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Abstract. We define an analogue of the classical Mellin transform for vector-valued
weakly holomorphic cusp forms for SL(2,Z) and prove a converse theorem for such
forms in terms of the new transform. As applications we get converse theorems for
scalar valued weakly holomorphic forms for SL(2,Z) as well as Γ0(p) for primes p.

1. Introduction

The classical Mellin transform of a cusp form f for the group SL2(Z) is the function
of s given by

(1.1) Λ(f, s) = (−i)

∫ ∞

0

f (τ)
(τ
i

)s−1

dτ.

This integral is well-defined for all s ∈ C with Re (s) ≫ 0 since f has exponential
decay at infinity.

In this note we propose a different approach to a meaningful integral transform of
cusp forms which is also well defined for all weakly holomorphic cusp forms. Namely,
to any weakly holomorphic cusp form f for Γ0(N) of even integral weight we associate

(1.2) D(f, s) = (−i)

∫ ρ2

ρ

f (τ)
(τ
i

)s−1

dτ,

where ρ = eπi/3. Here in the expression ws we use the branch of the logarithm for any
w ∈ C \ (−i∞, 0] by taking the argument of w to lie in (−π/2, 3π/2).

Even though the integral (1.2) is already present in the literature, most notably in
papers about periods of automorphic forms [9, 1], it plays only an auxiliary role in all
of them. The goal of this paper is to bring the transform D(f, s) into the forefront.

The Mellin transform (1.1) has a Dirichlet series representation. More precisely if
f(τ) =

∑∞
n=1 c(n) exp (2πinτ) is any cusp form of integral weight k for SL2(Z), one
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has

Λ(f, s) = (2π)−s

∞∑
n=1

c(n)

ns
Γ(s),

where Γ(s) is Euler’s gamma function. This series converges absolutely and uni-
formly on any compact subset of the complex half-plane Re (s) > (k + 1)/2, as
c(n) = O(n(k−1)/2).

As we shall see in the next section (Lemma 2.3), the integral (1.2) also has a series
representation analogous to the above series. Indeed, if N is a positive integer and f
is any weakly holomorphic cusp form of weight k for Γ0(N) whose Fourier series at
infinity is

(1.3) f(τ) =
∞∑

n=N0

c(n) exp (2πinτ) with c(0) = 0,

then

(1.4) D(f, s) =

(
2π

N

)−s ∞∑
n=N0

c(n)

ns

(
Γ

(
s,−2πinρ

N

)
− Γ

(
s,
2πinρ

N

))
,

where each term involves a difference of incomplete gamma functions.
One important feature of the integral transform (1.1) is Hecke’s converse theorem [7],

a fundamental analytic characterization of Λ(f, s) for a cusp form f for SL2(Z), among
all Dirichlet series. The main result of this note is to prove an analogous statement for
the integral transform D(f, s) in two cases; i) whenever f is a vector-valued, weakly
holomorphic cusp form for SL2(Z), and ii) for any scalar, weakly holomorphic cusp
form f for SL(2(Z) as well as Γ0(p), with p a prime number.

1.1. Results. In order to state our main results we fix the notation to be used through-
out the article and introduce the transform D(F, s) for vector-valued holomorpic func-
tions F on the complex upper half plane H.

If A is any square matrix, tA denotes its transpose. If m is a positive integer, Im is
the identity matrix of size m. We put e(w) = exp (2πiw) for all w ∈ C.

If N is a positive integer, we put ζN = e(1/N) and Γ0(N) for the Hecke congruence
subgroup of level N . As usual, we write T = ( 1 1

0 1 ) and S = ( 0 −1
1 0 ). The symbol S!

k(N)
denotes the C-vector space of weight k, weakly holomorphic cusp forms for Γ0(N), and
for any unitary representation σ : SL2(Z) → GLm(C), the symbol S!

k,σ refers to the
C-vector space of weakly holomorphic cusp forms of weight k and representation σ for
SL2(Z). (For the precise definition of these vector-valued cusp forms see Definition 2.1.)

