Calculating Ramsey numbers by partitioning coloured graphs

Alexey Pokrovskiy

Methods for Discrete Structures,
Freie Universität Berlin, Berlin.
alja123@gmail.com

May 22, 2014
Ramsey Theory

The Ramsey Number $R(G, H)$ is the smallest n for which any 2-edge-colouring of K_n contains either a red G or a blue H.

Theorem (Ramsey, 1930)

$R(K_n, K_n)$ is finite for every n.

The following bounds hold

\[\sqrt{2^n} \leq R(K_n, K_n) \leq 4^n. \]
Ramsey Theory

The Ramsey Number $R(G, H)$ is the smallest n for which any 2-edge-colouring of K_n contains either a red G or a blue H.

Theorem (Ramsey, 1930)

$R(K_n, K_n)$ is finite for every n.

The following bounds hold

$$\sqrt{2^n} \leq R(K_n, K_n) \leq 4^n.$$

Theorem (Erdős, 1947)

$$R(P_n, K_m) = (n - 1)(m - 1) + 1.$$
Ramsey Theory

The Ramsey Number $R(G, H)$ is the smallest n for which any 2-edge-colouring of K_n contains either a red G or a blue H.

Theorem (Ramsey, 1930)

$R(K_n, K_n)$ is finite for every n.

The following bounds hold

$$\sqrt{2^n} \leq R(K_n, K_n) \leq 4^n.$$

Theorem (Erdős, 1947)

$$R(P_n, K_m) = (n - 1)(m - 1) + 1.$$
Ramsey Theory

Theorem (Erdős, 1947)

\[R(P_n, K_m) = (n - 1)(m - 1) + 1. \]

Proof.
Ramsey Theory

Theorem (Erdős, 1947)

\[R(P_n, K_m) = (n - 1)(m - 1) + 1. \]

Proof.

Theorem (Pósa, 1963)

The vertices of every graph G can be covered by \(\alpha(G) \) disjoint cycles.
Ramsey Theory

Theorem (Erdős, 1947)

\[R(P_n, K_m) = (n - 1)(m - 1) + 1. \]

Proof.

Theorem (Pósa, 1963)

The vertices of every graph \(G \) can be covered by \(\alpha(G) \) disjoint cycles.

Theorem (Gallai-Milgram, 1960)

The vertices of every directed graph \(D \) can be covered by \(\alpha(D) \) disjoint directed paths.
Ramsey Theory

Theorem (Gerencsér and Gyárfás, 1966)

For $n \geq m$,

$$R(P_n, P_m) = n + \left\lfloor \frac{m}{2} \right\rfloor - 1.$$
Theorem (Gerencsér and Gyárfás, 1966)

For $n \geq m,$

\[R(P_n, P_m) = n + \left\lfloor \frac{m}{2} \right\rfloor - 1. \]

Theorem (Gerencsér and Gyárfás, 1966)

Every 2-edge-coloured complete graph can be covered by 2 disjoint monochromatic paths with different colours.
Theorem 1. For \(k \geq l \) we have
\[
g(k, l) = k + \left[\frac{l+1}{2} \right]
\]

Considering the other special case of this type of problems, let \(f_2(n) \) denote the smallest integer with the property, that colouring the edges of a complete \(n \)-tuple graph with \(r \) colours arbitrarily, there exists always a one-coloured connected subgraph with at least \(f_2(n) \) vertices.

It is easy to see the following remark of P. Erdős: if a graph is not connected then its complement is connected, i.e., \(f_2(n) = n \). We shall prove

Theorem 2.
\[
f_2(n) = \left[\frac{n+1}{2} \right]
\]

Now we turn to the proof of Theorem 1. First we prove \(g(k, l) \geq k + \left[\frac{l+1}{2} \right] \),

by induction on \(k \). For \(k = 1 \) the Theorem evidently holds and let us suppose that for all \(k \) less than this statement is true. Let us construct a graph \(G \) with \(k + \left[\frac{l+1}{2} \right] \) vertices. If \(l \leq k \), then for any subgraph of \(G \) with \(k + \left[\frac{l+1}{2} \right] \) points holds that either itself contains a path of length \(k - 1 \), or its complement a path of length \(l \). For \(l > k \) we consider a subgraph with \(k + \left[\frac{l+1}{2} \right] \) points.

