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Abstract. We compute analogues of twisted traces of CM values of harmonic modular
functions on hyperbolic 3-space and show that they are essentially given by Fourier coef-
ficients of the j-invariant. From this we deduce that the twisted traces of these harmonic
modular functions are integers. Additionally, we compute the twisted traces of Eisenstein
series on hyperbolic 3-space in terms of Dirichlet L-functions and divisor sums.

1. Introduction and statement of results

The values of the modular j-invariant at imaginary quadratic irrationalities are called
singular moduli. By the theory of complex multiplication, the singular moduli are algebraic
integers, and their traces are rational integers. A famous result of Zagier [16] states that
the generating function of traces of singular moduli is a weakly holomorphic modular form
of weight 3/2. This result has been extended in various directions, for example to traces
of (weakly holomorphic and non-holomorphic) modular forms on congruence subgroups by
Bruinier and Funke [1]. Mizuno [14] proved an analogue of Zagier’s result for automorphic
forms on hyperbolic 3-space H3. He showed that the “traces” of Niebur Poincaré series and
Eisenstein series on H3 appear in the Fourier coefficients of certain linear combinations of
non-holomorphic elliptic Poincaré series and Eisenstein series, respectively, of odd weight.
Kumar [12] gave “twisted” versions of Mizuno’s results. Similar results in the untwisted case
were obtained by Matthes [13] on higher dimensional hyperbolic spaces.

In the present paper we restrict our attention to the special case of harmonic automorphic
forms on H3 and their “twisted traces”. The automorphic forms we consider here are con-
structed as special values of Niebur Poincaré series, which can be viewed as analogues on H3

of the modular j-invariant. We show that the twisted traces of these harmonic automorphic
forms on H3 are Fourier coefficients of weakly holomorphic modular functions for PSL2(Z) (by
“Zagier duality”, they are also Fourier coefficients of weight 2 weakly holomorphic modular
forms). This allows us to deduce that the twisted traces are integers, which is not a priori
clear since the theory of complex multiplication is not available in our setting. Using the same
method we can also compute the twisted traces of weight 0 real-analytic Eisenstein series on
H3.

In the following we describe our results in more detail. Let Q(
√
D) be an imaginary

quadratic field of discriminant D < 0, and let OD be its ring of integers. The group

Γ = PSL2(OD)

acts on the hyperbolic 3-space

H3 = {P = z + rj : z ∈ C, r ∈ R>0}
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(viewed as a subset of R[i, j, k] of Hamilton’s quaternions) by fractional linear transformations.

Let d−1
D denote the inverse different of Q(

√
D). For ν ∈ d−1

D with ν ̸= 0 and s ∈ C with
Re(s) > 1 we consider the Niebur Poincaré series

Fν(P, s) = 2π|ν|
∑

γ∈Γ∞\Γ

r(γP )Is(4π|ν|r(γP ))e(tr(νz(γP ))),

with the usual I-Bessel function. Here Γ∞ denotes the subgroup of Γ consisting of the
matrices ±

(
1 β
0 1

)
with β ∈ OD, and we write γP = z(γP ) + r(γP )j. The Niebur Poincaré

series converges for Re(s) > 1 and satisfies the Laplace equation

(∆− (1− s2))Fν(P, s) = 0,(1.1)

where ∆ denotes the usual hyperbolic Laplace operator on H3. By analyzing the Fourier
expansion, it was shown in [9, Proposition 4.4] that Fν(P, s) has an analytic continuation to
Re(s) > 1/2 which is holomorphic at s = 1.

Definition 1.1. For ν ∈ d−1
D with ν ̸= 0 we define the function

Jν(P ) = Fν(P, 1),

which is a harmonic Γ-invariant function on H3.

We may view the functions Jν(P ) as hyperbolic 3-space analogues of the elliptic modular
functions jn(τ) whose Fourier expansions are of the form jn(τ) = q−n + O(q). Indeed, jn(τ)
can be constructed as a Niebur Poincaré series in an analogous way, see Section 2. This
inspired the notation Jν(P ).