The main object of our study is the following integral transform.

Definition 1.1. Let m be a positive integer. For any vector-valued, holomorphic
function F : H → Cm we define

D(F, s) = (−i)

∫ ρ2

ρ

F (τ)
(τ
i

)s−1

dτ,
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where ρ = eπi/3 and s ∈ C. Here and from now on the branch of the logarithm used
in the expression ws for any w ∈ C \ (−i∞, 0] is given by taking the argument of w to
lie in (−π/2, 3π/2).

The map D(F, s) is a vector-valued function of s, which for

(1.5) tF (τ) = (f1(τ), f2(τ), . . . , fm(τ)) ,

looks like

(1.6) tD(F, s) = (−i)

(∫ ρ2

ρ

f1 (τ)
(τ
i

)s−1

dτ, . . . ,

∫ ρ2

ρ

fm (τ)
(τ
i

)s−1

dτ

)
.

Since every integrand above is a continuous map overH and the domain of integration
is a compact set, one has D(F, s) ∈ Cm for all such F and s.
Our first theorem is a converse theorem for vector-valued, weakly holomorphic cusp

forms for SL2(Z) in the case of the integral transform D(F, s).

Theorem 1.2. Let N,N0,m, k be integers with N ≥ 1, m ≥ 1.
Let σ : SL2(Z) → GLm(C) be an m-dimensional unitary complex representation

such that σ(−I2) = (−1)kIm and σ(T ) = diag(ζe1N , . . . , ζemN ).
For each 1 ≤ j ≤ m let {cj(n)}∞n=N0

be a sequence of complex numbers such that

cj(0) = 0, cj(n) = O(eC
√
n) for some C > 0, and cj(n) = 0 if n ̸≡ ej modN .

Let tF (τ) = (f1(τ), f2(τ), . . . , fm(τ)) , and D(F, s) as in (1.6) with

fj(τ) =
∞∑

n=N0

cj(n)e (nτ/N) , 1 ≤ j ≤ m.

Then

(a) The Fourier series fj defines a holomorphic function on H, and hence F is a
vector-valued holomorphic function from H to Cm. Moreover, the vector-valued
function D(F, s) is an entire function of s.

(b) F |k[T ] = σ (T )F .
(c) The function F is a cusp form in S!

k,σ if, and only if, D(F, s) satisfies the matrix
functional equation

D(F, k − s) = ikσ (S)D(F, s).

For simplicity we have assumed in this theorem that σ (T ) is a diagonal matrix.
After a change of basis this condition will always hold if [SL2(Z) : Ker(σ)] < ∞.
It is immediate that Theorem 1.2 with N = m = 1, k even and σ = the trivial

representation, gives the following converse theorem for D(F, s) in the case of weakly
holomorphic cusp forms for SL2(Z).

Theorem 1.3. Let {c(n)}∞n=N0
be a sequence of complex numbers such that c(0) = 0,

and c(n) = O(eC
√
n) for some C > 0. Let

f(τ) =
∞∑

n=N0

c(n)e (nτ)
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and

D(f, s) = (−i)

∫ ρ2

ρ

f (τ)
(τ
i

)s−1

dτ.

Then

(a) The Fourier series f defines a holomorphic function on H, and the function
D(f, s) is an entire function of s.

(b) The function f is a cusp form in S!
k if, and only if D(f, s) satisfies the functional

equation

D(f, s) = i−kD(f, k − s).

