E .

Assume we have a test for the null hypothesis H0,S,nonlin(E). Then, testing all possible

sets S ⊆ {1, . . . , p}, we can get a confidence set for S∗ in a similar way as in the linear
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setting (15) by

Ŝ(E) :=
⋂

S:H0,S,nonlin(E) not rejected

S. (30)

If all tests are conducted individually at level α, we have again the property that for any

S∗ which fulfills (28) or (29), P (Ŝ(E) ⊆ S∗) ≥ 1− α since the null hypothesis for S∗ will

be accepted with probability at least 1− α.

Constructing suitable tests for (29) is easier if we are willing to assume that the function

g in (28) is additive in the noise component, that is

H0,S,additive(E) :
there exists g : R|S| → R and εe such that

Y e = g(Xe
S) + εe, εe ∼ Fε and εe ⊥⊥ Xe

S for all e ∈ E .
(31)

Then, we can construct tests for the null hypothesis (28) that are similar as in the linear

case. Analogously to Method I in Section 3.1, we can perform nonlinear regression in each

environment and test whether the regression functions are identical [e.g. Durot et al., 2013,

for isotonic regression functions]. As an alternative, we can also fit a regression model on

the pooled data set and test whether the residuals have the same distribution in each

environment, see Method II in Section 3.1.

We may also test (29) without assuming additivity of the noise component. This could

be addressed by introducing an environment variable E and then performing a conditional

independence test for Y ⊥⊥ E |XS , see also Appendix C. The details of these approaches

lie beyond the scope of this paper.

6.2. Interventions on the target variable and its causal mechanism
So far, we have assumed that the error distribution of the target variable is unchanged

across all environments e ∈ E , see Assumption 1 for linear models. This precludes inter-

ventions on Y and precludes a change of the causal mechanism for the target variable. For

the gene-knockout experiments mentioned in Section 2 and treated in detail in Section 7.2,

we would for example know whether we have intervened on the target gene or not. In other

situations, we might not be sure whether an intervention on the target variables occurred

or not.

If interventions are sparse, other approaches are possible, too. For any given target

variable Y , we might not be sure whether an intervention on Y occurred or not, but we

can assume that an intervention on Y happened in at most V � |E| different environments,

even if we do not know in which of the environments it occurred, see Kang et al. [2015]

for a related setting in instrumental variable regression. The null hypothesis (29) in the

general nonlinear case can then be weakened to

H ′0,S,nonlin(E) :
∃E ′ ⊆ E with |E ′| ≥ |E| − V s.t. ∀e, f ∈ E ′ the cond. distr. Y e |Xe

S = x

and Y f |Xf
S = x are identical ∀x s.t. both cond. distr. are well-defined.

(32)

The null hypothesis H ′0,S∗,nonlin is then still true even when interventions happen on Y

in some environments, where S∗ is the causal set of variables that satisfies the invariance

assumption in the absence of interventions on Y . Any test for (29) can be extended as

a test for the weaker null hypothesis (32) by testing all subsets E ′ with |E ′| ≥ |E| − V
at level α, e.g. using a test for (28), and rejecting (32) only if we can reject all such
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subsets. We can then treat H0,S,nonlin(E) as being “accepted” if we find one subset E ′

whose corresponding null hypothesis cannot be rejected.

6.3. Model misspecification
We have shown how the approach can be extended to cover hidden variables, nonlinear

models and interventions on the target variable. The question arises how the original

approach behaves if these model assumptions are violated but we use the original approach

instead of the proposed extensions. We again write Ŝ(E) as in (15) as

Ŝ(E) :=
⋂

S:H0,S not rejected

S.

Our approach still satisfies the coverage property P (Ŝ(E) ⊆ S∗) ≥ 1 − α for any set S∗

that satisfies Assumption 1. Let S∗c be a set that is considered to be causal, for example,

because it is the set of observed parents of Y in a SEM. Under no model misspecifica-

tion, Proposition 1 shows that this set will satisfy Assumption 1 or, in the general case

Equation (29). If the model assumptions are violated, however, then either H0,S∗c is still

true (in which case the desired confidence statements P (Ŝ(E) ⊆ S∗c ) ≥ 1− α is still valid)

or H0,S∗c is not longer true. The latter case thus warrants our attention. There are two

possibilities. If H0,S is also false for all other sets S ⊆ {1, . . . , p}, then Ŝ(E) = ∅ for a test

that has maximal power to reject false hypotheses. Thus, the desired coverage property

P (Ŝ(E) ⊆ S∗c ) ≥ 1 − α is still valid, even though the method will now have no power to

detect the causal variables. It could happen, on the other hand, that there exists some

set S′ ⊆ {1, . . . , p} with S′ \ S∗c 6= ∅ for which H0,S′ is true. Proposition 5 in Appendix C

shows that under some assumptions even in this case, the mistake is not too severe: then

there exists a different set S̃, for which H0,S′ is true, and that contains only ancestors of

the target Y and no descendants. Then, by construction, the same also holds for Ŝ(E),

with probability greater than 1− α.

7. Numerical results

We apply the method to simulated data, gene perturbation experiments from biology

with interventional data and and an instrumental variable type setting from educational

research.

7.1. Simulation experiments
For the simulations, we generate data from randomly chosen linear Gaussian structural

equation models (SEMs) and compare various approaches to recover the causal predictors

of a target variable.

