Extremal Bounds for Bootstrap Percolation in the Hypercube

Jonathan Noel

Joint work with Natasha Morrison

University of Oxford

DMO Seminar, McGill University

April 4, 2016
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy. At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected. The process terminates when no additional squares can be infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.
Consider an $n \times n$ grid in which each square is either infected or healthy.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.

The process terminates when no additional squares can be infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.

The process terminates when no additional squares can be infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.

The process terminates when no additional squares can be infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.

The process terminates when no additional squares can be infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.

The process terminates when no additional squares can be infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.

The process terminates when no additional squares can be infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.

The process terminates when no additional squares can be infected.
A “Coffee Time” Problem

Consider an $n \times n$ grid in which each square is either infected or healthy.

At each step of the process, a healthy square becomes infected if at least two of its neighbouring (vertical or horizontal) squares are infected.

The process terminates when no additional squares can be infected.

Question: What is the smallest number of initially infected squares needed to infect the whole $n \times n$ grid?
A Few Hints

Hint 1: An initial infection of size n suffices.

Hint 2: The solution is very simple (some people would say that it can be described in just one word!)
A Few Hints

Hint 1: An initial infection of size \(n \) suffices.

Hint 2: The solution is very simple (some people would say that it can be described in just one word!)

Jonathan Noel (Oxford) Bootstrap Percolation in the Hypercube
Hint 1: An initial infection of size n suffices.
Hint 1: An initial infection of size n suffices.
A Few Hints

Hint 1: An initial infection of size n suffices.

Hint 2: The solution is very simple (some people would say that it can be described in just one word!)
Bootstrap Percolation

More generally, let G be a graph and fix $r \in \mathbb{N}$. Fix an initial set $A_0 \subseteq V(G)$ of infected vertices. At each step of the process, a healthy vertex v becomes infected if at least r of its neighbours are already infected. This is known as the r-neighbour bootstrap process on G.

Definition: We say that A_0 percolates if every vertex of G is eventually infected.

Extremal Problem: Determine the minimum of $|A_0|$ over all sets $A_0 \subseteq V(G)$ such that A_0 percolates. (denoted $m(G, r)$)
More generally, let G be a graph and fix $r \in \mathbb{N}$.
More generally, let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $A_0 \subseteq V(G)$ of infected vertices.
More generally, let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $A_0 \subseteq V(G)$ of infected vertices.

At each step of the process, a healthy vertex v becomes infected if at least r of its neighbours are already infected.
More generally, let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $A_0 \subseteq V(G)$ of infected vertices.

At each step of the process, a **healthy** vertex v becomes **infected** if at least r of its neighbours are already infected.

This is known as the **r-neighbour bootstrap process** on G.
More generally, let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $A_0 \subseteq V(G)$ of infected vertices.

At each step of the process, a healthy vertex v becomes infected if at least r of its neighbours are already infected.

This is known as the r-neighbour bootstrap process on G.

Definition: We say that A_0 percolates if every vertex of G is eventually infected.
More generally, let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $A_0 \subseteq V(G)$ of infected vertices.

At each step of the process, a healthy vertex v becomes infected if at least r of its neighbours are already infected.

This is known as the r-neighbour bootstrap process on G.

Definition: We say that A_0 percolates if every vertex of G is eventually infected.

Extremal Problem: Determine the minimum of $|A_0|$ over all sets $A_0 \subseteq V(G)$ such that A_0 percolates. (denoted $m(G, r)$)
The Hypercube

Recall that the d-dimensional hypercube Q_d such that $V(Q_d) = \{0, 1\}^d$ and $uv \in E(Q_d)$ if u and v differ on one coordinate.

Examples:

- 000
- 100
- 010
- 001
- 011
- 101
- 110
- 111
- 0000
- 1000
- 0100
- 0010
- 0110
- 1010
- 1100
- 1110
- 0001
- 1001
- 0101
- 0011
- 0111
- 1011
- 1101
- 1111

Jonathan Noel (Oxford)

Bootstrap Percolation in the Hypercube
Recall that the \textit{\textbf{d}-dimensional hypercube} is the graph Q_d such that
Recall that the \textit{\textbf{\textit{d}}-dimensional hypercube} is the graph Q_d such that

- $V(Q_d) = \{0, 1\}^d$ and
Recall that the \textit{\(d\)-dimensional hypercube} is the graph \(Q_d\) such that