In the case of a weakly holomorphic form f ∈ S!
k(p) of prime level p, one can write

a vector of Fourier series (f, g0, . . . gp−1) with gj := f |[ST j]. For the associated series
D(f, s) and D(gj, s) we then have

Theorem 1.4. Let p and k be integers with p prime and k even. Assume

f(τ) =
∞∑

n=N0

c(n)e(nτ) ∈ S!
k(p) and f |k[S] =

∞∑
n=N0

d(n)e (nτ/p)

for some N0 ∈ Z and complex numbers c(n), d(n).
Put g0 := f |k[S] and for 1 ≤ j ≤ p−1 let gj(τ) := g0|k[T j] =

∑∞
n=N0

ζjnp d(n)e (nτ/p) .
Then the functional equations

D(f, s) = ik D(g0, k − s) and D(gj, s) = ik D(gj∗ , k − s)

hold whenever jj∗ ≡ −1mod p.

Our next result, which is also a consequence of Theorem 1.2, is a converse theorem
for weakly holomorphic cusp forms of prime level. Composite levels can also be treated
but is more complicated due to the larger number of cusps.

Theorem 1.5. Let p, N0 and k be integers with p prime and k even.
Let {c(n)}∞n=N0

and {d(n)}∞n=N0
be two sequences of complex numbers such that c(0) =

d(0) = 0 and c(n) = O
(
eC

√
n
)
, d(n) = O

(
eC

√
n
)
for some C > 0.

Then

(a) The Fourier series

(1.7) f(τ) =
∞∑

n=N0

c(n)e(nτ) and gj(τ) =
∞∑

n=N0

ζjnp d(n)e (nτ/p)

for 0 ≤ j ≤ p − 1, define holomorphic functions of τ on H. Moreover the
integral transforms D(f, s), D(gj, s) given in (1.2) are entire functions of s.

(b) If the functional equations

D(f, s) = ik D(g0, k − s) and D(gj, s) = ik D(gj∗ , k − s)

hold whenever jj∗ ≡ −1mod p, for j = 1, . . . , p− 1, then the series f is a cusp
form in S!

k(p).
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1.2. Comparison to other approaches. It is important to note that a generalization
of the Mellin transform (1.1) to weakly holomorphic cusp forms is not at all obvious
as f may have a pole at infinity. We circumvent this problem by integrating on a cycle
which avoids the cusp.

On the other hand in [2] Bringmann, Fricke and Kent introduced certain regulariza-
tion of (1.1) via analytic continuation which allowed them to pick f from the space of
weakly holomorphic cusp forms for SL2(Z). The regularization in [2] gives rise to the
series

(1.8) (2π)−s

∞∑
n=N0

c(n)

ns
Γ(s, 2πint0) + ik(2π)−(k−s)

∞∑
n=N0

c(n)

nk−s
Γ

(
k − s,

2πin

t0

)
for any t0 > 0 (see Theorem 2.2 in [2]).

Note that once the modularity is used then Λ(f, s), for a holomorphic cusp form
f ∈ Sk, can be written in terms of incomplete gamma functions. This representation
makes its functional equation also apparent. More precisely

Λ(f, s) = (2π)−s

∞∑
n=1

c(n)

ns
Γ(s, 2πn) + (2π)−(k−s)

∞∑
n=1

c(n)

nk−s
Γ(k − s, 2πn).

The series (1.8) looks similar to the series representation (1.4) for D(f, s) but they
are not the same. As it is also pointed out in [4], the built in functional equation in
(1.8) prevents a meaningful formulation of a converse theorem for such a series. This
obstacle is circumvented in [4] by the introduction of a regularization using general test
functions and their Laplace transforms, in a way that a converse theorem is established
in Theorem 5.1 of [4].

Equation (1.4) allow us to make a comparison between the integral transform D(f, s)
and the collection of L-series introduced by Diamantis et al [4] for their converse
theorem. In the introduction of [4] the authors state a converse theorem for integer
weight, weakly holomorphic modular forms of level 1 using what they call L-series for
general harmonic Maass forms. Namely, they associate to any sequence of complex
numbers {c(n)}∞n=N0

as in Theorem 1.3 the Fourier series f(τ) =
∑∞

n=N0
c(n)e(nτ) and

the functions

Lf (φ) :=
∞∑

n=N0

c(n)Lφ(2πn),

where Lφ(s) denotes the Laplace transform of φ, and φ runs over all compactly sup-
ported, smooth functions φ : R>0 → C.