The generation of linear Gaussian SEMs is described in Appendix G. We sample 100

different settings and for each of those 100 settings, we generate 1000 data sets. We tried

to cover a wide range of scenarios, some (but not all of which) correspond to the theoretical

results developed in Section 4.3. After randomly choosing a node as target variable, we

can then test how well various methods recover the parents (the causal predictors) of

this target. We check whether false variables were selected as parents (false positives) or

whether the correct parents were recovered (true positives).
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For the proposed invariant prediction method, we divide the data into a block of ob-

servational data and a block of data with interventions. Some other existing methods

make use of the exact nature of the interventions but for our proposed method this in-

formation is discarded or presumed unknown. The estimated causal predictors Ŝ(E) at

confidence 95%, computed as in Method I in Section 3.1, are then compared to the true

causal predictors S∗ of a target variable in the causal graph (which can sometimes be the

empty set). The results of Method II are very similar in the simulations and are not shown

separately. We record whether any errors were made (Ŝ(E) * S∗) and whether the correct

set was recovered (Ŝ(E) = S∗). We compare the proposed confidence intervals with point

estimates given by several procedures for linear SEMs:

(a) Greedy equivalence search (GES) [Chickering, 2002]. In the case of purely observa-

tional data, we can identify the so-called Markov equivalence class of the correct graph

from the joint distribution, i.e. we can find its skeleton and orient the v-structures,

i.e. some of the edges [Verma and Pearl, 1991]. Although, many directions remain

ambiguous in the general case, it might be that we can orient some connections of the

target variable Xj − Y . If the edge is pointing towards Y , we identify Xj as a direct

cause of Y . The GES searches greedily over equivalence classes of graph structures

in order to maximise a penalised likelihood score. Here, we apply GES on the pooled

data set, pretending that all data are observational.

(b) Greedy interventional equivalence search (GIES) with known intervention targets

[Hauser and Bühlmann, 2012]. The greedy interventional equivalence search (GIES)

considers soft interventions (at node j) where the conditional p(xj |xPA(j)) is re-

placed by a Gaussian density in xj . One can identify interventional Markov equiva-

lence classes from the available distributions that are usually smaller than the Markov

equivalence classes obtained from observational data. GIES is a search procedure over

interventional Markov equivalence classes maximising a penalised likelihood score. In

comparison, a benefit of our new approach is that we do not need to specify the dif-

ferent experimental conditions. More precisely, we do not need to know which nodes

have been intervened on.

(c) Greedy interventional equivalence search (GIES) with unknown intervention targets.

To obtain a more fair comparison to the other methods, we hide the intervention

targets from the GIES algorithm and pretend that every variable has been intervened

on.

(d) Linear non-Gaussian acyclic models (LiNGAM) [Shimizu et al., 2006]. The assump-

tion of non-Gaussian distributions for the structural equations leads to identifiability.

We use an R-implementation [R Core Team, 2014] of LiNGAM which is based on

independent component analysis, as originally proposed by Shimizu et al. [2006]. In

the observational setting, the structural equation of a specific variable Xj reads

X1
j =

∑
k∈PA(j)

βj,kX
1
k + ε1

j ,

whereas in the interventional setting (if the coefficients βj,k remain the same), we have

X2
j =

∑
k∈PA(j)

βj,kX
2
k + ε2

j .
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One may want to model the pooled data set as coming from a structural equation

model of the form

X̃j =
∑

k∈PA(j)

βj,kX̃k + ε̃j ,

where ε̃j follows a distribution of the mixture of ε1
j and ε2

j and thus has a non-Gaussian

distribution (Kun Zhang mentioned this idea to JP in a private discussion). The new

noise variables ε̃1, . . . , ε̃p are not independent of each other: if, for any j 6= k, ε̃j comes

from the first mixture, then ε̃k does so, too. We can neglect this violation of LiNGAM

and apply the method nevertheless. There is no theoretical result which would justify

LiNGAM for interventional data.

(e) Regression. We pool all data and use a linear least-squares regression and retain

all variables which are significant at level α/p, in an attempt to control the family-

wise error rate (FWER) of falsely selecting at least a single variable at level α in a

regression (not causal) sense. As a regression technique, this method cannot correctly

identify causal predictors.

(f) Marginal regression. We pool all data and retain all variables that have a correlation

with the outcome at significance level α/p. As above, this regression method cannot

correctly identify causal predictors.

We show the (empirical) probability of false selections, P (Ŝ(E) * S∗), in Figure 5 for

all methods. The probability of success, P (Ŝ(E) = S∗), is shown in Figure 4.

The success probabilities show some interesting patterns. First, there is (as expected)

not a method that performs uniformly best overall scenarios. However, regression and

marginal regression are dominated across all 100 scenarios by GIES (both with known and

unknown interventions), LiNGAM and the proposed invariant prediction). Among the 100

settings, there were 3 where GES performed best on the given criterion, 14 where GIES

(with known interventions) performed best, 54 for LiNGAM and 23 where the proposed

invariant prediction were optimal for exact recovery. There is no clear pattern as to which

parameter is driving the differences in the performances: Spearman’s correlation between

the parameter settings and the differences in performances between all pairs of methods

was less than 0.3 for all parameters. The interactions between the parameter settings seem

responsible for the relative merits of one method over another.

The pattern for false selections in Figure 5 is very clear on the other hand. The proposed

invariant prediction method controls the rate at which mistakes are made at the desired

0.05 (and often lower due to a conservativeness of the procedure). All other methods have

FWE rates that reach 0.4 and higher. No other method offers a control of FWER and

the results show that the probability of erroneous selections can indeed be very high. The

control of the FWER (and the associated confidence intervals) is the key advantage of the

proposed invariant prediction.

7.2. Gene perturbation experiments
Data set. We applied our method to a yeast (Saccharomyces cerevisiae) data set [Kem-

meren et al., 2014]. Genome-wide mRNA expression levels in yeast were measured and we

therefore have data for p = 6170 genes. There are nobs = 160 “observational” samples of

wild-types and nint = 1479 data points for the “interventional” setting where each of them
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Fig. 4. The probability of success, defined as P (Ŝ(E) = S∗) for various methods, including
our new proposed invariant prediction in the rightmost column. Each dot within a column (the
x-offset within a column is uniform) corresponds to one of the 100 simulation scenarios. The
dot’s height shows the empirical probability of success over 1000 simulations and the small bars
indicate a 95% confidence for the true success probability. Identical scenarios are connected by
grey solid lines. For each method, the maximal and minimal values along with the quartiles of
each distribution are indicated by horizontal solid bars.
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Fig. 5. The probability of erroneous selections P (Ŝ(E) * S∗) (FWER) for the considered meth-
ods, including the proposed invariant prediction to the right. The figure is otherwise analogously
generated as Figure 4. The dotted line indicates the 0.05 level at which the invariant prediction
method was (successfully) controlled. All other methods do not offer FWER control.

corresponds to a strain for which a single gene k ∈ K := {k1, . . . , k1479} ⊂ {1, . . . , 6170}
has been deleted (meanwhile, there is an updated data set with five more mutants). If the

method suggests, for example, gene 5954 as a cause of gene 4710, and there is a deletion

strain corresponding to gene 5954, we can use this data point to determine whether gene

5954 indeed has a (possibly indirect) causal influence on 4710. We say that the pair is a

true positive if the expression level of gene 4710 after intervening on 5954 lies in the 1%

lower or upper tail of the observational distribution of gene 4710, see also Figure 6 below.