- \(V(Q_d) = \{0, 1\}^d\) and
- \(uv \in E(Q_d)\) if \(u\) and \(v\) differ on one coordinate.

\[\begin{array}{cccccccc}
000 & 100 & 010 & 001 & 011 & 101 & 110 & 111 \\
0000 & 1000 & 0100 & 0010 & 0110 & 1010 & 1100 & 1110 \\
0001 & 1001 & 0101 & 0011 & 0111 & 1011 & 1101 & 1111 \\
\end{array}\]
Recall that the \textit{\textbf{d-dimensional hypercube}} is the graph Q_d such that

- $V(Q_d) = \{0, 1\}^d$ and
- $uv \in E(Q_d)$ if u and v differ on one coordinate.

\textbf{Examples:}
Recall that the \textit{d-dimensional hypercube} is the graph Q_d such that

- $V(Q_d) = \{0, 1\}^d$ and
- $uv \in E(Q_d)$ if u and v differ on one coordinate.

\textbf{Examples:}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{hypercube_graph.png}
\end{figure}
Recall that the \textit{d-dimensional hypercube} is the graph Q_d such that
\begin{itemize}
 \item $V(Q_d) = \{0, 1\}^d$ and
 \item $uv \in E(Q_d)$ if u and v differ on one coordinate.
\end{itemize}

Examples:
The **2-neighbour process** in the hypercube is well understood:

Theorem (Balogh and Bollobás 2006)

The minimum cardinality of a percolating set for 2-neighbour bootstrap percolation in Q^d is $\lceil \frac{d}{2} \rceil + 1$. (That is, $m(Q^d, 2) = \lceil \frac{d}{2} \rceil + 1$.)

What about the r-neighbour process for $r \geq 3$?

Conjecture (Balogh and Bollobás 2006)

Let $r \geq 3$ be fixed and $d \to \infty$. Then $m(Q^d, r) = 1 + o(1) \cdot r(d - 1)$. Until recently, the best known lower bound was only linear in d.

Jonathan Noel (Oxford)
The 2-neighbour process in the hypercube is well understood:

Theorem (Balogh and Bollobás 2006) The minimum cardinality of a percolating set for 2-neighbour bootstrap percolation in Q_d is $\lceil \frac{d}{2} \rceil + 1$.

What about the r-neighbour process for $r \geq 3$?

Conjecture (Balogh and Bollobás 2006) Let $r \geq 3$ be fixed and $d \to \infty$. Then $m(Q_d, r) = 1 + o(1)$.
The 2-neighbour process in the hypercube is well understood:

Theorem (Balogh and Bollobás 2006) The minimum cardinality of a percolating set for 2-neighbour bootstrap percolation in Q_d is $\lceil \frac{d}{2} \rceil + 1$.

(That is, $m(Q_d, 2) = \lceil \frac{d}{2} \rceil + 1$).
The 2-neighbour process in the hypercube is well understood:

Theorem (Balogh and Bollobás 2006) The minimum cardinality of a percolating set for 2-neighbour bootstrap percolation in Q_d is $\lceil \frac{d}{2} \rceil + 1$.

(That is, $m(Q_d, 2) = \lceil \frac{d}{2} \rceil + 1$).

What about the r-neighbour process for $r \geq 3$?
The **2-neighbour process** in the hypercube is well understood:

Theorem (Balogh and Bollobás 2006) The minimum cardinality of a percolating set for 2-neighbour bootstrap percolation in Q_d is $\lceil \frac{d}{2} \rceil + 1$.

(That is, $m(Q_d, 2) = \lceil \frac{d}{2} \rceil + 1$).

What about the r-neighbour process for $r \geq 3$?

Conjecture (Balogh and Bollobás 2006) Let $r \geq 3$ be fixed and $d \to \infty$. Then

$$m(Q_d, r) = \frac{1 + o(1)}{r} \left(\begin{array}{c} d \\ r - 1 \end{array} \right).$$
The 2-neighbour process in the hypercube is well understood:

Theorem (Balogh and Bollobás 2006) The minimum cardinality of a percolating set for 2-neighbour bootstrap percolation in Q_d is $\left\lceil \frac{d}{2} \right\rceil + 1$.

(That is, $m(Q_d, 2) = \left\lceil \frac{d}{2} \right\rceil + 1$).

What about the r-neighbour process for $r \geq 3$?