Using (1.4) we can see that D(f, s) resembles somehow these series, as it can be
written as the difference

(1.9) D (f, s) =
∞∑

n=N0

c(n)Lφ+
s

(
2πn

(ρ
i

))
−

∞∑
n=N0

c(n)Lφ−
s

(
2πn

(ρ
i

)−1
)
,

where

φ±
s (t) =

(ρ
i

)±s

ϕs(t) and ϕs : R>0 → C is the map ϕs(t) =

{
0 if t < 1

ts−1 if t ≥ 1
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for every s ∈ C. Here the functions φ±
s (t) are not of compact support and the Laplace

transforms are evaluated not at the real numbers 2πn but at the points 2πn
(
ρ
i

)±1
.

We note that the converse theorem from [4] requires the verification of infinitely many
functional identities, one for each Lf (φ) where φ runs over all compactly supported
smooth test functions and has a generalization to a certain class of harmonic Maass
forms for Γ0(N), where N is any positive integer. In contrast, our Theorem 1.5 asks
for the verification of only finitely many functional equations in s but is valid only for
Γ0(p) with p prime. On the other hand it might be worth to observe that once D(f, s)
is written as in (1.9) in terms of the Laplace transforms of test functions, the finitely
many functional equations for D(f, s) in s can be viewed as infinitely many functional
identities, one for each of the infinitely many (non-compactly supported) test functions
{φs}s given above. The collection of these identities is simpler in the sense that they
form a 1-dimensional complex analytic family among distributions.

All the series in the works mentioned above specialize to the classical L-function for
cusp forms, but their integral representation need to be regularized for non cuspidal
forms. In contrast to this situation, our integral transform D(f, s) does not require
regularization for weakly holomorphic forms but it does not specialize to the classical
L-function in the case of holomorphic cusp forms. Nevertheless, D(f, s) carries all the
information that the classical L-function does and this is our motivation for studying
this simpler transform (1.2).

In a subsequent article we will discuss the special values of D(f, s) and their relations
to the special values of Λ(f, s).

1.3. Organization of the paper. In the following section we recall basic definitions
and establish a series representation for the components of D(F, s). In Section 3 we
prove Theorem 1.2, and in Section 4 we prove Theorems 1.4 and 1.5.

2. Basic definitions

Let k, N ≥ 1 and m ≥ 1 be integers. Let σ : SL2(Z) → GLm(C) be an m-
dimensional unitary representation such that σ(−I2) = (−1)kIm and σ(T ) has finite
order in GLm(C) dividing N . As in [8] we introduce the following

Definition 2.1. A vector-valued function F : H → Cm, say

tF (τ) = (f1(τ), f2(τ), . . . , fm(τ)) ,

is called a weakly holomorphic modular form of weight k and representation σ for the
group SL2(Z) if:

(i) The map fj : H → C is holomorphic on H for every 1 ≤ j ≤ m.
(ii) The functional equation

F |k [M ] (τ) := (cτ + d)−kF

(
aτ + b

cτ + d

)
= σ(M)F (τ)

holds for every M = ( a b
c d ) ∈ SL2(Z).
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(iii) There is an integer N0, depending on F , so that every fj has a Fourier series
representation of type

(2.1) fj(τ) =
∞∑

n=N0

cj(n)e
( n

N
τ
)
.

Any such F is said to be cuspidal if cj(0) = 0 for all 1 ≤ j ≤ m.

We denote by M !
k,σ (resp. S!

k,σ) the C-vector space of vector-valued weakly holomor-
phic modular forms (resp. cusp forms) of weight k and representation σ for SL2(Z).
In the scalar case it is well known that the Fourier coefficients c1(n) of F (τ) = f1(τ)

are bounded by eC
√
n. See for example [3]. It is easy to adapt the argument for the

vector-valued case.