(We additionally require that the intervention on gene 5954 appears to be “successful” in

the sense that the expression level of gene 5954 after intervening on this gene 5954 lies

in the 1% lower or upper tail of the observational distribution of gene 5954. This was

not the case for 38 out of the 1479 interventions.) With this criterion, there are about

9.2% relevant effects, which corresponds to the proportion of true positives for a random

guessing method.

Separation into observational and interventional data. For predicting a causal influence

of, say, gene 5954 on another gene we do not want to use interventions on the same

gene 5954 (this would use information about the ground truth). We therefore apply the

following procedure: for each k ∈ K we consider the observational data as e = 1 and

the remaining 1478 = 1479 − 1 data points corresponding to the deletions of genes in

K \ {k} as the interventional setting e = 2. Since this would require nint × p applications

of our method, we instead separate K into B = 3 subsets of equal size, consider the
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two subsets not containing k as the interventional data, and do not make any use of the

subset containing k. This leaves some information in the data unused but yields a huge

computational speed-up, since we need to apply our method in total only 3 × p times.

Additionally, when looking for potential causes of gene 4710, we do not consider data

points corresponding to interventions on this gene (if it exists), see Proposition 1.

Goodness of fit and p-values. If we would like to avoid making a single mistake on the data

set with high probability 1−α, we can set the significance level to for each gene to α/nint,

using a Bonferroni correction in order to take into account the nint = 1479 genes that have

been intervened on. We work with α = 0.01 if not mentioned otherwise. The guarantee

requires, however, that the model is correct (for example the linearity assumption is correct

and there are no hidden variables with strong effects on both genes of interest). These

assumptions are likely violated, and the implications have been partially discussed in

the previous Section 6. To further guard against false positives that are due to model

misspecification we require that there is at least one model (one subset S ⊆ {1, . . . , p}) for

which the model fits reasonably well: we define this by requiring a p-value above 0.1 for

testing H0,S(E) for the best-fitting set S of variables (the set with the highest p-value), if

not mentioned otherwise (but we also vary the threshold to test how sensitive our method

is with regard to parameter settings). If no set of variables attains this threshold, we

discard the models and make no prediction.

Method. We use L2-boosting [Friedman, 2001, Bühlmann and Yu, 2003] from the R-

package mboost [Hothorn et al., 2010] with shrinkage 0.1 as a way to preselect for each

response variable ten potentially causal variables, to which we then apply the causal in-

ference methods. We primarily use Method II as Method I requires subsampling for com-

putational reasons. Subsampling can lead to a loss of power as there is a not-negligible

probability of loosing the few informative data points in the subsampling process. For a

computational speed-up we only consider subsets of size ≤ 3 as candidate sets S. Further-

more, we only retain results where just a single variable has been shown to have a causal

influence to avoid testing more difficult scenarios where one would have to intervene on

multiple genes simultaneously.

Comparisons. As alternative methods we consider IDA [Maathuis et al., 2009] based

on the PC algorithm [Spirtes et al., 2000] and a method that ranks the absolute value

of marginal correlation (j1 → j2 and j2 → j1 obtain the same score and are ranked

randomly), both of which make use only of the observational data. We also compare with

IDA based on greedy interventional equivalence search (GIES) [Hauser and Bühlmann,

2015] and a correlation-based method that ranks pairs according to correlation on the

pooled observational and interventional data. It was not feasible to run LiNGAM [Shimizu

et al., 2011] on this data set.

Results. The proposed method (Method II) outputs eight gene pairs that can be checked

because the corresponding interventional experiments are available. There are in total

eight causal effects that are significant at level 0.01 after a Bonferroni correction. Out

of these eight pairs, six are correct (random guessing has a success probability of 9.2%).
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Fig. 6. The three rows correspond to the three most significant effects found by the proposed
method (with the most significant effect on top, suggesting a causal effect of gene 5954 on gene
4710). The left column shows the observational data, while the second column shows the inter-
ventional data (that are neither using interventions on the target variable itself nor using interven-
tions on the examined possible causal predictors of the target variable); these two data sets are
used as two environments for training the invariant prediction model. The regression line for a joint
model of observational and interventional data, as proposed in Method II, is shown in both plots;
we cannot reject the hypothesis that the regression is different for observational and interventional
data here. The third column finally shows the test data (with the 1%-99% quantile-range of the
observational data shown as a shaded box as in the first column). There, we use the intervention
data point on the chosen gene and look at the effect on the target variable. The first two predicted
causal effects can be seen to be correct (true positives) in the following sense: after successfully
intervening on the predicted cause, the target gene shows reduced activity; the third suggested
pair is unsuccessful (false positive) since the intervention reduces the activity of the cause but the
target gene remains as active as in the observational data.
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Table 1. The number of true effects among the strongest 8 effects that have been found in the interventional test
data (the number 8 has been chosen to correspond to the number of significant effects under the proposed Method
II). Method I is based on 1000 samples and required roughly 10 times more computational time than Method II.

method Method I Method II GIES IDA
marginal corr. random

observ. pooled guessing

# of true

6 6 2 2 1 2

2 (95% quantile)

positives 3 (99% quantile)

(out of 8) 4 (99.9% quantile)

Figure 6 shows the three pairs that obtained the highest rank, i.e. smallest p-values.

The rows in the figure therefore correspond to the three causal effects in the data set

that were regarded as most significant by our method. One note regarding the plot: we

plot all available data even though only two-thirds of it was effectively used for training

due to the discussed cross-validation scheme. Many outlying points in the interventional

training data of the false positive (second column of third row in Figure 6) are in particular

not part of the training data and the method might have performed better with a more

computationally-intensive validation scheme that would split the data into B blocks with

B larger than the currently used B = 3.

In order to compare with other methods (none of which provide a measure of signifi-

cance), we always consider the eight highest-ranked pairs. Table 1 summarises the results.

