
Multivariate Statistics – non-negative matrix factorisation and sparse dictionary learning

The PCA decomposition is by construction optimal solution to

argminA∈Rn×q ,H∈Rq×p ‖X −AH‖22 under constraint : HHt = 1q×q. (1)

1. Entries in A are often called scores. Each of the n rows of A can be thought of as containing
the “activity-coefficients” of the basis vectors in the “dictionary” H.

2. Each of the q rows of the “dictionary” H contains a basis vector (which in the PCA solution
is just the corresponding eigenvector v1, . . . , vq of XtX) and this is sometimes called an atom.1

With PCA we get the best low-rank approximation of X, where best is measured in a Euclidean
metric. PCA learns both the score matrix A and the ”dictionary” H. Incidentally, if the PCA is
trained on small patches of natural images, the PCA objective (1) leads to very similar dictionaries
as a real-valued Fourier or DCT fixed basis, see Figure 1 from Mairal, Bach and Ponce (2014). Before
adapting the objective in (1) to different applications, a quick comparison with fixed dictionaries.

2.3. Clustering or vector quantization 57

(a) DCT Dictionary. (b) Principal components.

Figure 2.4: On the right, we visualize the principal components of 400 000 randomly
sampled natural image patches of size 16× 16, ordered by decreasing variance, from
top to bottom and left to right. On the left, we display a discrete cosine transform
(DCT) dictionary. Principal components resemble DCT dictionary elements.

(a) Original Image. (b) Principal components.

Figure 2.5: Visualization of the principal components of all overlapping patches
from the image tiger. Even though the image is not natural, its principal components
are similar to the ones of Figure 2.4(b).

Figure 1: The left contains in each panel from top left to bottom a row of H if the dictionary is a
discrete cosine transform. The right shows the same for the PCA solution of H if trained on 400000
natural images. Now each row of H is a panel and corresponds to the eigenvector of the empirical
covariance matrix of the pixel intensities across all these natural images. The two dictionaries H
turn out to be quite similar.

1We can in general also use ‘basis’ instead of ‘dictionary’ and ‘basis vector’ instead of ‘atom’. However, the terms
‘dictionary’ and ‘atom’ are slightly more general. A dictionary can, for example, be overcomplete if it contains p′

atoms in a p-dimensional space and p′ > p.
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Comparison with fixed basis/dictionary. A quick comparison with Fourier or wavelet analysis
and similar harmonic analysis tools. In Fourier analysis (or its real-valued equivalent discrete cosine
transform DCT) and wavelet analysis, the matrix H is fixed and known and is generally of the
same dimension p as the original data (so q = p). Each row of H contains for DCT/Fourier basis a
sine-wave or cosine-wave at a given frequency (for 1d-signals) or a wavelet (for images) 2 etc. We
then search for the coefficients in the new basis given by the rows of H by solving

Â = argminA∈Rn×q ‖X −AH‖22. (2)

Since H is usually of dimension p× p (and in particular the rows of H form an orthogonal basis of
Rp for both DCT and wavelet transforms in that HtH = 1p×p), we have that the objective is 0 for
the solution since X = ÂH for the optimal solution. We can then write the i-th data sample (which
can be an image, a time-series or gene expressions for one patient etc) as a linear superposition of
the basis vectors (the rows of H)

Xi· =

p∑
k=1

ÂikHk·, i ∈ {1, . . . , n}.

If q is large, perhaps even q = p for a wavelet basis or or q > p for an overcomplete dictionary,
often just the largest coefficients of A are kept for compression and/or de-noising. Either hard-
or soft-thresholding are popular, where the latter can be formulated as the solution to the convex
`1-penalized optimisation problem:

Âλ = argminA∈Rn×q

1

2
‖X −AH‖22 + λ‖A‖1. (3)

It will be shown further below that the solution Âλ is for orthogonal dictionaries (HHt = 1q×q)
simply a soft-thresholded version of Â = Â0 in that for all 1 ≤ i ≤ n and 1 ≤ k ≤ q,

Âλik =


Â0
ik − λ if Â0

ik > λ

0 if − λ ≤ Â0
ik ≤ λ

Â0
ik + λ if Â0

ik < −λ
.

By soft-thresholding the coefficients, we only keep the large coefficients. This leads to:

(i) higher compression as only a few non-zero entries of A need to be stored (for example this
strategy is used for the JPEG format for image compression).

(ii) de-noising as noise in an image will be removed by increasing the value of λ

(iii) and also to a loss of signal.

The value of λ thus needs to balance the loss of signal with the noise reduction effect, analogous
to the number q of PCA components that are kept.

Learning a dictionary. While we can work with a fixed basis H like a Fourier or wavelet basis,
we can also learn a basis (or dictionary for an overcomplete basis, that is if q > p) that is optimally
adapted to the task.