This or its complement contains a path of length \(k - 1 \). Thus in every case can be supposed that the length of the longest path of \(G \) is \(k - 1 \). Let \(U_1, U_2, \ldots, U_k \) be the consecutive vertices of such a path and \(U = \{ U_1, \ldots, U_k \} \). We denote the remaining vertices by \(V_1, \ldots, V_{l-k} \) and the set of them by \(V = \{ V_1, \ldots, V_{l-k} \} / \{ U_1, \ldots, U_k \} \).

It clearly holds that

(i) for all \(i \in V \) either \(V_i U_j \in \bar{G} \) or \(V_i U_{j+1} \in \bar{G} \)

(ii) for all \(i \in V \) \(V_i U_1 \in \bar{G} \) and \(V_i U_k \in G \)

(iii) for \(V_{l-k}, V_{l-k+2}, V_{l-k} \in V \) and \(U_{l+1-k} \in U \)

at least one of the latest points is connected in \(G \) with at least two of \(V_{l-k}, V_{l-k+2}, V_{l-k} \).

Consider a maximal path of \(G \) not containing \(U_1, U_k \) with the property that any edge of it connects a point of \(U \) with a point of \(V \), and its endpoints are in \(V \); let us denote the endpoints by \(A \) and \(B \), and the path by \(S \). If \(S \) contains all points of \(V \), then by adding the edges \(U_2 A, U_k B \) we have a path of length \(2 \left[\frac{l+1}{2} \right] = l \) in \(\bar{G} \). So we may suppose that the set of points \(V \) not contained by \(S \) is not empty. Let this set be called \(W \). Consider a maximal path \(q \) of \(G \) not containing \(U_1, U_k \) and having no common points with \(S \), such that any edge of it connects a point of \(U \) with a point of \(W \) and the endpoints of it, called by \(C \) and \(D \), are in \(W \). We show that all points of \(V \) are contained either in \(S \) or in \(q \). Suppose that \(X \in V \) but \(X \notin S \) \& \(X \notin q \). It is clear, that the number of vertices of \(S \) and \(q \) in \(U \) is at most \(\left[\frac{l+1}{2} \right] - 3 \leq \left[\frac{k-2}{2} \right] = \left[\frac{k-2}{2} \right] \). Since \(l \leq k \). So there exist two points \(U_1, U_1+1 \in \{ U_1, \ldots, U_k \} \) which do not belong either to \(S \) or to \(q \). Applying (iii) for \(A, C, X \in V \) and \(U_1, U_1+1 \in U \) we have a contradiction to the maximal properties of \(S \) and \(q \).

So the sum of the length of \(S \) and \(q \) is \(2 \left[\frac{l+1}{2} \right] = 4 \). We add them the edges

\[U_1 A, U_1 B, U_1 C, U_1 D \]

and so we have a circuit of length \(2 \left[\frac{l+1}{2} \right] + 1 \) in \(\bar{G} \). For odd \(l \) this contains a desired path with length \(l \). For even \(l \) an easy reasoning shows that there are \(U_1, U_1+1 \in U \) which do not belong to this circuit. Hence one of them is connected with a vertex of the circuit (see (ii)) and so we have again a path with length \(l \) in \(G \). That completes the proof.

Now we give examples for graphs \(G \) with \(k + \left[\frac{l+1}{2} \right] \) - 1 points that have no path of length \(k \), and do not have a path of length \(l \).

a) Let \(G \) consist of the disjoint graphs \(H_1, H_2, H_3 \) with \(k \) and \(\left[\frac{l+1}{2} \right] \) - 1 points respectively, where the graph \(H_2 \) is complete.

b) For even \(l \) we can leave one of the edges of \(H_2 \). These graphs possess obviously the desired property.