Lemma 2.2. Let F be a vector-valued weakly holomorphic modular form as above.
Then there exist A,B ∈ R such that for each j and all n > 0 we have

|cj(n)| ≤ AeB
√
n.

Proof. Since σ(S)4 = Im, σ(S) is diagonalizable. Hence there are holomorphic functions
gj : H → C with 1 ≤ j ≤ m such that every fj is in the C-linear span of {g1, g2, . . . , gm},
every gj is in the C-linear span of {f1, f2, . . . , fm} and

(2.2) gj|k [S] = ϵjgj for some ϵj ∈ {±1,±i}.

Equation (2.1) and the fact that gj is in the C-linear span of {f1, f2, . . . , fm} give
gj(τ) = O

(
eC Im (τ)

)
for some real number C, and (2.2) yields

|gj(τ)| = O
(
eC Im (−1/τ)

)
= O

(
eC/ Im (τ)

)
.

If we use this estimate in the integral representation of the n-th Fourier coefficient
dj(n) of gj, and compute such integral with τ = x+ i/

√
n, x ∈ R, we end up with the

bound |dj(n)| = O
(
eC

′√n
)
. The lemma follows from this fact and the linear dependence

of each fj on {g1, g2, . . . , gm}. □

For a fixed s let Γ(s, z) be the incomplete gamma function on C with the non-positive
imaginary axis removed so that we have

(2.3)
d

dz
Γ (s, z) = e−zzs−1.

Note that C \ (−i∞, 0] is simply connected, so such primitives exist, and our choice
is normalized by requiring that

(2.4) Γ(s, w) =

∫ ∞

w

e−zzs−1dz

for w ∈ (0,∞). Note also that for any parameterized curve η in C \ (−i∞, 0] from a
to b one has ∫

η

e−zzs−1dz = Γ(s, b)− Γ(s, a).
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Lemma 2.3. Let N , m and F be as in Definition 1.1. If F is the vector-valued function
(1.5) and the j-th component fj of F has a Fourier series representation (2.1) with

coefficients {cj(n)}∞n=N0
such that cj(n) = O(eC

√
n) for some real number C, then the

j-th entry of the column vector D(F, s) is
(2.5)

(−i)

∫ ρ2

ρ

fj (τ)
(τ
i

)s−1

dτ =

(
2π

N

)−s ∞∑
n=N0

cj(n)

ns

(
Γ

(
s,−2πinρ

N

)
− Γ

(
s,
2πinρ

N

))
.

Proof. The growth of the sequence {cj(n)}∞n=N0
implies that fj(τ) is a holomorphic

function on the complex upper half-plane, hence every integral in the vector D(F, s) is
independent of the path of integration in H. Moreover,

(−i)

∫ ρ2

ρ

fj (τ)
(τ
i

)s−1

dτ = (−i)
∞∑

n=N0

cj(n)

∫ ρ2

ρ

e
2πinτ

N

(τ
i

)s−1

dτ.

For the computation of the inner integral in this expression, note that by (2.3)

d

dτ
Γ

(
s,−2πinτ

N

)
= e

2πinτ
N

(
−2πinτ

N

)s−1(
2πin

N

)
.

Now we choose the portion of the unit circle in H limited by ρ and −ρ = ρ2 as a path
of integration, and observe the following; as τ runs over such a curve, −iτ runs over
the portion of the unit circle which goes from −iρ to i ρ at the right hand side of the
imaginary axis. Thus (

−2πinτ

N

)s−1

=

(
2πn

N

)s−1

(−iτ)s−1

for all n ∈ Z, due to our choice of branch for the logarithm. Therefore

d

dτ
Γ

(
s,−2πinτ

N

)
=

(
2πn

N

)s

ie
2πinτ

N (−iτ)s−1

for all τ on the path of integration mentioned above, and so

(−i)

∫ ρ2

ρ

fj (τ)
(τ
i

)s−1

dτ = −
∞∑

n=N0

cj(n)
1

(2πn/N)s
Γ

(
s,−2πinτ

N

) ∣∣ρ2
ρ
.