Conjecture (Balogh and Bollobás 2006) Let $r \geq 3$ be fixed and $d \to \infty$. Then

$$m(Q_d, r) = \frac{1 + o(1)}{r} \left(\begin{array}{c} d \\ r-1 \end{array} \right).$$

Until recently, the best known lower bound was only linear in d.
There is a natural upper bound construction.

Definition:
The ith level of the hypercube to be the set of vertices with coordinate sum equal to i.

Upper Bound Construction:
Take all vertices on level $r-2$ and an approximate Steiner system on level r (which exists by a theorem of Rödl (1985)).

In the first step of the process, every vertex on level $r-1$ becomes infected. The infection now spreads upward and downward through Q^d "level by level.

This proves the upper bound $m(Q^d, r) \leq 1 + o(1) r(d/2 - 1)$.
There is a natural upper bound construction.

Definition: The ith level of the hypercube to be the set of vertices with coordinate sum equal to i.

Upper Bound Construction: Take all vertices on level $r - 2$ and an approximate Steiner system on level r (which exists by a theorem of Rödl (1985)).

In the first step of the process, every vertex on level $r - 1$ becomes infected. The infection now spreads upward and downward through Q_d "level by level." This proves the upper bound $m(Q_d, r) \leq 1 + o(1) r (d r - 1)$.
There is a natural upper bound construction.

Definition: The *ith level* of the hypercube to be the set of vertices with coordinate sum equal to *i*.
There is a natural upper bound construction.

Definition: The *ith level* of the hypercube to be the set of vertices with coordinate sum equal to *i*.

Upper Bound Construction: Take all vertices on level *r* − 2 and an approximate Steiner system on level *r* (which exists by a theorem of Rödl (1985)).
There is a natural upper bound construction.

Definition: The *ith level* of the hypercube to be the set of vertices with coordinate sum equal to *i*.

Upper Bound Construction: Take all vertices on level *r − 2* and an approximate Steiner system on level *r* (which exists by a theorem of Rödl (1985)).

In the first step of the process, every vertex on level *r − 1* becomes infected.
There is a natural upper bound construction.

Definition: The \textit{ith level} of the hypercube to be the set of vertices with coordinate sum equal to \(i\).

Upper Bound Construction: Take all vertices on level \(r - 2\) and an approximate Steiner system on level \(r\) (which exists by a theorem of Rödl (1985)).

In the first step of the process, every vertex on level \(r - 1\) becomes infected.

The infection now spreads upward and downward through \(Q_d\) “level by level.”
There is a natural upper bound construction.

Definition: The *ith level* of the hypercube to be the set of vertices with coordinate sum equal to \(i \).

Upper Bound Construction: Take all vertices on level \(r - 2 \) and an approximate Steiner system on level \(r \) (which exists by a theorem of Rödl (1985)).

In the first step of the process, every vertex on level \(r - 1 \) becomes infected.

The infection now spreads upward and downward through \(Q_d \) “level by level.”

This proves the upper bound \(m(Q_d, r) \leq \frac{1+o(1)}{r} \binom{d}{r-1} \).
Lower Bound

Theorem (Morrison and N. 2015+)

Let $r \geq 3$ be fixed and $d \to \infty$. Then

$$m(Q_d, r) \geq 1 + o(1)$$

$$r(d - 1)$$

The proof has two steps:

Step 1: Relate the problem to a more well-behaved percolation problem on the edges of Q_d (instead of the vertices).

Step 2: Solve the edge problem on Q_d using a linear algebraic technique and induction.

Jonathan Noel (Oxford) Bootstrap Percolation in the Hypercube
Theorem (Morrison and N. 2015+) Let \(r \geq 3 \) be fixed and \(d \to \infty \). Then

\[
m(Q_d, r) \geq \frac{1 + o(1)}{r} \binom{d}{r - 1}.
\]
Theorem (Morrison and N. 2015+) Let $r \geq 3$ be fixed and $d \to \infty$. Then

$$m(Q_d, r) \geq \frac{1 + o(1)}{r} \binom{d}{r - 1}.$$

The proof has two steps:
Theorem (Morrison and N. 2015+) Let \(r \geq 3 \) be fixed and \(d \to \infty \). Then

\[
m(Q_d, r) \geq \frac{1 + o(1)}{r} \binom{d}{r-1}.
\]

The proof has two steps:

Step 1: Relate the problem to a more well-behaved percolation problem on the edges of \(Q_d \) (instead of the vertices).
Theorem (Morrison and N. 2015+) Let $r \geq 3$ be fixed and $d \to \infty$. Then

$$m(Q_d, r) \geq \frac{1 + o(1)}{r} \binom{d}{r-1}.$$

The proof has two steps:

Step 1: Relate the problem to a more well-behaved percolation problem on the edges of Q_d (instead of the vertices).