Now we turn to the proof of Theorem 2. We consider a classification of the edges of a complete graph \(G \) into three classes, i.e., let the edges of \(G \) be coloured with red, yellow and blue colours. So we get the graphs \(G_r, G_y, G_b \) formed by the red, yellow and blue edges respectively. We say that a subgraph is for example red-connected if it is a connected subgraph of \(G_r \). Let us take a maximal red-connected subgraph \(R \). It may be supposed that \(R \) is not empty and \(\pi(R) \leq \pi(G) = n \). Let \(B \) be a point of \(G \) such that \(B \notin R \). Since \(R \) is a maximal connected subgraph of \(G \), \(BR \) is not red for \(R \subseteq B \). So one may suppose that there are at least \(\frac{1}{2} \pi(G) \) points of \(R \) which are connected with \(B \) by blue edges.

Let \(V \) denote the set of these points of \(R \) and \(W \) be the maximal blue-connected subgraph that contains \(B \). If \(Y \) is a point such that \(Y \notin R \) and \(Y \notin W \), then \(YY \) is yellow for \(V \). Let \(Q \) denote the maximal yellow-connected subgraph that contains \(V \). If there is no such \(Y \), \(Q \) denotes the empty set. Then \(W, Q \) contain together all points of \(G \). Namely any points \(S \notin R \) is connected with a point of \(B \).
Theorem 1. For $k \geq l$ we have

\[g(k, l) = k + \left\lfloor \frac{l+1}{2} \right\rfloor \]

Considering the other special case of this type of problems, let $f(n)$ denote the greatest integer with the property, that colouring the edges of a complete n-tuple g with r colours arbitrarily, there exists always a one-coloured connected subgraph with at least $f(n)$ vertices.

It is easy to see the following remark of P. Erdős: if a graph is not connected then its complement is connected, i.e. $f(n) = n$. We shall prove

Theorem 2.

\[f(n) = \left\lfloor \frac{n+1}{2} \right\rfloor \]

Now we turn to the proof of Theorem 1. First we prove $g(k, l) \geq k + \left\lfloor \frac{l+1}{2} \right\rfloor$ by induction on k. For $k = 1$ the Theorem evidently holds and let us suppose that for all k less than this statement is true. Let us consider a graph G with $k + \left\lfloor \frac{l+1}{2} \right\rfloor$ vertices. If $l < k$, then for any subgraph of G with $k - 1 + \left\lfloor \frac{l+1}{2} \right\rfloor$ points holds that either itself contains a path of length $k - 1$, or its complement a path of length l. For $l = k$ we consider a subgraph with $k - 1 + \left\lceil \frac{l}{2} \right\rceil$ points.

This or its complement contains a path of length $k - 1$. Thus in every case can be supposed, that the length of the longest path of G is $k - 1$. Let U_1, U_2, \ldots, U_k be the consecutive vertices of such a path and $U = \{U_1, \ldots, U_k\}$. We denote the remaining vertices by $V_1, \ldots, V_\left\lceil \frac{l}{2} \right\rceil$ and the set of them by $V = V \setminus \{U_1, \ldots, V_\left\lceil \frac{l}{2} \right\rceil\}$.

It clearly holds that

(i) for all $V_i \in V$ either $V_iU_j \in G$ or $V_iU_{j+1} \in \overline{G}$
(ii) for all $V_i \in V$ $V_iU_j \in G$ and $V_iU_k \in \overline{G}$
(iii) for $V_\alpha, V_\beta, V_\gamma \in V$ and $U_\alpha, U_\beta, U_\gamma \in U$

at least one of the last points is connected in \overline{G} with at least two of $V_\alpha, V_\beta, V_\gamma$.

Consider a maximal path of G not containing U_1, U_k with the property that any edge of it connects a point of U with a point of V, and its endpoints are in V; let us denote the endpoints by A and B, and the path by S. If S contains all points of V, then by adding the edges U_2A, BU_k we have a path of length $2\left\lfloor \frac{l+1}{2} \right\rfloor + 1$ in \overline{G}. So we may suppose that the set of points V not contained by S is not empty. Let this set be called W. Consider a maximal path q of G not containing U_1, U_k and having no common points with S, such that any edge of it connects a point of U with a point of W and the endpoints of it, called by C and D, are in W. We show that all points of V are contained either in S or in q. Suppose that $X \in V$ but $X \notin S, X \notin q$. It is clear, that the number of vertices of S and q in U is at most \[\frac{\left\lfloor \frac{l+1}{2} \right\rfloor + 3 - \left\lfloor \frac{k-2}{2} \right\rfloor}{2} = \frac{k-2-1}{2} \]

since $l \geq k$. So there exist two points $U_i, U_{i+1} \in \{U_1, \ldots, U_k\}$ which do not belong either to S or to q. Applying (iii) for $A, C, X \in V$ and $U_i, U_{i+1} \in U$ we have a contradiction to the maximal properties of S and q.