2In image analysis, each image corresponds to one row in X
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(i) Non-negative matrix factorisation (NNMF) for non-negative data X:

argminA∈Rn×q ,H∈Rq×p ‖X −AH‖22 under constraint A ≥ 0 and H ≥ 0, (4)

where the non-negativity constraint is understood elementwise in the matrix. The NMF
formulation is useful for non-negative data X ≥ 0 (say pixel intensities in images or count
data in general) and induces sparsity in that many entries of A and H will be zero in the
solution. Note that the objective in (1) for the original PCA is zero as soon as q ≥ p because
then X = AH. This is not necessarily the case for NMF and sparse dictionary learning where
even values of q > p can be useful. If q > p, the basis H is overcomplete since the solutions to

argminA∈Rn×q ‖X −AH‖22.

are not unique any longer and H is then often called a dictionary. The rows of H are again
sometimes called atoms and they together define the “learned” dictionary H.

(ii) Sparse dictionary learning / sparse PCA

argminA∈Rn×q ,H∈Rq×p ‖X −AH‖22 under constraint ‖A‖1 ≤ τA and ‖H‖1 ≤ τH . (5)

This can be equivalently formulated (using Lagrange multipliers) for suitable Langrange mult-
pliers λA, λH ≥ 0 as

argminA∈Rn×q ,H∈Rq×p ‖X −AH‖22 + λA‖A‖1 + λH‖H‖1, (6)

where ‖A‖1 is the sum of the absolute values of all entries in A. Two special cases are3:

(a) If λA = 0, the penalty is only on the dictionary which implies that the learned atoms (the
rows of H) will be sparse with many zero entries. This is often called sparse PCA.

(b) If λH = 0, then there is only a penalty on the activity coefficients (or scores) in A and the
dictionary is chosen such that the activities can be as sparse as possible. This is typically
called sparse dictionary learning. For natural images, the learnt dictionaries are often
very similar to Gabor filters which again resemble the receptive fields of neurons in the
early visual cortex. Note that in general also a fixed wavelet basis achieves very sparse
activities A for natural images and this is the reason why denoising with soft-thresholding
of wavelet coefficients works in practice. The JPEG compression algorithm also relies on
this fact by keeping only the large coefficients in A for a wavelet dictionary.

Two examples for dictionaries H if optimised via NMF or sparse dictionary learning are shown in
Figures 2 and 3 for a face dataset and natural images from Mairal et al (2014).

Optimisation. The optimal PCA solution in (1) can be computed exactly via the eigenvalues
decomposition or singular value decomposition, as discussed. Optimising the objectives (4) and (5)
is harder since the objective functions are not jointly convex in A and H. Let us take a look at (5)
again (the situation is analogous for NMF):

(Â, Ĥ) = argminA∈Rn×q ,H∈Rq×p ‖X −AH‖22 + λA‖A‖1 + λH‖H‖1. (7)

3In both of these special cases, we need to put a constraint on the size of A in the first case and H in the second
case, for example by bounding ‖A‖22 (resp. ‖H‖22) or by bounding each column of A (resp. each row of H) to have
norm less than or equal to 1 (or any other fixed constant).
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Extension to NMF and sparse PCA
Natural Patches

(a) PCA (b) NNMF (c) DL

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro Dictionary Learning for signal reconstruction 38/43

Figure 2: The dictionaries H if trained on natural images via (a) PCA, (b) NMF and (c) sparse
dictionary learning. Each panel corresponds to one row in H. From Mairal et al (2010)

Extension to NMF and sparse PCA
Faces: Extended Yale Database B

(a) PCA (b) NNMF (c) DL

Francis Bach, Julien Mairal, Jean Ponce and Guillermo Sapiro Dictionary Learning for signal reconstruction 36/43

Figure 3: The same as in Figure 2 if trained on face data. From Mairal et al (2010)

If we fix A and optimise for H (or vice versa) then we get convex optimisation problems:

fix H : Â = argminA∈Rn×q ‖X −AH‖22 + λA‖A‖1 (8)

fix A : Ĥ = argminH∈Rq×p ‖X −AH‖22 + λH‖H‖1. (9)

We can iterate (8) and (9) until some convergence criterion is reached. Since the overall objective
is not jointly convex in (A,H), there is no guarantee that the global optimum will be attained and
multiple starts from different starting values are usually performed (and the best solution kept in
the end).

The optimisations (8) and (9) are standard `1-penalized regressions (Lasso). Take the first opti-
mization (8) as an example. It can be solved row-wise for Â as the objective decomposes over the
rows Ai· for i = 1, . . . , n of A as

‖X −AH‖22 + λA‖A‖1 =
n∑
i=1

[
‖Xt

i· −HtAti·‖22 + λA‖Ai·‖1
]
,
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Figure 4: Sparse PCA solutions on natural images. From Mairal et al (2010)

where the transpose operation is performed after indexing so that for example Xt
i· is the i-th row

of X written as a column-vector. The important point is that the objective decomposes over
the rows of A, that is the objective can be written as a sum and the i-th summand depends on
A through the i-th row Ai· only. Hence the rows of A can be optimised separately. Defining for a
given i ∈ {1, . . . , n},

Y := Xt
i· ∈ Rp, Z := Ht ∈ Rp×q and b := Ati· ∈ Rq,

we get the solution of the transpose of row i, which we denote by q-dimensional column vector
column-vector b = Âti· ,as

argminb‖Y − Zb‖22 + λA‖b‖1, (10)

which is a standard sparse regression problem and can be solved for example with glmnet or lars
in R.

