**PhD student** at the Department of Mathematics (D-MATH), ETH Zurich.

My main research interests are probability theory and mathematical physics, especially:

- Random walks and random interlacements
- Discrete Gaussian free field
- Percolation

Department of Mathematics

ETH Zürich

HG E 66.1

Rämistrasse 101

8092 Zürich

Switzerland

Phone: +41 44 632 3443

E-mail: maximilian.nitzschner[at]math.ethz.ch

You can find my CV here.

- M. Nitzschner and A.-S. Sznitman: Solidification of porous interfaces and disconnection

Accepted for publication in*J. Eur. Math. Soc.*, also available at arXiv:1706.07229 (46 pages).

- M. Nitzschner: Disconnection by level sets of the discrete Gaussian free field and entropic repulsion
*Electron. J. Probab.***23**(105), pp. 1-21, 2018.

- A. Chiarini and M. Nitzschner: Entropic repulsion for the Gaussian free field conditioned on disconnection by level-sets
*Probab. Theory Relat. Fields***177**(1-2), pp. 525-575, 2020.

- A. Chiarini and M. Nitzschner: Entropic repulsion for the occupation-time field of random interlacements conditioned on disconnection
*Ann. Probab.***3**(48), pp. 1317–1351, 2020.

- Winter term 2013/14: Tutorial for
*Linear Algebra I*(Univ. Heidelberg). - Winter term 2014/15: Tutorial for
*Introduction to Probability Theory and Statistics*(Univ. Heidelberg). - Summer term 2015: Tutorial for
*Probability Theory I*(Univ. Heidelberg). - Winter term 2015/16: Tutorial for
*Partial Differential Equations*(Univ. Heidelberg). - Winter term 2015/16: Tutorial for
*Theoretical Statistical Physics*(Univ. Heidelberg). - Summer term 2016: Tutorial and coordination for
*Probability Theory II*(Univ. Heidelberg). - Spring term 2017: Tutorial for
*Applied Stochastic Processes*(ETH Zurich). - Fall term 2017: Tutorial and coordination for
*Mathematics III*(ETH Zurich). - Fall term 2018: Coordination for
*Mathematics III*(ETH Zurich). - Spring term 2019: Tutorial for
*Applied Stochastic Processes*(ETH Zurich). - Fall term 2019: Coordination for
*Mathematics III*(ETH Zurich). - Spring term 2020: Tutorial for
*Brownian Motion and Stochastic Calculus*(ETH Zurich).