So the sum of the length of S and q is $2\left\lfloor \frac{l+1}{2} \right\rfloor - 4$. We add them the edges U_iA, BU_k, U_1C, DU_1 and so we have a circuit of length $2\left\lfloor \frac{l+1}{2} \right\rfloor$ in \overline{G}. For odd l this contains a desired path with length l. For even l an easy reasoning shows that there are $U_i, U_{i+1} \in U$ which do not belong to this circuit. Hence one of them is connected with a vertex of the circuit (see (ii)) and so we have again with path l in \overline{G}. That completes the proof.

Now we give examples for graphs G with $k + \left\lfloor \frac{l+1}{2} \right\rfloor - 1$ points that have no path of length k, and for them at the same time \overline{G} have no path of length l.

a). Let G consist of the disjoint graphs H_1, H_2 with k and $\left\lfloor \frac{l+1}{2} \right\rfloor - 1$ points respectively, where the graph H_2 is complete.

b). For even l we can leave one of the edges of H_1. These graphs possess obviously the desired property.

Now we turn to the proof of Theorem 2. We consider a classification of the edges of a complete graph G into three classes, i.e. let the edges of G be coloured with red, yellow and blue colours. So we get the graphs G_1, G_2, G_3 formed by the red, yellow and blue edges respectively. We say that a subgraph is for example red-connected if it is a connected subgraph of G_1. Let us take a maximal red-connected subgraph R. It may be supposed that R is not empty and $\pi(R) < \pi(G) = n$. Let G be a point of G such that $B \notin R$. Since R is a maximal connected subgraph of G, BR_i is not red for $R_i \in R$. So one may suppose that there are at least $\left\lfloor \frac{l}{2} \right\rceil \pi(R)$ points of R which are connected with B by blue edges.

Let V denote the set of these points of R and W be the maximal blue-connected subgraph that contains B. If Y is a point such that $Y \notin R$ and $Y \notin W$ then YV is yellow for $V \notin V$. Let Q denote the maximal yellow-connected subgraph that contains Y. If there is no such Y, Q denotes the empty set. R, W, Q contain together all points of G. Namely any points $S \notin R$ is connected with a

\[\text{1}\text{The weaker result } g(k, l) = k + l \text{ can be easily proved. Let us consider any vertex } P \text{ and a pair of paths of } G \text{ and } \overline{G} \text{ without common vertices except } P \text{. It can be proved that a pair of paths with maximal sum of lengths contains all points. (Maximality with respect to all } P \text{ and all pairs.) From that the statement follows.} \]
Ramsey Theory

Calculating Ramsey numbers by partitioning coloured graphs

May 22, 2014 7 / 17
Theorem 1. For $k \geq l$ we have

$$g(k, l) = k + \left\lfloor \frac{l+1}{2} \right\rfloor.$$

Considering the other special case of this type of problems, let $f_4(n)$ denote the greatest integer with the property, that colouring the edges of a complete n-tuple g with r colours arbitrarily, there exists always a one-coloured connected subgraph with at least $f_4(n)$ vertices.

It is easy to see the following remark of P. Erdős: if a graph is not connected then its complement is connected, i.e., $f_4(n) = n$. We shall prove

Theorem 2.

$$f_4(n) = \left\lfloor \frac{n+1}{2} \right\rfloor.$$

Now we turn to the proof of Theorem 1. First we prove $g(k, l) \geq k + \left\lfloor \frac{l+1}{2} \right\rfloor$ by induction on k. For $k = 1$ the Theorem evidently holds and let us suppose that is true for $k = k - 1$. We shall prove $g(k, l) \geq k + \left\lfloor \frac{l+1}{2} \right\rfloor$ for k.