We are interested in the values of Jν(P ) at special points in H3. For a positive integer
m > 0 we let

L+
|D|m =

{
X =

(
a b

b c

)
: a, c ∈ N, b ∈ OD, det(X) = |D|m

}
be the set of positive definite integral binary hermitian forms of determinant |D|m over

Q(
√
D). The group Γ acts on L+

|D|m, with finitely many orbits. To X =
(
a b
b c

)
∈ L+

|D|m we

associate the special point

PX =
b

c
+

√
|D|m
c

j ∈ H3.

It can be viewed as an analogue of a CM point on H3. We refer to the book [5] for more on
binary hermitian forms and the connection to the hyperbolic 3-space.

We now define twisted traces of special values of functions onH3. We can writeD =
∏

p|D p∗

as a product of prime discriminants p∗, that is, for an odd prime p we have p∗ = (−1
p )p, and

we have 2∗ ∈ {−4,±8}. For X ∈ L+
|D|m we define the twisting function

χD(X) =
∏
p|D

χp∗(X), χp∗(X) =


(
p∗

a

)
, if p ∤ a,(

p∗

c

)
, if p ∤ c,

0, if p | g.c.d.(a, c).

This function was considered by Bruinier and Yang [2] and Ehlen [4] for positive fundamental
discriminants D, and it was used to study twisted Borcherds products on Hilbert modular
surfaces.
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As in [2], one can check that χD(X) is well-defined and Γ-invariant. For a Γ-invariant
function f on H3 we define its m-th twisted trace by

trm,D(f) =
∑

X∈Γ\L+
|D|m

χD(X)

|ΓX |
f(PX),

where ΓX denotes the stabilizer of X in Γ.

Remark 1.2. Note that we twist with the quadratic character associated to the discriminant
D of the underlying imaginary quadratic field Q(

√
D). In contrast, the classical traces of

CM values of modular functions for PSL2(Z) can be twisted by genus characters associated
to arbitrary fundamental discriminants dividing the discriminant of the CM points (see [16],
for example). It would be interesting to find an analogue of “twists by genus characters” of
traces on H3.

Our main result is the following explicit evaluation of the twisted traces of the harmonic
modular functions Jν in terms of Fourier coefficients of the elliptic modular functions jn.

Theorem 1.3. For ν ∈ d−1
D with ν ̸= 0 we have

trm,D(Jν) = m
∑
d|ν

(
D

d

)
d c|D||ν|2/d2(m),

where cn(m) are the Fourier coefficients of jn(τ), and d | ν means that ν/d ∈ d−1
D .

Remark 1.4. (1) The above theorem implies that for every unit u ∈ O×
D and every ν ∈ d−1

D
with ν ̸= 0 we have trm,D(Juν) = trm,D(Jν). This can also be proved directly as
follows. For every P = z + rj ∈ H3, we have the relation

Juν(z + rj) = Jν(uz + rj).

Moreover, if P = PX is the special point associated to the positive definite hermit-
ian form X =

(
a b
b c

)
, then uz + j is the special point associated to Xu =

(
a ub
ub c

)
and χD(X) = χD(Xu). The equality of the traces is then a consequence of the fact
that X 7→ Xu defines a bijection L+

|D|m → L+
|D|m.