In this data set, the alternative methods were not able to exceed random guessing.

To test sensitivity of the results to the chosen implementation details of the method,

the variable pre-selection, the goodness-of-fit cutoff have also all been varied (for example

using Lasso instead of boosting as pre-selection and using a cutoff of 0.1 instead of 0.01).

For Method II, variable selection with Lasso instead of boosting leads to a true positive

rate of 0.63 (5 out of 8). Choosing the goodness-of-fit cutoff at 0.01 rather than 0.1 leads

to true positive rates of 0.43 (9 out of 21) for boosting and 0.47 (8 out of 17) for Lasso.

Method I without forcing eight decisions leads to a true positive rate of 0.75 (3 out of 4)

for boosting and 1.00 (1 out of 1) for Lasso. Choosing the goodness-of-fit cutoff at 0.01

rather than 0.1 leads to true positive rates of 0.86 (6 out of 7) for boosting and 0.75 (3

out of 4) for Lasso. (Using 500 instead of 1000 subsamples for Method I leads to increased

speed and worse performance.) We regard it as encouraging that the true positive rate

is always larger than random guessing, irrespective of the precise implementation of the

method.

Among the reasons for false positives (e.g. 2 out of 8 for Method II in Table 1, there

are at least the following options: (a) noise fluctuations, (b) nonlinearities, (c) hidden

variables, (d) issues with the experiment (for example the intervention might have changed

other parts of the network) and (e) the pair is a true positive but is -by chance- classified as

a false positive by our criterion (see “Data set” above). Missing causal variables in the pre-

screening by boosting or Lasso falls under category (c). We control (a) and have provided

arguments why (b) and (c) will lead to rejection of the whole model rather than lead

to false positives. Lowering the goodness-of-fit-threshold seemed indeed to lead to more

spurious results, as expected from the discussion in the previous Section 6.3. Validating a

potential issue with the experiment as in reason (d) is beyond our possibilities. We could

address (e) if we had access to multiple repetitions of the intervention experiments.
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Fig. 7. The 90% confidence intervals for the influence of various variables on the probability
of receiving a BA degree (or higher) are shown in blue. Of all 8192 possible sets S, we accept
1565 sets (the empty set is not accepted as the probability of receiving a degree is sufficiently
different for people within a close distance to a 4-year college and further away). The point-
estimates for the coefficients are shown for these 1565 sets as red dots and the corresponding
confidence intervals as vertical red bars. The blue confidence intervals are then the union of all
1565 confidence intervals, as in our proposed procedure. The variables score (test score) and
fcollege no (active if father did not receive a college degree) show significant effects.

7.3. Educational attainment
We look at a data set about educational attainment of teenagers [Rouse, 1995]. For 4739

pupils from approximately 1100 US high schools, 13 attributes are recorded, including gen-

der, race, scores on relevant achievement tests, whether the parents are college graduates,

or family income. Here we work with the data as provided in Stock and Watson [2003],

where we can see the length of education pupils received. We make a binary distinction

into whether pupils received a BA degree or higher (equivalent to at least 16 years of

education in the classification used in Stock and Watson [2003]) and ask whether we can

identify a causal predictive model that allows to forecast whether students will receive a

BA degree or not and this forms a binary target Y .

The distance to the nearest 4-year college is recorded in the data and we use it to

split the dataset into two parts in the sense of (18); we assume that this variable has

no direct influence on the target variable. As discussed, this variable does not have to

satisfy the usual assumptions about instrumental variables for our analysis but just has to

be independent of the noise in the outcome variable (it must be a non-descendant of the

target), which seems satisfied in this dataset as the distance to the 4-year college precedes
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the educational attainment chronologically. One set of observations are thus all pupils

who live closer to a 4-year college than the median distance of 10 miles. The second set

are all other pupils, who live at least 10 miles from the nearest 4-year college. We ask for

a classification that is invariant in both cases in the sense that the conditional distribution

of Y , given X, is identical for both groups, where X are the set of collected attributes and

Y is the binary outcome of whether they attained a BA degree or higher. We use the fast

approximate Method II of Section 3.1, with the suggested extension to logistic regression.

Figure 7 shows the outcome of the analysis, which is also included as an example in the

R-package InvariantCausalPrediction. Factors were split into dummy variables so that

“ethnicity afam” is 1 if the ethinicity is african-american and 0 otherwise, “fcollege no”

is 1 if the father did not receive a college degree and so forth. We provide 90% confidence

intervals. All of them include 0 except for the confidence interval for the influence of the

test score (positive effect) and the indicator that the father did not receive a college degree

(negative effect). A high score on the achievement test thus seems to have a positive causal

influence on the probability of obtaining a BA degree, which seems plausible.

As it is difficult to verify the ground truth in this case, we refrain from comparisons with

other possible approaches to the same data set and just want to use it as an example of a

possible practical application. The example shows that we can use instrumental-variable-

type variables to split the data set into different “experimental” groups. If the distributions

of the outcome are sufficiently different in the created groups, we can potentially have

power to detect invariant causal prediction effects.

8. Discussion and Future Work

An advantage of causal predictors compared to non-causal ones is that their influence on

the target variable remains invariant under different changes of the environment (which

arise for example through interventions). We have described this invariance and exploit

it for the identification of the causal predictors. Confidence sets for the causal predic-

tors and confidence intervals for relevant parameters follow naturally in this framework.

In the special case of Gaussian structural equation models with interventions we have

proved identifiability guarantees for the set of causal predictors. We discussed some of the

questions that require more work: suitable tests for equality of conditional distributions

for nonlinear models, feedback models and increased computational efficiency both in the

absence and presence of hidden variables.

The approach of invariant prediction provides new concepts and methods for causal

inference, and also relates to many known concepts but considers them from a different

angle. It constitutes a new understanding of causality that opens the way to a novel class

of theory and methodology in causal inference.
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A. An Example

We illustrate here in Figure 8 the concepts and methodology which have been developed

in Sections 2.1, 2.2 and 3. The figure shows an example of two environments whose data

were generated from observational and interventional structural equation models.

B. Hidden variables without confounding

We discuss first a generalisation of Proposition 1, allowing for some hidden variables but

excluding confounding between the observable causal variables and the target variable.