Step 2: Solve the edge problem on Q_d using a linear algebraic technique and induction.
The Edge Process

Let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $E_0 \subseteq E(G)$ of infected edges.

At each step of the process, an edge e becomes infected if at least one of its endpoints is incident to r already infected edges. (In other words, an edge becomes infected if it completes an infected copy of $K_{1,r+1}$)

Definition: The size of the smallest percolating set in the edge process is denoted by $m_e(G,r)$.

Lemma: $m_e(G,r) \geq m_e(G,r) r$ for all G and r.

Goal: Prove $m_e(Q_d,r) \geq (1 + o(1))(d r - 1)$.
Let G be a graph and fix $r \in \mathbb{N}$.
Let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $E_0 \subseteq E(G)$ of infected edges.

Definition: The size of the smallest percolating set in the edge process is denoted by $m_e(G, r)$.

Lemma: $m_e(G, r) \geq m_e(G, r) r$ for all G and r.

Goal: Prove $m_e(Q^d, r) \geq (1 + o(1))(d r - 1)$.
Let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $E_0 \subseteq E(G)$ of infected edges.

At each step of the process, an edge e becomes infected if at least one of its endpoints is incident to r already infected edges.
Let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $E_0 \subseteq E(G)$ of infected edges.

At each step of the process, an edge e becomes infected if at least one of its endpoints is incident to r already infected edges.

(In other words, an edge becomes infected if it completes an infected copy of $K_{1, r+1}$)
Let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $E_0 \subseteq E(G)$ of infected edges.

At each step of the process, an edge e becomes infected if at least one of its endpoints is incident to r already infected edges.

(In other words, an edge becomes infected if it completes an infected copy of $K_{1,r+1}$)

Definition: The size of the smallest percolating set in the edge process is denoted by $m_e(G,r)$.
The Edge Process

Let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $E_0 \subseteq E(G)$ of infected edges.

At each step of the process, an edge e becomes infected if at least one of its endpoints is incident to r already infected edges.

(In other words, an edge becomes infected if it completes an infected copy of $K_{1,r+1}$)

Definition: The size of the smallest percolating set in the edge process is denoted by $m_e(G,r)$.

Lemma: $m(G,r) \geq \frac{m_e(G,r)}{r}$ for all G and r.
Let G be a graph and fix $r \in \mathbb{N}$.

Fix an initial set $E_0 \subseteq E(G)$ of infected edges.

At each step of the process, an edge e becomes infected if at least one of its endpoints is incident to r already infected edges.

(In other words, an edge becomes infected if it completes an infected copy of $K_{1,r+1}$)

Definition: The size of the smallest percolating set in the edge process is denoted by $m_e(G, r)$.

Lemma: $m(G, r) \geq \frac{m_e(G, r)}{r}$ for all G and r.

Goal: Prove $m_e(Q_d, r) \geq (1 + o(1))(r^{-1})^d$.

Jonathan Noel (Oxford) Bootstrap Percolation in the Hypercube
We obtain a recursive formula for $m_e(Q_d, r)$.

Theorem (Morrison and N. 2015+)

For $d \geq r + 1$,

$$m_e(Q_d, r) = m_e(Q_{d-1}, r) + m_e(Q_{d-1}, r-1).$$

Similar to Pascal's Formula (but with different initial conditions).

Corollary:

$$m_e(Q_d, r) = (1 + o(1))(dr - 1)$$

for fixed r and $d \to \infty$.

The upper bound is a simple recursive construction. The lower bound is the interesting part.

Jonathan Noel (Oxford) Bootstrap Percolation in the Hypercube
Step 2: Solving the Edge Problem on Q_d

We obtain a recursive formula for $m_e(Q_d, r)$.

Theorem (Morrison and N. 2015+) For $d \geq r + 1$,

$$m_e(Q_d, r) = m_e(Q_{d-1}, r) + m_e(Q_{d-1}, r - 1).$$
We obtain a recursive formula for $m_e(Q_d, r)$.

Theorem (Morrison and N. 2015+) For $d \geq r + 1$,

$$m_e(Q_d, r) = m_e(Q_{d-1}, r) + m_e(Q_{d-1}, r - 1).$$

Similar to Pascal’s Formula (but with different initial conditions).
We obtain a recursive formula for $m_e(Q_d, r)$.