(2) The family {1} ∪ {jn}n≥1 is a basis of the C-vector space M !
0 of weakly holomorphic

modular functions for PSL2(Z). Defining

Sn := −j′n
n

=
1

qn
+

∞∑
m=1

bn(m)qm,

where j′n(τ) =
1

2πi
∂
∂τ jn(τ), we get a family a functions {Sn}n≥1 that is a basis of the

space M !
2 of weight 2 weakly holomorphic modular forms for the same group. The

families {jn}n≥1 and {Sn}n≥1 are Zagier dual in the sense that

cm(n) = −bn(m) for all integers n,m ≥ 1,

and the formula in Theorem 1.3 can be rewritten as

trm,D(Jν) = −m
∑
d|ν

(
D

d

)
d bm

(
|D||ν|2

d2

)
.
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The method we use for the proof of Theorem 1.3 is by now classical and has been employed
in various previous works such as [17], [11], [10], [3], [14] and [12], among others. We write
out the left-hand side as an infinite series involving an I-Bessel function and certain finite
exponential sums. By writing jn as a special value of a Niebur Poincaré series for PSL2(Z),
one obtains an expression for its coefficients cn(m) as an infinite series involving the same I-
Bessel function and certain Kloosterman sums, see Section 2. Hence, the proof of the theorem
boils down to an identity of finite exponential sums, see Section 3. The details of the proof
will be given in Section 4.

Since the coefficients of jn are integers, we obtain the following rationality result.

Corollary 1.5. The twisted traces trm,D(Jν) are integers which are divisible by m.

This is remarkable since the theory of complex multiplication is not available in the hy-
perbolic 3-space setting. We can rephrase the evaluation of trm,D(Jν) as a modularity result.

Recall that j′n(τ) =
1

2πi
∂
∂τ jn(τ).

Corollary 1.6. For ν ∈ d−1
D with ν ̸= 0, let

Zν,D(τ) = −
∑
d|ν

(
D

d

)
|D||ν|2

d
q−|D||ν|2/d2 +

∞∑
m=1

trm,D(Jν)q
m

be the generating function over m for the twisted traces trm,D(Jν). Then

(1.2) Zν,D(τ) =
∑
d|ν

(
D

d

)
d j′|D||ν|2/d2(τ).

In particular, it is a weakly holomorphic modular form of weight 2 for PSL2(Z).

Example 1.7. Let D = −4, so Q(
√
D) = Q(i). Then OD = Z[i] and d−1

D = 1
2Z[i]. Take

ν = 1
2 , such that |ν|2 = 1

4 . Then for every m ≥ 1 we have

trm,−4(J1/2) = mc1(m),

where c1(m) is the m-th coefficient of the j-invariant. In particular, we have

−q−1 +
∞∑

m=1

trm,−4(J1/2)q
m = j′(τ).

For example, for m = 1 the set Γ\L+
4 consists of the three binary hermitian forms X1 =

( 4 0
0 1 ) , X2 =

(
3 1+i

1−i 2

)
, X3 = ( 2 0

0 2 ), with corresponding special points P1 = 2j, P2 = 1+i
2 +

j, P3 = j, and stabilizers of orders 4, 4, 8, respectively (see [5, p. 413]). Moreover, we have
χD(X1) = 1, χD(X2) = −1, and χD(X3) = 0. By evaluating the defining series of J1/2
numerically, we can now compute

tr1,−4(J1/2) =
1

4
J1/2(P1)−

1

4
J1/2(P2) =

1

4
·(786286.36 . . . )− 1

4
·(−1249.60 . . . ) = 196883.99 . . .

Up to rounding errors, this agrees with the coefficient c1(1) = 196884.

Remark 1.8. Using the basis {Sn}n≥1 from Remark 1.4(2) we can rewrite (1.2)

−
∑
d|ν

(
D

d

)
|D||ν|2

d
q−|D||ν|2/d2 +

∞∑
m=1

trm,D(Jν)q
m = −

∑
d|ν

(
D

d

)
|D||ν|2

d
S|D||ν|2/d2(τ).
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This can be compared with Zagier’s result [16] in the elliptic case. Indeed, in loc. cit. Zagier

constructs a basis {gD}D>0,D≡0,1(4) for the space M !,+
3/2 of weight 3/2 weakly holomorphic

modular forms in the plus space, and for every integer n ≥ 1 and every fundamental discrim-
inant D > 0 he shows the equality

−
∑
d|n

(
D

d

) √
Dn

d
q−Dn2/d2 +

∞∑
d=1

tr−d,D(jn)q
d = −

∑
d|n

(
D

d

) √
Dn

d
gDn2/d2(τ)

for the generating function of the twisted traces of the function jn over CM points of discrim-
inant −dD.