Another setting allowing for such confounding is presented in Section 5. Consider the

structural equation model with variables X1 = Y,X2, . . . , Xp, Xp+1, H1, . . . ,Hq, where the

latter H1, . . . ,Hq are unobserved, hidden variables with mean zero.

Proposition 4. Consider a linear structural equation model including variables

(X1 = Y,X2, . . . , Xp, Xp+1, H1, . . . ,Hq),
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Fig. 8. The top row shows the example of two structural equation models (SEMs) entailing the
two distributions corresponding to two environments e = 1 and e = 2. Here, the first environment
corresponds to the graph including the dashed edge, the second environment corresponds to
an intervention on X3, the graph excluding the dashed edge. Since the structural equation for
Y is unchanged, the set S∗ = {X2, X3} = PA(1) satisfies Assumption 1, see Proposition 1.
We consider the setup where we know neither S∗ nor the SEMs (we do not even require the
existence of such a SEM). Instead, we are given two finite samples (one from each environment)
and provide an estimator Ŝ for S∗. In the above example, the null hypothesis of invariant prediction
gets rejected for any set S of variables except for S = {X2, X3} and S = {X2, X3, X4} (using the
methodology described in Section 3.1). The bottom row shows that for S = {X3}, for example,
the linear regression coefficients differ in the two environments. For S = {X4}, the regression
coefficients seem similar but the set is rejected because of varying variances of the residuals.
We then propose to consider the intersection of the sets of variables for which the hypothesis of
invariance is not rejected; this leads to the (conservative) estimate Ŝ for the set of identifiable
predictors S∗: Ŝ = {X2, X3} ∩ {X2, X3, X4} = {X2, X3}. We thus have for this case Ŝ = S∗, see
also Theorem 3 with k0 = 3.
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whose structure is given by a directed acyclic graph. Denote by

S0 := PA(1) ∩ {2, . . . , p+ 1}

the indices of the observable direct causal variables for Y and by S0
H the set of indices

having a directed edge from the hidden variables H1, . . . ,Hq to Y , i.e., S0
H = PA(1) \ S0.

The structural equation for Y is

Y =
∑
j∈S0

βY,jXj +
∑
k∈S0

H

κY,kHk + εY ,

where εY is independent of XS0 and HS0
H

.

Then, by choosing γ∗ = {βY,j , j ∈ S0} and S∗ = S0, Assumption 1 holds if one of the

following conditions (i) or (ii) is satisfied.

(i) There are no direct causal effects from the hidden variables H1, . . . ,Hq to the target

variable Y , i.e., S0
H = ∅, and it holds that

Y e =
∑
j∈S0

βY,jX
e
j + εeY for all e ∈ E , (33)

where εeY is independent of Xe
S0 and has the same distribution for all e ∈ E. In

particular, this holds under do- or soft-interventions on the variables {X2, . . . , Xp+1}∪
{H1, . . . ,Hq} given that S0

H = ∅.
(ii) There are hidden variables which have a direct effect on the target variable Y , i.e.,

S0
H 6= ∅. It holds that

Y e =
∑
j∈S0

βY,jX
e
j +

∑
k∈S0

H

κY,kH
e
k + εeY for all e ∈ E , (34)

where
∑

k∈S0
H
κY,kH

e
k + εeY is independent of Xe

S0 and has the same distribution with

mean zero for all e ∈ E. This holds under the following conditions (a)-(c):

(a) the experiments e ∈ E arise as do- or soft-interventions;

(b) there are no interventions on Y , on nodes in S0
H or on any ancestor of S0

H ;

(c) there is no d-connecting path between any node in S0 and S0
H .

Proof. Assumption 1 follows immediately from (33) or (34), respectively. From the

definition of the interventions, as described in Section 4.2, the justification for (33) fol-

lows and hence the claim assuming condition (i). When invoking condition (ii), we show

now that (a)-(c) imply (34) and the required conditions. Due to (a) and (b), we have

Equation (34) and we know that the distribution of

ηe :=
∑
k∈S0

H

κY,kH
e
k + εeY

is the same for all e ∈ E . Furthermore, ηe is independent of Xe
S0 because of (c).

C. Model Misspecification

Under model misspecification S(E) may not be a subset of the direct causes of Y anymore.

The following proposition shows that in most cases it is still a subset of the ancestors of
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E X1 X2 Y

H

Fig. 9. This graph corresponds to a model misspecification in the sense that the assumptions of
Proposition 1 and assumption (ii) c) of Proposition 4 are not satisfied. Indeed, we find that H0,S is
violated for S = S0 := {X2}. And since H0,S is satisfied for both S = {X1, X2} and S = {X1}, we
obtain S(E) = {X1}. Therefore, S(E) is not a subset of S0 but it is still a subset of the ancestors
AN(Y ) of Y , see Proposition 5.

Y (and is therefore a subset of possibly indirect causes of Y ). The proposition is formu-

lated in the general case, see Section 6.1. In order to formulate the required faithfulness

assumption, we consider an environment variable E.

Proposition 5. Consider a SEM over nodes (Y,X2, . . . , Xp+1, H1, . . . ,Hq) with hid-

den variables H1, . . . ,Hq. We now augment the corresponding graph by a discrete environ-

ment variable E ∈ E [e.g. Pearl, 2009] that satisfies P (E = e) > 0 for all e ∈ E and has

a directed edge to any node that is do- or soft-intervened on. Let us assume that the joint

distribution over (Y,X2, . . . , Xp+1, H1, . . . ,Hq, E) is faithful w.r.t. the augmented graph.

Then

S(E) :=
⋂

S :H0,S,nonlin(E) is true

S ⊆ AN(Y ) ∩ {X2, . . . , Xp+1}.

In particular, this proposition still holds under model misspecification when for some do-

interventions, for example, S0 = PA(Y )∩{X2, . . . , Xp+1} does not satisfyH0,S,nonlin(E) (28);

Figure 9 shows an example. The following proof also shows that there are model misspec-

ifications where we expect S(E) = ∅. If Y is directly intervened on, for example, under

the assumption of Proposition 5, we will not be able to find any set S that satisfies (28).