The second optimisation (9) decomposes column-wise over H and can be solved analogously.
Note that if Z is orthogonal (ZtZ = 1q×q) –as for example the case if we take for H a fixed wavelet
or Fourier basis– then the solutions to (10) are especially simple.

Let b(0) be the solution in the absence of a penalty:

b(0) := argminb
1

2
‖Y − Zb‖2 = (ZtZ)−1ZtY.

Note that this solution is only well defined if q ≤ p as otherwise ZtZ will have at most rank
min{q, p} < p and will hence not be full-rank. If q ≤ p and Z is orthogonal, the solution with
penalty is given by soft-thresholding:

b := argminb
1

2
‖Y − Zb‖22 + λ‖b‖1 = [b(0)]λ,

where

[x]λ =


x− λ if x > λ

0 if − λ ≤ x ≤ λ
x+ λ if x < −λ

.
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Note that the general solution is well defined even for q > p. However, is not a soft-thresholded
version of a least-squares estimator any longer, since the least-squares estimator does not exist.

Soft-thresholding the wavelet coefficients A and using [A]λ (for a fixed wavelet basis H) is thus
equivalent to solving (8), where the amount of shrinkage depends on the penalty parameter λ = λA.
Higher values of λ lead to more zero coefficients in the score matrix and thus to higher compression
if saving the coefficients, for example. Higher values of λ also lead to more de-noising but also to
a loss of signal in the image. The same tradeoff (higher compression and less noise but also loss of
some signal) applies to the choice of the penalty parameters in general.

Figure 5: An example of compressed sensing. The image on the left is missing many pixels. If
expanded in a wavelet basis, we can search for the sparsest vector that fits the observed pixels and
then use this coefficient vector to complete the image on the unseen pixels as done in the image on
the right. (The intermediate images can be ignored here).

Compressed sensing. Assume we have fixed a dictionary H (for example a wavelet basis for
images) such that the coefficient matrix A is usually sparse. Assume we observe just a few entries
of a new vector Y ∈ Rp (for example observe just a few pixels in a new image – the vector Y can
be thought of asa row in the larger matrix X), such that for a set S ⊆ {1, . . . , p} we observe YS
and do not observe the complement YSc . Then we can ask for the sparsest set of coefficients that
match the observed pixels YS as well as possible by just repeating (10) on the observed part of the
vector:

b̂ = argminb∈Rq ‖YS − ZS·b‖2 + λA‖b‖1, (11)

This allows to “complete the observations” by extending to the unobserved part as

Ŷ = Zb̂.

If we make the penalty λA very small in (12), then we will converge for λA to the so-called basis
pursuit solution

b̂ = argminb∈Rq ‖b‖1 such that YS = ZS·b, (12)

that is we look for the sparsest vector b such that the observed points are matched exactly. Note
that in general |S| < q and a perfect match YS ≡ ZS·b can be obtained for multiple solutions b.
We seek here the sparsest among all these solutions, which is obtained as the limit of (12) for
λA → 0. In this case the solution Ŷ will match the observed part exactly, that is ŶS = YS . The
reconstruction of the entire vector Y will in general succeed if there is a sparse approximation b
such that Y ≈ Zb. There are also some design conditions on Z, which are usually satisfied for an
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orthogonal matrix but some non-orthogonality is also possible 4

The reconstruction of Y from incomplete observations is sometimes called compressed sensing.
Note that a crucial element for the success is that Y (or a row of Xi·) can be represented by a sparse
combination of the rows of the dictionary H, that is by a sparse row of Ai·, where a row is called
sparse here again if it has a low `1-norm, that is if ‖Ai·‖1 is small, or if it has a low `0-quasinorm,
that is if ‖Ai·‖0 =

∑p
j=1 1{Aij 6= 0}, the number of non-zero entries in this row, is small. This

is a further motivation for trying to find a dictionary H in which A is sparse (besides the data
compression and potential noise reduction effect).

4the so-called sparse eigenvalues of the sensing matrix –here ZS·– need to be bounded away from 0, which means
that we need minb′:‖b′‖2=1,‖b′‖0≤|S| ‖ZS·b‖2 > δ for some constant δ > 0 or similar conditions. A setting where these
conditions hold, with high probability, is if we observe ΦZ where Φ is a random projection into a lower-dimensional
space, for example by choosing the entries in Φ iid N (0, 1), which corresponds to observing random linear combinations
of the pixels.
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