Remark 1.9. (1) On the one hand, the results of Mizuno [14] imply that the non-twisted
traces of Jν are Fourier coefficients of a non-holomorphic modular form of odd weight
for Γ0(|D|) with character

(
D
·
)
. Indeed, the form G(z, 1) obtained from [14, Theo-

rem 6] has weight k an odd integer, and it is an eigenfunction of the Laplace opera-

tor ∆k = −v2
(
∂2

∂2
u
+ ∂2

∂2
v

)
+ ikv

(
∂
∂u

+ i ∂
∂v

)
with eigenvalue (k2 − 2k)/4 ̸= 0. Hence,

it seems that the non-twisted traces of Jν do not have good algebraic properties. On
the other hand, using vector-valued modular forms and similar methods as in [14],
one can prove some rationality results for the non-twisted traces of the non-harmonic
function Fν(P, k/2), by expressing them in terms of the Fourier coefficients of weakly
holomorphic modular forms. For example, in the case D = −4 and ν = 1

2 , noting

that there is only one form in Γ\L+
1 , corresponding to the special point P = j, with

stabilizer of order 4, we numerically compute to get

tr1
(
F1/2

(
·, 32
))

=
1

4
F1/2

(
j, 32
)
= 384.

(2) Kumar [12] gave twisted versions of Mizuno’s results, but did not consider the relation
to the j-invariant or the algebraic nature of the twisted traces of Jν .

It is also possible to construct a generating function summing over ν for the twisted
traces trm,D(Jν). This leads to a weight 2 automorphic form on H3 with singularities at

the special points in Tm,D = {PX : X ∈ L+
m|D|, χD(X) ̸= 0}. In order to be more precise,

let m > 0 be a fixed integer, and for P = z + rj and ℓ ∈ {0, 1, 2} let us define

(1.3) F (ℓ)
m,D(z + rj) =

∑
ν∈d−1

D
ν ̸=0

trm,D(Jν)ξ(ν)
ℓ−1rK̃ℓ(4π|ν|r)e(tr(νz)),

with ξ(ν) = ν
|ν| and special functions

K̃ℓ(y) =


−K1(y), ℓ = 2,

2iK0(y), ℓ = 1,

K1(y), ℓ = 0.

The series (1.3) converge for r >
√
m|D|, and in Section 6 we prove the following.

Theorem 1.10. Let m > 0 be an integer. Then, for each ℓ ∈ {0, 1, 2} the function F (ℓ)
m,D

given in (1.3) extends to a smooth function on H3 \ Tm,D, and Fm,D = (F (2)
m,D,F

(1)
m,D,F

(0)
m,D)

t

defines an automorphic form of weight 2 for Γ on H3 \ Tm,D.
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The proof of Theorem 1.10 is based on properties of the automorphic Green’s function asso-
ciated to Γ = PSL(OD) and properties of certain differential operators acting on automorphic
forms on H3 studied by Friedberg in [6], see Section 6.

Remark 1.11. The form Fm,D in Theorem 1.10 is the analogue of the generating function

tr−d,D

(
j′(τ)

j(·)− j(τ)

)
=

∞∑
n=1

tr−d,D(jn)q
n,

which is an elliptic modular form of weight 2 for PSL2(Z) with a singularity at each CM point
of discriminant −dD whenever the twisting function does not vanish.

Finally, we compute the twisted trace of the weight 0 real-analytic Eisenstein series

E0(P, s) =
∑

γ∈Γ∞\Γ

r(γP )s+1.

The Eisenstein series converges absolutely for s ∈ C with Re(s) > 1, and has meromorphic
continuation to C with a simple pole at s = 1, whose residue is independent of P . It also
satisfies the Laplace equation (1.1). Moreover, it defines a Γ-invariant function on H3.