This identity yields the series representation (2.5). □

3. Proof of Theorem 1.2

Part (a) of the theorem follows from the fact that the individual terms in both series,
(2.1) and (2.5), are holomorphic functions with exponential decay (so, the convergence
of each series is absolute and uniform on compact subsets of the corresponding domain).
This is evident for (2.1), and a consequence of the following for (2.5); the map s 7→
Γ(s, w) is entire for any w ∈ C, and Γ(s, w) = ws−1e−w (1 +R(s, w)) where the function
R(s, w) satisfies R(s, w) = O(w−1) as w → ∞ and | argw| < π/2, for any fixed s (see
[10] p. 341).
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This condition and the hypothesis satisfied by the sequences {cj(n)}∞n=N0
yield the

desired exponential decay.
For the proof of (b) we notice that

tF |k [T ] (τ) = tF (τ + 1) =

(
. . . ,

∞∑
n=N0

ζnN cj(n)e
( n

N
τ
)
, . . .

)
.

By hypothesis we have ζnN = ζ
ej
N whenever cj(n) ̸= 0, hence

tF |k [T ] (τ) =
(
. . . , ζ

ej
N fj(τ), . . .

)
= tF (τ)σ (T ) .

For the proof of the equivalence in part (c) we assume first that F satisfies

(3.1) τ−kF

(
−1

τ

)
= σ (S)F (τ)

for all τ ∈ H. Then we have

D(F, s) = (−i)

∫ ρ2

ρ

F (τ)
(τ
i

)s−1

dτ

= (−i)

∫ ρ2

ρ

σ (S)−1 τ−kF

(
−1

τ

)(τ
i

)s−1

dτ

= −(−i)σ(S)−1

∫ ρ2

ρ

(
−1

τ

)−k

F (τ)

(
−1

iτ

)s−1

d

(
−1

τ

)
= (−i)i−kσ (S)−1

∫ ρ2

ρ

F (τ)
(τ
i

)k−s−1

dτ

= i−k σ (S)−1D(F, k − s).

Here we have used that the integral in Definition 1.1 is valid for s ∈ C.
For the implication in the opposite direction we first note that the components of the

vector of Fourier series F are periodic holomorphic functions from H to C by part (a),
and that F satisfies the functional equation in (b). Hence, it suffices to prove that F

also satisfies (3.1) for all τ on some curve in H. To this end we define F̃ (θ) = iF (ie−iθ),
and get

D(F, s) =

∫ π/6

−π/6

F̃ (θ)e−iθsdθ

from Definition 1.1 and the substitution τ = ie−iθ. Clearly, the last integral is the

Fourier transform of F̃χ[−π/6,π/6], where χ[−π/6,π/6] is the characteristic function of the
interval [−π/6, π/6].

As F is holomorphic on H, the function θ 7→ F̃χ[−π/6,π/6](θ) is integrable and piece-
wise smooth on R. Then, a standard result in Fourier Analysis (see for example
Theorem 7.6 in [6] p. 220) yields

(3.2) F̃ (θ) = lim
T→∞

1

2π

∫ T

−T

D(F, s)eiθsds for all
−π

6
< θ <

π

6
.
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Given (3.2), the hypothesis D(F, s) = i−kσ(S)−1D(F, k − s) leads to

F̃ (θ) =i−keiθk lim
T→∞

1

2π

∫ T

−T

σ(S)−1D(F, k − s)e−iθ(k−s)ds

=
(
ie−iθ

)−k
lim
T→∞

1

2π

∫ k+T

k−T

σ(S)−1D(F, s)e−iθsds

=
(
ie−iθ

)−k
lim
T→∞

1

2π

∫ T−k

k−T

σ(S)−1D(F, s)e−iθsds

=
(
ie−iθ

)−k
σ(S)−1F̃ (−θ),

for all −π/6 < θ < π/6. In the last steps we have used equation (3.2), the decomposi-
tion ∫ k+T

k−T

=

∫ T−k

k−T

+

∫ T+k

T−k

, and lim
T→∞

∫ T+k

T−k

D(F, s)e−iθsds = 0.