Theorem (Morrison and N. 2015+) For $d \geq r + 1$,

$$m_e(Q_d, r) = m_e(Q_{d-1}, r) + m_e(Q_{d-1}, r - 1).$$

Similar to Pascal’s Formula (but with different initial conditions).

Corollary: $m_e(Q_d, r) = (1 + o(1))\binom{d}{r-1}$ for fixed r and $d \to \infty$.
We obtain a recursive formula for \(m_e(Q_d, r) \).

Theorem (Morrison and N. 2015+) For \(d \geq r + 1 \),

\[
m_e(Q_d, r) = m_e(Q_{d-1}, r) + m_e(Q_{d-1}, r - 1).
\]

Similar to Pascal’s Formula (but with different initial conditions).

Corollary: \(m_e(Q_d, r) = (1 + o(1)) \binom{d}{r - 1} \) for fixed \(r \) and \(d \to \infty \).

The upper bound is a simple recursive construction. The lower bound is the interesting part.
Let’s return to the 2-neighbour problem on the $n \times n$ grid.
Let’s return to the 2-neighbour problem on the $n \times n$ grid.

Recall, that an upper bound of n follows from the diagonal construction.
Let’s return to the 2-neighbour problem on the $n \times n$ grid. Recall, that an upper bound of n follows from the diagonal construction.

Lower bound proof.
Let’s return to the 2-neighbour problem on the $n \times n$ grid.

Recall, that an upper bound of n follows from the diagonal construction.

Lower bound proof. Key fact: At each step of the process, the **perimeter** does not increase.
Let’s return to the 2-neighbour problem on the $n \times n$ grid. Recall, that an upper bound of n follows from the diagonal construction.

Lower bound proof. Key fact: At each step of the process, the perimeter does not increase.
Let’s return to the 2-neighbour problem on the $n \times n$ grid.

Recall, that an upper bound of n follows from the diagonal construction.

Lower bound proof. Key fact: At each step of the process, the *perimeter* does not increase.

\[
\begin{array}{c}
\text{Hello} \\
\rightarrow \\
\text{Helloooooooooooooooooooo}
\end{array}
\]

If every square is eventually infected, then the final perimeter of the infection is $4n$.

So, the perimeter of the initial infection must have been at least $4n$, and so there must have been at least n initially infected squares!
Let’s return to the 2-neighbour problem on the $n \times n$ grid.

Recall, that an upper bound of n follows from the diagonal construction.

Lower bound proof. Key fact: At each step of the process, the **perimeter** does not increase.

![Diagram](image.png)
Let’s return to the 2-neighbour problem on the $n \times n$ grid. Recall, that an upper bound of n follows from the diagonal construction.

Lower bound proof. Key fact: At each step of the process, the perimeter does not increase.

![Diagram](image)
Let’s return to the 2-neighbour problem on the $n \times n$ grid.

Recall, that an upper bound of n follows from the diagonal construction.

Lower bound proof. Key fact: At each step of the process, the *perimeter* does not increase.

If every square is eventually infected, then the final perimeter of the infection is $4n$.

Jonathan Noel (Oxford)
Let’s return to the 2-neighbour problem on the $n \times n$ grid.

Recall, that an upper bound of n follows from the diagonal construction.

Lower bound proof. Key fact: At each step of the process, the perimeter does not increase.

If every square is eventually infected, then the final perimeter of the infection is $4n$.

So, the perimeter of the initial infection must have been at least $4n$, and so there must have been at least n initially infected squares!
Suppose we want to prove $m_e(Q_d, r) \geq k$.

Our approach is similar to the grid problem, but with the word "perimeter" replaced with "dimension".

Let W be a vector space. Approach:

1. For each copy of $K_1, r + 1$ the vectors assigned to its edges are linearly dependent with non-zero coefficients,
2. The dimension of the span of $\{ f_e : e \in E(Q_d) \}$ is at least k.

Because of the linear dependence, the dimension of the infected edges cannot increase. Therefore, $m_e(Q_d, r) \geq k$.

Similar ideas are used by Kalai (1985) and Balogh, Bollobás, Morris and Riordan (2012) to solve related problems.
Suppose we want to prove $m_e(Q_d, r) \geq k$. Our approach is similar to the grid problem, but with the word \textit{perimeter} replaced with \textit{dimension}.
Suppose we want to prove $m_e(Q_d, r) \geq k$. Our approach is similar to the grid problem, but with the word \textit{perimeter} replaced with \textit{dimension}. Let W be a vector space.