Theorem 1.12. The m-th twisted trace of the Eisenstein series is given by

trm,D (E0( · , s)) =
|D|

s+1
2 LD(s)

ζ(s+ 1)
m

1−s
2 σs(m),

where σs(m) =
∑

d|m ds is a divisor sum and LD(s) =
∑∞

n=1

(
D
n

)
n−s is a Dirichlet L-series.

In particular, the twisted trace is holomorphic at s = 1, with

trm,D (E0( · , s))
∣∣
s=1

=
12

π

√
|D|h(D)

w(D)
σ1(m),

where h(D) is the class number of Q(
√
D) and ω(D) ∈ {1, 2, 3} is half the number of units

of OD.

The proof of Theorem 1.12 is analogous to the proof of Theorem 1.3, compare Sections 4
and 5. The holomorphicity of the twisted traces of the Eisenstein series at s = 1 and the
fact that the residue of the Eisenstein series does not depend on P together imply that the
twisted traces of the constant 1 function vanish.

Corollary 1.13. We have

trm,D(1) = 0.

Remark 1.14. An analogous vanishing result for twisted Hurwitz class numbers (that is,
twisted traces of 1 over CM points of a fixed discriminant, twisted by a genus character) is
well known, and follows from the fact that the classes of primitive binary quadratic forms of
a fixed discriminant form a finite group, combined with classical ortogonality of characters.
In our setting, classes of binary hermitian forms do not form a group. However, as explained
in [8, Remark 5.9], one can express trm,D(1) as a multiple of an integral of a non-trivial adelic
character on an adelic group, which implies the vanishing of trm,D(1), again by orthogonality
of characters. Note that in [8] we worked with prime discriminants D, but the properties
used in the remark about the vanishing of trm,D(1) extend easily to general fundamental
discriminants.
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This work is organized as follows. In Section 2 we recall the Fourier expansion of the Niebur
Poincaré series for PSL2(Z), which is given in terms of Bessel functions and Kloosterman sums.
In Section 3 we give an identity between these Kloosterman sums and certain exponential
sums occuring in the Fourier expansion of the Niebur Poincaré series Fν(P, s) on hyperbolic
3-space. In Section 4 we put these two results together to prove our main result Theorem 1.3.
The proof of Theorem 1.12 is presented in Section 5. Finally, in Section 6 we recall the
properties of the automorphic Green’s function for PSL2(OD) and prove Theorem 1.10 by
using a result of Friedberg [6] on raising operators for automorphic forms in H3.
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2. Niebur Poincaré series for PSL2(Z)

We recall some known results about Niebur Poincaré series for PSL2(Z), following [2]. For
a positive integer n > 0 it is defined by (τ = u+ iv ∈ H2)

Fn(τ, s) = π
√
n

∑
M∈Γ′

∞\Γ′

√
vIs− 1

2
(2πnv)e(−nu)|0M,

with the usual I-Bessel function, Γ′ = PSL2(Z) and Γ′
∞ = {±

(
1 b
0 1

)
: b ∈ Z}. Niebur [15]

showed that Fn(τ, s) can be analytically continued to s = 1 via its Fourier expansion, which
is given as follows.

Proposition 2.1. The Fourier expansion of the Niebur Poincaré series Fn(τ, s) is given by

Fn(τ, s) = (2Is(2πnv) +Ks(2πnv))e(−nu)

+ cn(0, s)v
1−s +

∑
m∈Z\{0}

cn(m, s)Ks(2πmv)e(mu),

with the Bessel functions Is(y) =
√

π|y|
2 Is−1/2(|y|) and Ks(y) =

√
2|y|
π Ks−1/2(|y|), and coeffi-

cients

cn(m, s) =



2π
∣∣∣ n
m

∣∣∣1/2 ∞∑
c=1

Hc(m,n)I2s−1

(
4π

c

√
|mn|

)
, m > 0,

4π1+sns

(2s− 1)Γ(s)