The weaker result $g(k, l) \leq k + l$ can be easily proved. Let us consider any vertex P and a pair of paths of G and its complement \bar{G} without common vertices except P. It can be proved that a pair of paths with maximal sum of lengths contains all points. (Maximality with respect to all P and all pairs.) From that the statement follows.

Theorem 2 would be completely proved if we had $V = \{V_0, \ldots, V_{\left\lfloor \frac{1}{2} \right\rfloor}\}$ and the set of them by $V = \{V_0, \ldots, V_{\left\lfloor \frac{1}{2} \right\rfloor}\}$.

It clearly holds that

(i) for all $V_i \in V$ either $V_i U_j \in G$ or $V_i U_j \notin G$

(ii) for all $V_i \in V$, $U_j \in G$ and $V_i U_j \in G$

(iii) for $V_i, V_j, V_k \in V$ and $U_i, U_j \in U$

at least one of the latest points is connected in G with at least two of V_0, V_1, V_2.

Consider a maximal path of G not containing U_i, U_j with the property that any edge of it connects a point of U with a point of V, and its endpoints are in V; let us denote the endpoints by A and B, and the path by S. If S contains all points of V, then by adding the edges $U_i A, B U_k$ we have a path of length $2 \left\lfloor \frac{l+1}{2} \right\rfloor$ in \bar{G}. So we may suppose that the set of points V not contained by S is not empty. Let this set be called W. Consider a maximal path q of G not containing U_i, U_j and having no common points with S, such that any edge of it connects a point of U with a point of W and the endpoints of it, called by C and D, are in W. We show that all points of V are contained either in S or in q. Suppose that $x \in V$ but $x \notin S, x \notin q$. It is clear, that the number of vertices of S and q in U is at most $\left\lfloor \frac{l+1}{2} \right\rfloor + 3 < \frac{(k-3)}{2} = \frac{k-2}{2}$ since $l \geq k$. So there exist two points $U_i, U_{i+1} \in U_k, \ldots, U_{i+j} \in U_k$ which do not belong to S or to q. Applying (iii) for $A, C, x \in V$ and $U_i, U_{i+1} \in U$ we have a contradiction to the maximal properties of S and q.

So the sum of the length of S and q is $2 \left\lfloor \frac{l+1}{2} \right\rfloor$. We add them the edges $U_i A, B U_i, U_i C, D U_i$ and so we have a circuit of length $2 \left\lfloor \frac{l+1}{2} \right\rfloor$ in \bar{G}. For odd l this contains a desired path with length l. For even l an easy reasoning shows that there are $U_i, U_{i+1} \in U_k$ which do not belong to this circuit. Hence one of them is connected with a vertex of the circuit (see (ii)) and so we have again a path with length l in \bar{G}. That completes the proof.

Now we give examples for graphs G with $k + \left\lfloor \frac{l+1}{2} \right\rfloor$ points that have...
Theorem (Gyárfás and Lehel; Faudree and Schelp, 1973)

\[R_{K_{n,n}}(P_n, P_m) \approx n + m \]
Theorem (Gyárfás and Lehel, 1973)

\[
R_{K_{n,n}}(P_n, P_m) \approx n + m
\]

Let \(G \) be a 2-edge-coloured balanced complete bipartite graph. Then one of the following holds.

- \(G \) looks like this:

\[
\begin{align*}
X_1 & \quad X_2 \\
Y_1 & \quad Y_2
\end{align*}
\]

- Then there are two disjoint monochromatic paths covering all, except possibly one vertex in \(G \).
Partitioning coloured graphs

Theorem (Gerencsér and Gyárfás, 1966)

Every 2-edge-coloured complete graph can be covered by 2 disjoint monochromatic paths with different colours.

Conjecture (Gyárfás, 1989)

Every r-edge-coloured complete graph can be covered by r disjoint monochromatic paths.

This theorem and conjecture gave rise to a number of results.
Conjecture (Gyárfás, 1989)

Every r-edge-coloured complete graph can be covered by r disjoint monochromatic paths.