Suppose we want to prove $m_e(Q_d, r) \geq k$. Our approach is similar to the grid problem, but with the word **perimeter** replaced with **dimension**. Let W be a **vector space**.

Approach: Assign each $e \in E(Q_d)$ to a vector $f_e \in W$ so that:

1. For each copy of $K_{1, r+1}$ the vectors assigned to its edges are linearly dependent with non-zero coefficients.
2. The dimension of the span of $\{f_e : e \in E(Q_d)\}$ is at least k.

Because of the linear dependence, the dimension of the infected edges cannot increase. Therefore, $m_e(Q_d, r) \geq k$.

Similar ideas are used by Kalai (1985) and Balogh, Bollobás, Morris and Riordan (2012) to solve related problems.
Suppose we want to prove $m_e(Q_d, r) \geq k$. Our approach is similar to the grid problem, but with the word \textit{perimeter} replaced with \textbf{dimension}. Let W be a \textbf{vector space}.

Approach: Assign each $e \in E(Q_d)$ to a vector $f_e \in W$ so that:

1. For each copy of $K_{1,r+1}$ the vectors assigned to its edges are \textbf{linearly dependent} with \textbf{non-zero coefficients}, and
Suppose we want to prove $m_e(Q_d, r) \geq k$. Our approach is similar to the grid problem, but with the word \textit{perimeter} replaced with \textit{dimension}. Let W be a \underline{vector space}.

\textbf{Approach:} Assign each $e \in E(Q_d)$ to a vector $f_e \in W$ so that:

1. For each copy of $K_{1,r+1}$ the vectors assigned to its edges are \underline{linearly dependent} with \underline{non-zero coefficients}, and

2. The dimension of the span of $\{f_e : e \in E(Q_d)\}$ is at least k.

Because of the linear dependence, the dimension of the infected edges cannot increase. Therefore, $m_e(Q_d, r) \geq k$.

Similar ideas are used by Kalai (1985) and Balogh, Bollobás, Morris and Riordan (2012) to solve related problems.
Suppose we want to prove $m_e(Q_d, r) \geq k$. Our approach is similar to the grid problem, but with the word *perimeter* replaced with *dimension*. Let W be a vector space.

Approach: Assign each $e \in E(Q_d)$ to a vector $f_e \in W$ so that:

1. For each copy of $K_{1,r+1}$ the vectors assigned to its edges are *linearly dependent* with non-zero coefficients, and
2. The dimension of the span of $\{f_e : e \in E(Q_d)\}$ is at least k.

Because of the linear dependence, the dimension of the infected edges cannot increase. Therefore, $m_e(Q_d, r) \geq k$.

Similar ideas are used by Kalai (1985) and Balogh, Bollobás, Morris and Riordan (2012) to solve related problems.
Suppose we want to prove $m_e(Q_d, r) \geq k$. Our approach is similar to the grid problem, but with the word *perimeter* replaced with *dimension*. Let W be a vector space.

Approach: Assign each $e \in E(Q_d)$ to a vector $f_e \in W$ so that:

1. For each copy of $K_{1,r+1}$ the vectors assigned to its edges are linearly dependent with non-zero coefficients, and
2. The dimension of the span of $\{f_e : e \in E(Q_d)\}$ is at least k.

Because of the linear dependence, the dimension of the infected edges cannot increase. Therefore, $m_e(Q_d, r) \geq k$.

Similar ideas are used by Kalai (1985) and Balogh, Bollobás, Morris and Riordan (2012) to solve related problems.
A More General Edge Process

These linear algebraic tricks can also be used to study more general infection problems. Consider the following:

Let G be a graph containing many copies of a graph H.

Start with an initial set of infected edges in G.

In each step, a healthy edge becomes infected if it completes an infected copy of H.

To show that at least k infected edges are required, one approach is to assign vectors to the edges of G such that

1. the vectors assigned to the edges of any copy of H in G are linearly dependent with non-zero coefficients and
2. the vectors assigned to $E(G)$ span a space of dimension at least k.

Jonathan Noel (Oxford) Bootstrap Percolation in the Hypercube
These linear algebraic tricks can also be used to study more general infection problems. Consider the following:
These linear algebraic tricks can also be used to study more general infection problems. Consider the following:

Let G be a graph containing ‘many’ copies of a graph H.
These linear algebraic tricks can also be used to study more general infection problems. Consider the following:

Let G be a graph containing ‘many’ copies of a graph H.