In turn, this last limit follows from the Riemann-Lebesgue Lemma (see [6] p. 117)
since D(F, s) is the Fourier transform of a function in L1(R), and so D(F, s) → 0 as
s → ±∞.

Finally we observe that F̃ (θ) =
(
ie−iθ

)−k
σ(S)−1F̃ (−θ) for all −π/6 < θ < π/6 is

equivalent to F (τ) = τ−kσ(S)−1F (−1/τ) for all τ in the portion of the unit circle in
H limited by ρ and ρ2. This identity finishes the proof of part (c). □
For later purposes we note that the proof of part (c) in Theorem 1.2 with m = 1 can

be easily adapted to yield the following

Proposition 3.1. Let p, N0 and k be integers with p prime and k even.
Let {c(n)}∞n=N0

and {d(n)}∞n=N0
be two sequences of complex numbers such that c(0) =

d(0) = 0 and c(n) = O
(
eC

√
n
)
, d(n) = O

(
eC

√
n
)
for some C > 0.

Then the Fourier series

f(τ) =
∞∑

n=N0

c(n)e(nτ) and g(τ) =
∞∑

n=N0

d(n)e (nτ/p)

define holomorphic functions of τ on H. Moreover the integral transforms D(f, s) and
D(g, s) given in (1.2) are entire functions of s. Furthermore,

f |k[S](τ) = g(τ) if, and only if D(f, s) = ik D(g, k − s).

4. Proofs of Theorem 1.4 and Theorem 1.5

Let k and N ≥ 1 be integers. For completeness we first recall the definition of
(scalar) weakly holomorphic modular forms over Γ0(N).

Definition 4.1. A function f : H → C is a weakly holomorphic modular form of
weight k for the group Γ0(N) if:

(i) The map f is holomorphic on H.
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(ii) The functional equation

f |k[M ](τ) = f(τ)

holds for every M ∈ Γ0(N).
(iii) There is an integer N0, depending on f , so that every f |k[A] with A ∈ SL2(Z)

has a Fourier series representation of type

f |k[A](τ) =
∞∑

n=N0

cA(n)e
( n

N
τ
)
.

Any such f is said to be cuspidal if cA(0) = 0 for all A ∈ SL2(Z).

We denote by M !
k(N) (resp. S!

k(N)) the C-vector space of all weakly holomorphic
modular forms (resp. cusp forms) of weight k for Γ0(N). Notice that M !

k(N) = {0}
whenever k is odd.

We start with the following

Lemma 4.2. Let p,N0 and k be integers with p prime and k even.
Let {c(n)}∞n=N0

be a sequence in C with c(0) = 0 and c(n) = O
(
eC

√
n
)
for some

C > 0. Set

f(τ) =
∞∑

n=N0

c(n)e (nτ) and F = t
(
f, f |k[S], f |k[ST ], . . . , f |k[ST p−1]

)
.

Assume that f |k[S](τ) =
∑∞

n=N0
d(n)e (nτ/p) for some d(n) in C such that d(0) = 0

and d(n) = O
(
eC

√
n
)
.

Then f is in S!
k(p) if, and only if F ∈ S!

k,ϕ, where ϕ is the linear representation
associated to the right action of SL2(Z) on Γ0(p)\SL2(Z).

Proof. The growth conditions of the sequences {c(n)} and {d(n)} imply that f , f |k[S]
and all the other components in F define holomorphic functions on H. Moreover, the
constant term in the Fourier series representation of each of these components is zero.

Next we note that the representation ϕ arises from the permutations of Xp, the
ordered set of right Γ0(p)-cosets in SL2(Z),

(4.1) Xp = {Γ0(p)} ∪ {Γ0(p)ST
j | j = 0, ..., p− 1}.