∞∑
c=1

c1−2sHc(n, 0), m = 0,

−δ−n,m + 2π
∣∣∣ n
m

∣∣∣1/2 ∞∑
c=1

Hc(m,n)J2s−1

(
4π

c

√
|mn|

)
, m < 0,

with the Kloosterman sum

Hc(m,n) =
1

c

∑
d(c)∗

e

(
nd−md′

c

)
,(2.1)
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where the sum runs over the multiplicative group (Z/cZ)∗ and d′ denotes the inverse of d in
that group.

For m = 0 we have the more explicit formula

(2.2) cn(0, s) =
4π

(2s− 1)

n1−sσ2s−1(n)

π−sΓ(s)ζ(2s)
,

with the divisor sum σs(n) =
∑

d|n d
s, compare [2, Proposition 2.2]. Moreover, we have the

special values

I1(y) = sinh(|y|), K1(y) = e−|y|, 2I1(y) +K1(y) = e|y|.

Plugging in s = 1, we find that

Fn(τ, 1) = jn(τ) + 24σ1(n),

where jn(τ) is the unique weakly holomorphic modular form of weight 0 for PSL2(Z) with
Fourier expansion of the form jn(τ) = q−n +O(q). In particular, we have

cn(m, 1) =


24σ1(n), m = 0,

cn(m), m > 0,

0, m < 0,

(2.3)

where cn(m) denote the coefficients of jn.

Remark 2.2. Niebur also defined Fn(τ, s) for negative index n. These functions are related
by the equality F−n(τ, s) = Fn(−τ , s). In particular, plugging s = 1 we get

Fn(τ, 1) = j|n|(−τ) + 24σ1(|n|) when n < 0,

which is an anti-holomorphic modular function for PSL2(Z).

3. Exponential sums

Let D < 0 be a negative fundamental discriminant. For a natural number c we let Dc | D
be the fundamental discriminant dividing D which has the same prime divisors as g.c.d.(c,D),
that is, Dc is the product of the prime discriminants p∗ for p | g.c.d.(c,D). Note that D/Dc is
also a fundamental discriminant. Following [2], for ν ∈ d−1

D we consider the finite exponential
sum

G̃c(|D|m, ν) =

(
D/Dc

c

) ∑
b∈OD/cOD

|b|2≡−|D|m(c)

(
Dc

|D|m+|b|2
c

)
e (tr(νb)/c) .(3.1)

We have the following relation with the Kloosterman sum Hc(m,n) given in (2.1).

Lemma 3.1. For c ∈ N, m ∈ Z and ν ∈ d−1
D we have

1

c
G̃c(|D|m, ν) =

∑
d|ν
d|c

(
D

d

)
Hc/d(m, |D||ν|2/d2).

Proof. This can be proved similarly as the Proposition in [17, Section 4]. We also refer to
[2, Lemma 4.3] for the proof in the case that D > 1 is a positive odd prime discriminant, in

which case one replaces |b|2 with the norm N(b) = bb′ in Q(
√
D). We leave the details to the

reader. □
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4. Twisted traces of Niebur Poincaré series - Proof of Theorem 1.3

Theorem 1.3 follows from the following evaluation of the twisted traces of the Niebur
Poincaré series Fν(P, s) on H3, by plugging in s = 1 and using (2.3).

Proposition 4.1. For ν ∈ d−1
D with ν ̸= 0 we have

trm,D(Fν( · , s)) = m
∑
d|ν

(
D

d

)
d c|D||ν|2/d2(m, s+1

2 ),

where cn(m, s) are the coefficients of the Niebur Poincaré series Fn(τ, s) on PSL2(Z) from
Proposition 2.1.