This conjecture led to...

- Every r-edge-coloured infinite complete graph can be covered by r infinite monochromatic paths. [Rado, 1987]
- Every r-edge-coloured K_n can be covered by $O(r^2 \log r)$ disjoint monochromatic cycles. [Erdős, Gyárfás and Pyber, 1991]
- Every r-edge-coloured K_n can be covered by $O(r \log r)$ disjoint monochromatic cycles. [Gyárfás, Ruszinkó, Sárközy and Szemerédi, 2006]
- Every 2-edge-coloured K_n can be covered 2 disjoint monochromatic cycles. [Łuczak, Rödl and Szemerédi, 1998; Allen, 2008; Bessy and Thomassé, 2010]
Partitioning coloured graphs

Conjecture (Gyárfás, 1989)

Every r-edge-coloured complete graph can be covered by r disjoint monochromatic paths.

This conjecture led to...

- Every r-edge-coloured infinite complete graph can be covered by r infinite monochromatic paths. [Rado, 1987]
- Every r-edge-coloured K_n can be covered by $O(r^2 \log r)$ disjoint monochromatic cycles. [Erdős, Gyárfás and Pyber, 1991]
- Every r-edge-coloured K_n can be covered by $O(r \log r)$ disjoint monochromatic cycles. [Gyárfás, Ruszinkó, Sárközy and Szemerédi, 2006]
- Every 2-edge-coloured K_n can be covered 2 disjoint monochromatic cycles. [Łuczak, Rödl and Szemerédi, 1998; Allen, 2008; Bessy and Thomassé, 2010]
Partitioning coloured graphs

Conjecture (Gyárfás, 1989)

Every r-edge-coloured complete graph can be covered by r disjoint monochromatic paths.

This conjecture led to...

- Every r-edge-coloured infinite complete graph can be covered by r infinite monochromatic paths. [Rado, 1987]
- Every r-edge-coloured K_n can be covered by $O(r^2 \log r)$ disjoint monochromatic cycles. [Erdős, Gyárfás and Pyber, 1991]
- Every r-edge-coloured K_n can be covered by $O(r \log r)$ disjoint monochromatic cycles. [Gyárfás, Ruszinkó, Sárközy and Szemerédi, 2006]
- Every 2-edge-coloured K_n can be covered 2 disjoint monochromatic cycles. [Łuczak, Rödl and Szemerédi, 1998; Allen, 2008; Bessy and Thomassé, 2010]
Conjecture (Gyárfás, 1989)

Every r-*edge-coloured* complete graph can be covered by *r disjoint monochromatic paths.*

This conjecture led to...

- Every r-edge-coloured infinite complete graph can be covered by r infinite monochromatic paths. [Rado, 1987]
- Every r-edge-coloured K_n can be covered by $O(r^2 \log r)$ disjoint monochromatic cycles. [Erdős, Gyárfás and Pyber, 1991]
- Every r-edge-coloured K_n can be covered by $O(r \log r)$ disjoint monochromatic cycles. [Gyárfás, Ruszinkó, Sárközy and Szemerédi, 2006]
- Every 2-edge-coloured K_n can be covered 2 disjoint monochromatic cycles. [Łuczak, Rödl and Szemerédi, 1998; Allen, 2008; Bessy and Thomassé, 2010]
Partitioning coloured graphs

Conjecture (Gyárfás, 89)

Every r-edge-coloured complete graph can be covered by r disjoint monochromatic paths.

This conjecture led to...

- Every 3-edge-coloured K_n has 3 monochromatic cycles covering $n - o(n)$ vertices. [Gyárfás, Ruszinkó, Sárközy and Szemerédi, 2011]
- Not every 3-edge-coloured K_n can be covered by 3 disjoint monochromatic cycles. [P., 2013]
- Every 3-edge-coloured K_n can be covered by 3 disjoint monochromatic paths. [P., 2013]
- Suppose that we have a sequence $G = \{G_0, G_1, G_2, \ldots \}$ of graphs with maximum degree $\leq \Delta$. Every 2-edge-coloured complete graph can be covered by at most $2^{C\Delta \log \Delta}$ monochromatic copies of graphs from G. [Grinshpun and Sárközy, 2013]
Conjecture (Gyárfás, 89)

Every r-edge-coloured complete graph can be covered by r disjoint monochromatic paths.