Start with an initial set of infected edges in G.

Jonathan Noel (Oxford) Bootstrap Percolation in the Hypercube
These linear algebraic tricks can also be used to study more general infection problems. Consider the following:

Let G be a graph containing ‘many’ copies of a graph H.

Start with an initial set of infected edges in G.

In each step, a healthy edge becomes infected if it completes an infected copy of H.

To show that at least k infected edges are required, one approach is to assign vectors to the edges of G such that 1 the vectors assigned to the edges of any copy of H in G are linearly dependent with non-zero coefficients and 2 the vectors assigned to $E(G)$ span a space of dimension at least k.

Jonathan Noel (Oxford)
These linear algebraic tricks can also be used to study more general infection problems. Consider the following:

Let G be a graph containing ‘many’ copies of a graph H.

Start with an initial set of infected edges in G.

In each step, a healthy edge becomes infected if it completes an infected copy of H.

To show that at least k infected edges are required, one approach is to assign vectors to the edges of G such that

1. the vectors assigned to the edges of any copy of H in G are linearly dependent with non-zero coefficients
2. the vectors assigned to $E(G)$ span a space of dimension at least k.
A More General Edge Process

These linear algebraic tricks can also be used to study more general infection problems. Consider the following:

Let G be a graph containing ‘many’ copies of a graph H.

Start with an initial set of infected edges in G.

In each step, a healthy edge becomes infected if it completes an infected copy of H.

To show that at least k infected edges are required, one approach is to assign vectors to the edges of G such that

1. the vectors assigned to the edges of any copy of H in G are linearly dependent with non-zero coefficients and
These linear algebraic tricks can also be used to study more general infection problems. Consider the following:

Let G be a graph containing ‘many’ copies of a graph H.

Start with an initial set of infected edges in G.

In each step, a healthy edge becomes infected if it completes an infected copy of H.

To show that at least k infected edges are required, one approach is to assign vectors to the edges of G such that

1. the vectors assigned to the edges of any copy of H in G are linearly dependent with non-zero coefficients and
2. the vectors assigned to $E(G)$ span a space of dimension at least k.
Recall, Balogh and Bollobás (2006) proved $m(Q_d, 2) = \left\lceil \frac{d}{2} \right\rceil + 1$. For $r = 3$, the previous best known bounds were (for certain d)

$$d + 3 \leq m(Q_d, 3) \leq \frac{d}{2} (d + 5) 6.$$

We obtain a lower bound of $m(Q_d, 3) \geq \left\lceil \frac{d}{2} (d + 3) 6 \right\rceil + 1$. We also obtain a matching upper bound:

Theorem (Morrison and N. 2015+)

For $d \geq 3$, $m(Q_d, 3) = \left\lceil \frac{d}{2} (d + 3) 6 \right\rceil + 1$.

Open Problem: Determine $m(Q_d, r)$ for $r \geq 4$ and $d \geq r$.

Jonathan Noel (Oxford)
Bootstrap Percolation in the Hypercube
An Exact Result for $r = 3$

Recall, Balogh and Bollobás (2006) proved $m(Q_d, 2) = \left\lceil \frac{d}{2} \right\rceil + 1$.

For $r = 3$, the previous best known bounds were (for certain d)

$$d + 3 \leq m(Q_d, 3) \leq \frac{d(d + 5)}{6}.$$
Recall, Balogh and Bollobás (2006) proved $m(Q_d, 2) = \left\lceil \frac{d}{2} \right\rceil + 1$.

For $r = 3$, the previous best known bounds were (for certain d)

$$d + 3 \leq m(Q_d, 3) \leq \frac{d(d + 5)}{6}.$$

We obtain a **lower bound** of $m(Q_d, 3) \geq \left\lfloor \frac{d(d+3)}{6} \right\rfloor + 1$.
Recall, Balogh and Bollobás (2006) proved $m(Q_d, 2) = \left\lceil \frac{d}{2} \right\rceil + 1$.

For $r = 3$, the previous best known bounds were (for certain d)

$$d + 3 \leq m(Q_d, 3) \leq \frac{d(d + 5)}{6}.$$

We obtain a **lower bound** of $m(Q_d, 3) \geq \left\lceil \frac{d(d+3)}{6} \right\rceil + 1$.