Proof. We first write

trm,D(Fν( · , s)) = 2π|ν|
∑

X∈Γ\L+
|D|m

χD(X)

|ΓX |
∑

γ∈Γ∞\Γ

r(γPX)Is(4π|ν|r(γPX))e(tr(νz(γPX)))

= 2π|ν|
∑

X∈Γ∞\L+
|D|m

χD(X)r(PX)Is(4π|ν|r(PX))e(tr(νz(PX))).

For X =
(
a b
b c

)
∈ L+

m|D| we have r(PX) =

√
|D|m
c and z(PX) = b

c . Moreover, note that(
1 β
0 1

)
∈ Γ∞ changes b to b + aβ, but does not change c. Hence, a system of representatives

for Γ∞\L+
|D|m is given by the matrices

(
a b
b c

)
where c runs through all positive integers, b runs

through OD/cOD with |b|2 ≡ −|D|m (mod c), and a is determined by a = |D|m+|b|2
c . Then

we have

χD

((
a b

b c

))
=

(
D/Dc

c

)(
Dc

a

)
=

(
D/Dc

c

)(
Dc

|D|m+|b|2
c

)
.

Hence we get

trm,D(Fν( · , s))

= 2π|ν|
∑
c>0

∑
b∈OD/cOD

|b|2≡−|D|m(c)

(
D/Dc

c

)(
Dc

|D|m+|b|2
c

) √
|D|m
c

Is

(
4π|ν|

√
|D|m
c

)
e(tr(νb)/c)

= 2π|ν|
√

|D|m
∑
c>0

1

c
G̃c(|D|m, ν)Is

(
4π|ν|

√
|D|m
c

)
,

with the exponential sum G̃c(|D|m, ν) defined in (3.1). Using Lemma 3.1 we can further
compute

trm,D(Fν( · , s)) = 2π|ν|
√
|D|m

∑
c>0

∑
d|ν
d|c

(
D

d

)
Hc/d(m, |D||ν|2/d2)Is

(
4π|ν|

√
|D|m
c

)

= 2π|ν|
√
|D|m

∑
d|ν

(
D

d

)∑
c>0

Hc(m, |D||ν|2/d2)Is

(
4π|ν|

√
|D|m
cd

)
.
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Comparing the series over c > 0 to the coefficients of the Niebur Poincaré series from Propo-
sition 2.1, we obtain

trm,D(Fν( · , s)) = m
∑
d|ν

(
D

d

)
d c|D||ν|2/d2(m, s+1

2 ).

This gives the stated formula. □

5. Twisted traces of Eisenstein series - Proof of Theorem 1.12

Replicating the first steps from the proof of Proposition 4.1 in Section 4 we arrive at

trm,D(E0( · , s)) =
∑
c>0

∑
b∈OF /cOF

|b|2≡−|D|m(c)

(
D/Dc

c

)(
Dc

|D|m+|b|2
c

)(√
|D|m
c

)s+1

=
(√

|D|m
)s+1∑

c>0

c−s−1G̃c(|D|m, 0).

Using Lemma 3.1 we get

trm,D(E0( · , s)) =
(√

|D|m
)s+1∑

c>0

c−s
∑
r|c

(
D

r

)
Hc/r(m, 0)

=
(√

|D|m
)s+1∑

t>0

∑
r>0

(tr)−s

(
D

r

)
Ht(m, 0)

=
(√

|D|m
)s+1

LD(s)
∑
t>0

t−sHt(m, 0).

Comparing the series on the right-hand side to the coefficient cm(0, s) of the Niebur Poincaré
series Fm(τ, s) from Proposition 2.1, and using (2.2), we get

trm,D(E0( · , s)) =
(√

|D|m
)s+1

LD(s)
sΓ( s+1

2 )

4π
s+3
2 m

s+1
2

cm(0, s+1
2 )

=
(√

|D|m
)s+1

LD(s)
sΓ( s+1

2 )

4π
s+3
2 m

s+1
2

4π

s

m
1−s
2 σs(m)

π− s+1
2 Γ( s+1

2 )ζ(s+ 1)

=
|D|

s+1
2 LD(s)

ζ(s+ 1)
m

1−s
2 σs(m).