Proof. We first note that H0,S,nonlin(E) (29) holds if and only if Y ⊥⊥ E |XS . Because

of faithfulness this is the same as Y and E being d-separated given XS in the augmented

graph. Assume now that the latter holds for some set S ⊆ {X2, . . . , Xp+1}. (Such a set S

does not exist if Y is directly intervened on.) The proposition follows if we can construct

a set S̃ ⊆ AN(Y ) ∩ {X2, . . . , Xp+1} that satisfies Y and E being d-separated given XS̃ .

Assume that not all nodes in S are ancestors of Y . Define then W ∈ S to be one

“youngest” non-ancestor in S, that is, W 6∈ AN(Y ) and there is no directed path from W

to any other node in S. (Such a node must exist since otherwise all youngest nodes of S

are in AN(Y ), which implies S ⊆ AN(Y ).) We now prove that for

S̃ := S \ {W}

we have Y and E are d-separated given XS̃ . To see this, consider any path from E to Y .

If this path does not go through W , the path is blocked by S̃ because it was blocked by

S = S̃ ∪ {W} (removing nodes outside a path can -if anything- only block it). Consider

now a path that passes W and the two edges connected to W that are involved in this

path. If both edges are into W , we are done because removing W does not open the

path. If one of these edges goes out of W , there must be a collider on this path which is a
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descendant of W (E does not have incoming edges and W is not an ancestor of Y ). But

because W is the youngest node in S neither the collider nor any of its descendants is in

S. We can therefore remove W and the path is still blocked.

D. Potential Outcomes and Invariant Prediction

We now sketch that the assumption of invariant prediction can also be satisfied in a

potential outcome framework [e.g. Rubin, 2005]: as long as we do not intervene on the

target variable Y , the conditional distributions of Y given the of causal predictors remains

invariant. (Here, we discuss the nonlinear setting and therefore develop a result that

corresponds to Remark 2 rather than Proposition 1.) Although other formulations may be

possible, too, we adopt the counterfactual language introduced by Richardson and Robins

[2013] who refer to finest fully randomised causally interpretable structured tree graphs

(FFR-CISTG) [Robins, 1986]. We further consider the nonlinear version (29) of invariant

prediction, see also Remark 2.

Similar as in [Richardson and Robins, 2013, Definition 1], we consider random vari-

ables V := (X1 = Y,X2, . . . , Xp, Xp+1) and assume the existence of counterfactual vari-

ables Xj(r̃), for any assignment r̃ to a subset R ⊆ V and for all j ∈ {1, . . . , p + 1}. We

further assume

(C1) “consistency and recursive substitution” [Richardson and Robins, 2013, equa-

tion (14)] and

(C2) “FFR-CISTG independence” [Richardson and Robins, 2013, equation (17)] .

To ease notation, we require Xj(xj = r̃) = r̃ rather than Xj(xj = r̃) = Xj [Richardson

and Robins, 2013, p. 21].

Proposition 6. Consider random variables V := (X1 = Y,X2, . . . , Xp, Xp+1) and

denote the causes of Y by P := PA(1). For each environment e ∈ E consider a set

Re ⊆ V\{Y } of treatment variables and an assignment r̃e, that is Xe
j := Xj(r̃

e). Assuming

(C1) and (C2), i.e. an FFR-CISTG model, we have that

Y (r̃e) |P(r̃e) = q
d
= Y (r̃f ) |P(r̃f ) = q (35)

for all e, f ∈ E and for all q such that both sides of (35) are well-defined. Therefore, the

set P of parents satisfies (29).

We have already seen in Appendix B, that we can allow for some hidden variables, i.e.,

the assumption (C2) can be relaxed further.

Proof. We have for all e ∈ E

Y (r̃e)
∣∣ P(r̃e) = q = Y (r̃e)

∣∣ (P \R)(r̃e) = qP\R, (P ∩R)(r̃) = r̃P∩R

(∗)
= Y (r̃e)

∣∣ (P \R)(r̃e) = qP\R
(+)
= Y

∣∣ (P \R) = qP\R, (P ∩R) = r̃P∩R,

where we have used (P ∩R)(r̃) = r̃P∩R in (∗) and both (C1) and the modularity prop-

erty [Richardson and Robins, 2013, Proposition 16] in (+). This proves the statement

because the latter expression is an observational distribution. All equality signs should be

understood as holding in distribution.
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E. Proof of Proposition 3

Proof. The residuals Y − Xγ for γ ∈ Rp are given by g(H, ε) + (γ∗ − γ)f(H, η) +

Z1I=1(γ∗−γ). The two environments E are equivalent to conditioning on I = 0 for the first

environment and I = 1 for the second environment. Since I,H, ε, η, Z are independent and

Z has a full-rank covariance matrix, the distribution of the residuals can only be invariant

between the two environments if γ − γ∗ ≡ 0. Hence the test of H0,S,hidden(E) will be

rejected for S 6= S∗, whereas the true null H0,S∗,hidden(E) is accepted with probability at

least 1−α by construction of the test and the result follows by the definition of Ŝ in (26).

F. Proofs of Section 4.3

F.1. Proof of Theorem 2 (i)
Proof. As shown in Proposition 1 we have S(E) ⊆ PA(Y ) because the null hypoth-

esis (5) is correct for S∗ = PA(Y ). We assume that S(E) 6= PA(Y ) and deduce a

contradiction.

As in (9) we define the regression coefficient

βpred,e(S) := argminβ∈Rp:βk=0 if k/∈S E(Y e −Xeβ)2.