We also obtain a **matching upper bound**:
Recall, Balogh and Bollobás (2006) proved $m(Q_d, 2) = \lceil \frac{d}{2} \rceil + 1$.

For $r = 3$, the previous best known bounds were (for certain d)

$$d + 3 \leq m(Q_d, 3) \leq \frac{d(d + 5)}{6}.$$

We obtain a lower bound of $m(Q_d, 3) \geq \left\lceil \frac{d(d+3)}{6} \right\rceil + 1$.

We also obtain a matching upper bound:

Theorem (Morrison and N. 2015+) For $d \geq 3$,

$$m(Q_d, 3) = \left\lceil \frac{d(d + 3)}{6} \right\rceil + 1.$$
An Exact Result for $r = 3$

Recall, Balogh and Bollobás (2006) proved $m(Q_d, 2) = \left\lceil \frac{d}{2} \right\rceil + 1$.

For $r = 3$, the previous best known bounds were (for certain d)

$$d + 3 \leq m(Q_d, 3) \leq \frac{d(d + 5)}{6}.$$

We obtain a lower bound of $m(Q_d, 3) \geq \left\lceil \frac{d(d+3)}{6} \right\rceil + 1$.

We also obtain a matching upper bound:

Theorem (Morrison and N. 2015+) For $d \geq 3$,

$$m(Q_d, 3) = \left\lceil \frac{d(d + 3)}{6} \right\rceil + 1.$$

Open Problem: Determine $m(Q_d, r)$ for $r \geq 4$ and $d \geq r$.
Theorem (Morrison and N. 2015+) Let G be the $a_1 \times a_2 \times \cdots \times a_d$ grid. Then

$$m(G, r) \geq r \sum_{S \subseteq [d]} |S| \leq r - 1 \left(\prod_{i \in S} (a_i - 2) \right) \left(\left(r - |S| \right)^2 - r - |S| - 1 \right) \sum_{j=1}^{|S|} \left(d - j - 1 \right) - \frac{1}{j}.$$

Implies all previously known lower bounds for grids, hypercubes, etc (and many new lower bounds).
Theorem (Morrison and N. 2015+) Let G be the $a_1 \times a_2 \times \cdots \times a_d$ grid. Then

$$m(G, r) \geq \frac{1}{r} \sum_{S \subseteq [d]} \left(\prod_{i \in S} (a_i - 2) \right) \left((r - |S|) 2^{r - |S| - 1} \right)$$

$$+ \sum_{j=1}^{r - |S| - 1} \left(\binom{d - |S| - j - 1}{r - |S| - j} j 2^{j-1} \right).$$
Theorem (Morrison and N. 2015+) Let G be the $a_1 \times a_2 \times \cdots \times a_d$ grid. Then

$$m(G, r) \geq \frac{1}{r} \sum_{S \subseteq [d], |S| \leq r-1} \left(\prod_{i \in S} (a_i - 2) \right) \left((r - |S|) 2^{r-|S|-1} \right)$$

$$+ \sum_{j=1}^{r-|S|-1} \left(\binom{d - |S| - j - 1}{r - |S| - j} j 2^{j-1} \right).$$

Implies all previously known lower bounds for grids, hypercubes, etc (and many new lower bounds).
Why Do We Care?

Probabilistic results in bootstrap percolation is of interest to statistical physicists, who introduced it as a model the dynamics of disordered magnetic systems. Extremal results in bootstrap percolation can sometimes be applied in the probabilistic setting. In particular, Balogh, Bollobás and Morris (2010) used the fact that $m(Q_d, 2) = \lceil d^2 \rceil + 1$ to prove a sharp threshold result for 2-neighbour bootstrap percolation in the hypercube.
Probabilistic results in bootstrap percolation is of interest to statistical physicists, who introduced it as a model the dynamics of disordered magnetic systems.
Probabilistic results in bootstrap percolation is of interest to statistical physicists, who introduced it as a model the dynamics of disordered magnetic systems.

Extremal results in bootstrap percolation can sometimes be applied in the probabilistic setting.
Probabilistic results in bootstrap percolation is of interest to statistical physicists, who introduced it as a model the dynamics of disordered magnetic systems.

Extremal results in bootstrap percolation can sometimes be applied in the probabilistic setting.

In particular, Balogh, Bollobás and Morris (2010) used the fact that
\[m(Q_d, 2) = \left\lceil \frac{d}{2} \right\rceil + 1 \]
to prove a sharp threshold result for 2-neighbour bootstrap percolation in the hypercube.
Thank you!