This conjecture led to...

- Every 3-edge-coloured K_n has 3 monochromatic cycles covering $n - o(n)$ vertices. [Gyárfás, Ruszinkó, Sárközy and Szemerédi, 2011]
- Not every 3-edge-coloured K_n can be covered by 3 disjoint monochromatic cycles. [P., 2013]
- Every 3-edge-coloured K_n can be covered by 3 disjoint monochromatic paths. [P., 2013]
- Suppose that we have a sequence $G = \{G_0, G_1, G_2, \ldots \}$ of graphs with maximum degree $\leq \Delta$. Every 2-edge-coloured complete graph can be covered by at most $2^{C_\Delta \log \Delta}$ monochromatic copies of graphs from G. [Grinshpun and Sárközy, 2013]
Partitioning coloured graphs

Conjecture (Gyárfás, 89)

Every \(r \)-edge-coloured complete graph can be covered by \(r \) disjoint monochromatic paths.

This conjecture led to...

- Every 3-edge-coloured \(K_n \) has 3 monochromatic cycles covering \(n - o(n) \) vertices. [Gyárfás, Ruszinkó, Sárközy and Szemerédi, 2011]
- Not every 3-edge-coloured \(K_n \) can be covered by 3 disjoint monochromatic cycles. [P., 2013]
- Every 3-edge-coloured \(K_n \) can be covered by 3 disjoint monochromatic paths. [P., 2013]
- Suppose that we have a sequence \(G = \{ G_0, G_1, G_2, \ldots \} \) of graphs with maximum degree \(\leq \Delta \). Every 2-edge-coloured complete graph can be covered by at most \(2^{c\Delta \log \Delta} \) monochromatic copies of graphs from \(G \). [Grinshpun and Sárközy, 2013]
Conjecture (Gyárfás, 89)

Every r-edge-coloured complete graph can be covered by r disjoint monochromatic paths.

This conjecture led to...

- Every 3-edge-coloured K_n has 3 monochromatic cycles covering $n - o(n)$ vertices. [Gyárfás, Ruszinkó, Sárközy and Szemerédi, 2011]
- Not every 3-edge-coloured K_n can be covered by 3 disjoint monochromatic cycles. [P., 2013]
- Every 3-edge-coloured K_n can be covered by 3 disjoint monochromatic paths. [P., 2013]
- Suppose that we have a sequence $G = \{G_0, G_1, G_2, \ldots \}$ of graphs with maximum degree $\leq \Delta$. Every 2-edge-coloured complete graph can be covered by at most $2^{c\Delta \log \Delta}$ monochromatic copies of graphs from G. [Grinshpun and Sárközy, 2013]
Results

Theorem (P., 2014+)

Suppose that the edges of K_n are 2-coloured. Then K_n can be covered by k disjoint red paths and a disjoint blue balanced complete $(k + 1)$-partite graph.
Theorem (P., 2014+)

Suppose that the edges of K_n are 2-coloured. Then K_n can be covered by k disjoint red paths and a disjoint blue balanced complete $(k + 1)$-partite graph.

Theorem (P., 2014+)

Suppose that the edges of K_n are 2-coloured such that the red subgraph is connected. Then K_n can be covered by k disjoint red paths and a disjoint blue balanced complete $(k + 2)$-partite graph.
Applications

Theorem (P., 2014+)

Suppose that the edges of K_n are 2-coloured. Then K_n can be covered by k disjoint red paths and a disjoint blue balanced complete $(k + 1)$-partite graph.

- Generalises original Gerencsér-Gyárfás path partitioning theorem.
Theorem (P., 2014+)

Suppose that the edges of K_n are 2-coloured. Then K_n can be covered by k disjoint red paths and a disjoint blue balanced complete $(k + 1)$-partite graph.

- Generalises original Gerencsér-Gyárfás path partitioning theorem.
- Can be used to prove the $r = 3$ case of Gyárfás Conjecture.
Applications

Theorem (P., 2014+)

Suppose that the edges of K_n are 2-coloured. Then K_n can be covered by k disjoint red paths and a disjoint blue balanced complete $(k + 1)$-partite graph.