Clearly, if f ∈ S!
k(p) then F transforms according to ϕ.

For the converse, assume F = t (f, f |k[S], f |k[ST ], . . . , f |k[ST p−1]) ∈ S!
k,ϕ. As for any

γ ∈ Γ0(p) one has Γ0(p)γ = Γ0(p), the first row of the matrix ϕ(γ) is (1, 0, · · · , 0).
Hence, for the first component f of F we have f |k[γ] = f. □

Proof of Theorem 1.4. By hypothesis f ∈ S!
k(p) and f |k[S] = g0. Hence Proposition

3.1 implies D(f, s) = ikD(g0, k − s).
On the other hand, a simple calculation shows that for all 1 ≤ j ≤ p− 1,

Γ0(p)ST
jS = Γ0(p)ST

j∗

where jj∗ ≡ −1mod p. □
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Proof of Theorem 1.5. Let f and gj be the series given in (1.7). By the estimates

c(n) = O
(
eC

√
n
)
and d(n) = O

(
eC

√
n
)
we know that f and every gj define holomorphic

functions on H. Consequently, the integral transforms D(f, s) and D(gj, s) are entire
functions of s. This proves the first claim.

For the proof of (b) let F be the column vector
tF (τ) = (f(τ), g0(τ), g1(τ), . . . , gp−1(τ)) .

From Proposition 3.1 we get that the functional equation D(f, s) = ikD(g0, k − s)
implies f |k[S] = g0. Then the definition of gj in (1.7) gives that gj = f |k[ST j] for every
0 ≤ j ≤ p− 1. Thus

F = t
(
f, f |k[S], f |k[ST ], . . . , f |k[ST p−1]

)
.

Let ϕ : SL2(Z) → GLp+1(C) be the permutation representation induced from the
SL2(Z)-action on Γ0(p)\SL2(Z) by right multiplication as in Lemma 4.2. By that
lemma we know that f ∈ S!

k(p) if F ∈ S!
k,ϕ. Hence, it is enough to prove F ∈ S!

k,ϕ.

Since ϕ(T ) is not diagonal, we cannot use Theorem 1.2 directly to show that F ∈ S!
k,ϕ.

On the other hand from the definitions of f, gj in (1.7) we have

f(τ + 1) = f(τ) and gj(τ + 1) = gj+1(τ)

for all j = 1, 2, . . . , p, where the sub-indices are read modulo p. Therefore

F (τ + 1) = ϕ (T )F (τ)

with ϕ (T )p = Ip+1. Consequently there exists R ∈ GLp+1(C)) such that Rϕ (T )R−1

is a diagonal matrix. Now we consider the conjugate representation σ := RϕR−1 of
SL2(Z), and observe that F ∈ S!

k,ϕ if and only if RF ∈ S!
k,σ.

Clearly the vector-valued function RF : H → Cp+1 is holomorphic and its p + 1
components are given by Fourier series whose coefficients satisfy the hypothesis of
Theorem 1.2 with N = p and m = p + 1. As σ(T ) is diagonal, this result yields that
RF ∈ S!

k,σ if, and only if

(4.2) D (RF, s) = i−kσ (S)−1D (RF, k − s) .

But since D(RF, s) = RD(F, s) and σ = RϕR−1, this functional equation is equivalent
to

(4.3) D (F, s) = i−kϕ (S)−1D (F, k − s) .

In order to prove the matrix functional equation (4.3), we note that the action of S
on the set Xp in (4.1) is as follows; it interchanges Γ0(p) with Γ0(p)S, and interchanges
Γ0(p)S

j with Γ0(p)S
j∗ whenever jj∗ ≡ −1mod p. Therefore (4.3) is exactly the matrix

form of the set of scalar functional equations that are assumed in Theorem 1.5 part
(b). This shows that (4.3) holds, and therefore F ∈ S!

k,ϕ as desired. □
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