We then look for sets S ⊆ {1, . . . , p} such that for all e1, e2 ∈ E

βpred,e1(S) = βpred,e2(S) and Re1(S)
d
= Re2(S),

with Re1(S) := Y e1 −Xe1βpred,e1(S) and Re2(S) := Y e2 −Xe2βpred,e2(S) (“constant beta”

and “same error distribution”). If S(E) 6= PA(Y ), then there must be a set S + PA(Y )

whose null hypothesis is correct and that satisfies βpred,e(S) 6= βpred,e(S∗) = γ∗. This set

S leads to the following residuals for e = 1:

R1(S) = Y 1 −
p+1∑
k=2

βpred,1(S)kX
1
k =

p+1∑
k=2

αkX
1
k + ε1

1,

with αk := γ∗k−βpred,1(S)k = γ∗k−βpred,e(S)k for any e ∈ E and αk 6= 0 for some (possibly

more than one) k ∈ {2, . . . , p+ 1}.
Among the set of all nodes (or variables) X1

k that have non-zero αk, we consider a

“youngest” node X1
k0

with the property that there is no directed path from this node to

any other node with non-zero αk. We further consider experiment e0 with Ae0 = {k0}.
This yields

R1(S) = αk0X
1
k0 +

p+1∑
k=2,k 6=k0

αkX
1
k + ε1

1 and (36)

Re0(S) = αk0a
e0
k0

+

p+1∑
k=2,k 6=k0

αkX
1
k + ε1

1, (37)

Since E(X1
k0

) 6= ae0k0 , R
e0(S) and R1(S) cannot have the same distribution. This yields a

contradiction.
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F.2. Proof of Theorem 2 (ii)
Proof. As before we obtain equations (36) and (37) for a “youngest” node X1

k0
among

all nodes with non-zero αk0 and an experiment e0 with Ae0 = {k0}. We now iteratively

use the structural equations in order to obtain

R1(S) = αk0ε
1
k0 +

p+1∑
k=1,k 6=k0

α̃kε
1
k and (38)

Re0(S) = αk0A
e
k0ε

1
k0 +

p+1∑
k=1,k 6=k0

α̃kε
1
k. (39)

Since all εek are jointly independent and E(Ae0k0)
2 6= 1, R1(S) and Re0(S) cannot have the

same distribution. This contradicts the fact that the null hypothesis (5) is correct for S.

The proof works analogously for the shifted noise distributions.

F.3. Proof of Theorem 2 (iii)
Proof. We start as before and obtain analogously to equations (38) and (39) the

equations

R1(S) = αk0ε
1
k0 +

p+1∑
k=1,k 6=k0

α̃kε
1
k and

R2(S) = αk0Ak0ε
1
k0 +

p+1∑
k=1,k 6=k0

D̃kε
1
k,

where the D̃k are continuous functions of the random variables As, s ∈ {2, . . . , p+1}\{k0}
and βe=2

j,s , j, s ∈ {2, . . . , p + 1} (and therefore random variables themselves). R1(S) and

R2(S) are supposed to have the same distribution. It follows from Cramér’s theorem

[Cramér, 1936] that Ak0ε
1
k0

must be normally distributed. But then it follows that

E[(Ak0)
4]E[(ε1

k0)
4] = E[(Ak0ε

1
k0)

4] = 3E[(Ak0ε
1
k0)

2]2

= 3E[(Ak0)
2]2E[(ε1

k0)
2]2 = E[(Ak0)

2]2E[(ε1
k0)

4]

and therefore

Var(A2
k0) = 0

which means P [Ak0 ∈ {−c, c}] = 1 for some constant c ≥ 0. This contradicts the assump-

tion that Ak0 has a density.

F.4. Proof of Theorem 3
Proof. The proof follows directly from Lemma 1 (see below) and the fact that faith-

fulness is satisfied with probability one [Spirtes et al., 2000, Theorem 3.2]. Assume that

the null hypothesis (10) is accepted for S with S∗ \ S 6= ∅. Lemma 1 implies that with

probability one, we have αk0 6= 0, where α is defined as in (40). (Otherwise, we construct

a new SEM by replacing the equation for Y with Yk0 :=
∑

k∈S∗\{k0} γ
∗
kXk + ε1 and re-

moving all equations for the descendants of Y . Equation (41) then reads a violation of

faithfulness since there is a path between k0 and Yk0 via nodes in S∗ \S that is unblocked
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given S \ {k0}.) But if αk0 6= 0, we can use exactly the same arguments as in the proof of

Theorem 2.

Lemma 1. Assume that the joint distribution of (X1, . . . , Xp+1) is generated by a struc-

tural equation model (19) with all non-zero parameters βj,k and σ2
j drawn from a joint den-

sity w.r.t. Lebesgue measure. Let Xk0 denote a youngest parent of target variable Y = X1.

Let S be a set with S∗ \ S 6= ∅, that is, some of the true causal parents are missing in the

set S. Consider the residuals

Res(Y ) =
∑
k∈S∗

γ∗kXk −
∑
k∈S

βpred,1(S)kXk + ε1
1 (40)

=
∑
k∈S∗

αkXk +
∑
k/∈S∗

αkε
1
k

where the second equation is obtained by iteratively using the structural equations except

the ones for the parents S∗ of Y .

Then for almost all parameter values, we have: αk0 = 0 implies k0 ∈ S and

Xk0 ⊥ Yk0 |XS̃\{k0}, (41)

where Yk0 :=
∑

k∈S∗\{k0} γ
∗
kXk + ε1 and S̃ := S ∩ ND(k0) with ND(k0) being the non-

descendants of k0.

Proof. With probability one, we have γ∗k0 6= 0. Hence, αk0 = 0 can happen only if

k0 ∈ S or S contains a descendant of Xk0 (otherwise αk0 = γ∗k0 6= 0). We will now show

that in fact k0 ∈ S must be true. Let the random vector XS contain all variables Xk with

k ∈ S and let it be topologically ordered such that if Xk2 is a descendant of Xk1 , it appears

after Xk1 in the vector XS . Assume now that S contains a descendant of Xk0 . W.l.o.g., we

can assume that the |S|-entry of XS (i.e. its last component) is a “youngest” descendant

Xs of Xk0 in S, that is, there is no directed path from Xs to any other descendant of Xk0

in S. The entry (|S|, |S|) of the matrix
(
EX1

S
t
X1
S

)
is the only entry depending (additively)

on the parameter σ2
s , we call this entry d. With

(
EX1

S
t
X1
S

)
=:

(
A b

bT d

)
it follows(

EX1
S
t
X1
S

)−1
=

(
A−1 + A−1bbTA−1

d−bTA−1b
A−1b

d−bTA−1b
bTA−1

d−bTA−1b
1

d−bTA−1b

)
=:

(
A−1 0

0 0

)
+

1

d− bTA−1b
C

Observe that
(
EX1

S
t
X1
S

)
is non-singular with probability one (if the matrix is non-singular,

the full covariance matrix over (X2, . . . , Xp+1) is non-singular, too) and

βpred,1(S) =
(
EX1

S
t
X1
S

)−1
ξ

for ξ := EX1
S
t
Y 1 6= 0 (otherwise βpred,1(S) would be zero and thus αk0 = γ∗k0 6= 0).