This proves the stated formula. At s = 1 using Dirichlet’s class number formula, LD(1) =
2πh(D)√
|D|w(D)

and ζ(2) = π2

6 we complete the proof of Theorem 1.12.

6. Generating function over ν - Proof of Theorem 1.10

Corollary 1.6 gives the modularity of the generating function for the twisted traces trm,D(Jν)

when summed over m, for fixed ν ∈ d−1
D with ν ̸= 0. Instead in this section we fix m, and

summing over ν we prove Theorem 1.10, which gives a weight 2 automorphic form Fm,D =

(F (2)
m,D,F

(1)
m,D,F

(0)
m,D)

t on H3 \Tm,D, whose Fourier coefficients are given in terms of trm,D(Jν).
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We start by recalling the construction of the automorphic Green’s function for Γ. It is
defined by1

Gs(P1, P2) = π
∑
γ∈Γ

φs

(
cosh(d(P1, γP2))

)
,

for P1, P2 ∈ H3, P1 ̸≡ P2 (mod Γ) and s ∈ C with Re(s) > 1. Here

φs(t) =
(
t+

√
t2 − 1

)−s
(t2 − 1)−1/2 for t > 1.

The Green’s function is Γ-invariant in each variable and symmetric in P1, P2. It defines a
smooth function on (Γ\H3)× (Γ\H3) away from the diagonal, with a singularity of the form

Gs(P,Q) =
π|ΓQ|
d(P,Q)

+OQ(1) as P → Q,

where d(·, ·) denotes the hyperbolic distance. Moreover, it satisfies

(∆P1 − (1− s2))Gs(P1, P2) = 0.

As a function of s it has meromorphic continuation to C with s = 1 a simple pole with
constant residue (independent of P1 and P2).

The Fourier expansion of the Green’s function in the variable P2 = z2+r2j, for r2 > r(γP1)
for all γ ∈ Γ, is given by

Gs(P1, P2) =
4π2√
|D|

(
r1−s
2

s
E0(P1, s) +

1

π

∑
ν∈d−1

D
ν ̸=0

F−ν(P1, s)|ν|−1r2Ks(4π|ν|r2)e(tr(νz2))

)
.

This Fourier expansion has analytic continuation to Re(s) > 1
2 , s ̸= 1. See [5] and [9] for

proofs.
It follows from the properties of the Green’s function described above that the function

Lm,D(P ) = lim
s→1

trm,D

(√
|D|
4π

Gs(·, P )− πr(P )1−s

s
E0(·, s)

)
,

for P ∈ H3 \ Tm,D, is Γ-invariant, harmonic, and has Fourier expansion

(6.1) Lm,D(z + rj) =
∑

ν∈d−1
D

ν ̸=0

trm,D(Jν)|ν|−1rK1(4π|ν|r)e(tr(νz)),

valid when r > r(Q) for all Q ∈ Tm,D (in particular, when r >
√
m|D|). Finally, by [6,

Proposition 1.2], the function D0Lm,D, where D0 denotes the raising operator

D0 =
1

2πi
(−∂z, ∂r, ∂z)

t,

is a smooth automorphic form of weight 2 for Γ on H3 \ Tm,D. Finally, applying D0 to (6.1),
using the identity

∂

∂y
K1(y) = −K0 −

1

y
K1(y)

(see, e.g., [7, Formula 8.472(1)]) and comparing the result with (1.3), we conclude that Fm,D =
D0Lm,D. This proves Theorem 1.10.

1Here we follow [8] where we used a different normalization than [5] and [9].
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[8] S. Herrero, Ö. Imamoglu, A.-M. von Pippich, and M. Schwagenscheidt, Special values of Green’s functions
on hyperbolic 3-space, arXiv:2405.01219 (2024).
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