According to formula (40) and αk0 = 0, computing the linear coefficients βpred,1(S)

and subsequently using the true structural equations, leads to the following relationship

between the true coefficients βj,k and γ∗:

γ∗k0 = ηtS β
pred,1(S),
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where ηS depends on the true coefficients βj,k and is constructed in the following way: the

i-th component of ηS is obtained by multiplying the path coefficients between Xk0 and Xi.

For example, the two directed paths Xk0 → X5 → X3 → Xi and Xk0 → X5 → Xi, lead to

the corresponding ith entry ηS,i = β1
5,k0

β1
3,5β

1
i,3 + β1

5,k0
β1
i,5. All non-descendants of k0 have

a zero entry in ηS , k0 itself has the entry one in ηS if k0 ∈ S (we will see below that this

must be the case). But then, we have:

γ∗k0 = ηtS β
pred,1(S) = ηtS

(
EX1

S
t
X1
S

)−1
ξ = ηtS

(
A−1 0

0 0

)
ξ +

1

d− bTA−1b
ηtS C ξ.

(42)

If Xs 6= Xk0 then ξ does not depend on σ2
s (it does if Xs = Xk0). We must then have that

ηtSCξ = 0 since otherwise it follows from (42) that

d = bTA−1b +
ηtS C ξ

γ∗k0 − η
t
S

(
A−1 0

0 0

)
ξ

,

which can happen only with probability zero (it requires a “fine-tuning” of the parameter

σ2
s ; note that d is depending on σ2

s).

But if ηtSCξ = 0 then γ∗k0 = (η1 · · · η|S|−1)A−1(ξ1, · · · ξ|S|−1) = ηt
S̃1

βpred,1(S̃1) with

S̃1 := S \ {s}, an equation analogue to the first part of (42). We can now repeat the same

argument for S̃1 (assume that S̃1 contains a descendant of k0, then consider the youngest

descendant of k0 in S̃1. . . ) and obtain S̃2. After ` iterations, we obtain γ∗k0 = ηt
S̃
βpred,1(S̃),

where S̃ := S̃` does not contain any descendant of k0. The only non-zero entry of ηS̃ is

the one for k0 (otherwise all remaining ηS̃ entries would be zero which implies γ∗k0 = 0).

We have thus shown that k0 ∈ S and that βpred,1(S̃)k0 = γ∗k0 with S̃ := S∩ND(k0). We

obtain (41) with the following argument: regressing Y on S̃ yields a regression coefficient

γ∗k0 for Xk0 ; thus, regressing Yk0 = Y − γ∗k0Xk0 on S̃ yields a regression coefficient zero for

Xk0 .

G. Experimental settings for numerical studies

We sample nobs data points from an observational and nint data points from an interven-

tional setting (|E| = 2). We first sample a directed acyclic graph with p nodes that is

common to both scenarios. In order to do so, we choose a random topological order and

then connect two nodes with a probability of k/(p − 1). This leads to an average degree

of k. Given the graph structure, we then sample non-zero linear coefficients with a ran-

dom sign and a random absolute value between a lower bound lbe=1 and an upper bound

ube=1 = lbe=1 + ∆e=1
b . We consider normally distributed noise variables with a random

variance between σ2
min and σ2

max. We can then sample the observational data set (e = 1).

For the interventional setting (e = 2), we choose simultaneous noise interventions

(Section 4.2.2) with the extension of changing linear coefficients, that is for j ∈ A (where

even A is random and can include the later target of interest Y ), we have εe=2
j = Ajε

e=1
j

and (possibly) βe=2
j,s 6= βe=1

j,s . The set A of intervened nodes contains either a single node or

a fraction θ of nodes. We chose Aj to be uniformly distributed random variables that take

values between amin and amin + ∆a. The linear coefficients βe=2
j,s are chosen either equal

to βe=1
j,s or according the same procedure with corresponding bounds lbe=2 and ube=2.
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All parameters were sampled independently for each of the scenarios, uniformly in a

given range that is shown below in brackets (or with given probability for discrete param-

eters). (1) The number nobs of samples in the observational data is chosen uniformly from

{100, 200, 300, 400, 500}. (2) The number nint of samples in intervention data is chosen

uniformly from {100, 200, 300, 400, 500}. (3) The number p of nodes in the graph is chosen

uniformly from {5, 6, 7, . . . , 40}. (4) The average degree k of the graph is chosen uniformly

from {1, 2, 3, 4}. (5) The lower bound lbe=1 is chosen uniformly from {0.1, 0.2, . . . , 2}.
(6) The maximal difference ∆e=1

b between largest and smallest coefficients is chosen uni-

formly from {0.1, 0.2, . . . , 1}. (7) The minimal noise variance σ2
min is chosen uniformly from

{0.1, 0.2, . . . , 2} and (8) the maximal noise variance σ2
max uniformly from {0.1, 0.2, . . . , 2},

yet at least equal to σ2
max. (9) The lower bound aj,min for the noise multiplication is chosen

uniformly from {0.1, 0.2, . . . , 4}. (10) The difference ∆a between upper and lower bound

aj,min for noise multiplication is chosen to be zero with probability 1/3 (which results

in fixed coefficients) and otherwise uniformly from {0.1, 0.2, . . . , 2}. (11) The interven-

tional coefficients are chosen to be identical (βe=2
j,s = βe=1

j,s ) with probability 2/3, otherwise

they are chosen uniformly between lbe=2 and ube=2. (12) The lower bound lbe=2 for new

coefficients under interventions is chosen as the smaller value of two uniform values in

{0.1, 0.2, . . . , 2} and (13) the upper bound ube=2 for new coefficients under interventions

as the corresponding larger value. (14) With probability 1/6 we intervene only on one

(randomly chosen) variable, that is |A| = 1. (15) Otherwise, the inverse fraction 1/θ

is chosen uniformly from {1.1, 1.2, . . . , 3}, that is the fraction of intervened nodes varies

between θ = 1/3 and θ = 1/1.1.
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