- $R(P_n, K_i^t) = (t - 1)(n - 1) + t(i - 1) + 1$ for $i \equiv 1 \pmod{n - 1}$.

This generalises:

$R(P_n, K_m) = (n - 1)(m - 1) + 1 \quad \text{[Erdős]}

$R(P_n, K_i, i) = n + i - 1$ for $m \equiv 1 \pmod{n - 1} \quad \text{[Häggkvist]}

$R(P_n, P_{kn}) = (n - 1)k + \left\lfloor \frac{n}{k} + 1 \right\rfloor \quad \text{[Conjectured by Allen, Brightwell and Skokan]}

Might be useful for finding $R(P_n, H)$ for other graphs H.
Applications

Theorem (P., 2014+)

Suppose that the edges of K_n are 2-coloured. Then K_n can be covered by k disjoint red paths and a disjoint blue balanced complete $(k + 1)$-partite graph.

- $R(P_n, K^t_i) = (t - 1)(n - 1) + t(i - 1) + 1$
 for $i \equiv 1 \pmod{n - 1}$. This generalises:
 - $R(P_n, K_m) = (n - 1)(m - 1) + 1$ [Erdős].
 - $R(P_n, K_{i,i}) = n + i - 1$ for $m \equiv 1 \pmod{n - 1}$ [Häggkvist].
Applications

Theorem (P., 2014+)

Suppose that the edges of K_n are 2-coloured. Then K_n can be covered by k disjoint red paths and a disjoint blue balanced complete $(k + 1)$-partite graph.

- $R(P_n, K^t_i) = (t - 1)(n - 1) + t(i - 1) + 1$ for $i \equiv 1 \pmod{n - 1}$. This generalises:
 - $R(P_n, K_m) = (n - 1)(m - 1) + 1$ [Erdős].
 - $R(P_n, K_{i, i}) = n + i - 1$ for $m \equiv 1 \pmod{n - 1}$ [Häggkvist].
- $R(P_n, P^k_n) = (n - 1)k + \left\lfloor \frac{n}{k+1} \right\rfloor$ (Conjectured by Allen, Brightwell and Skokan).
Applications

Theorem (P., 2014+)

_Suppose that the edges of \(K_n \) are 2-coloured. Then \(K_n \) can be covered by \(k \) disjoint red paths and a disjoint blue balanced complete \((k + 1)\)-partite graph._

\[
R(P_n, K^t_i) = (t - 1)(n - 1) + t(i - 1) + 1 \\
\text{for } i \equiv 1 \pmod{n - 1}. \text{ This generalises:}
\]

\[
\begin{align*}
& R(P_n, K_m) = (n - 1)(m - 1) + 1 \quad \text{[Erdös].} \\
& R(P_n, K_{i,i}) = n + i - 1 \quad \text{for } m \equiv 1 \pmod{n - 1} \quad \text{[Häggkvist].}
\end{align*}
\]

\[
R(P_n, P^k_n) = (n - 1)k + \left\lfloor \frac{n}{k+1} \right\rfloor \quad \text{(Conjectured by Allen, Brightwell and Skokan).}
\]

\[
\text{ Might be useful for finding } R(P_n, H) \text{ for other graphs } H.\ldots
\]
Proof

Theorem

Every 2-edge-coloured complete graph can be covered by a red path and a disjoint blue balanced complete bipartite graph.

Proof.
Open problems

Conjecture

Every 2-edge-coloured complete tripartite graph can be covered by two disjoint monochromatic paths.

Conjecture (Gyárfás and Sarközy)

Every complete r-uniform hypergraph H can be covered by $\alpha(H)$ disjoint loose cycles.

Problem

Every r-edge-coloured complete graph can be covered by $1000r$ monochromatic paths.
Problem

Prove natural statements of the form “Every 2-edge-coloured complete graph can be covered by a red graph G and a disjoint blue graph H with G and H having particular structures”.

Known results of this type:

- G and H paths [Gerencsér and Gyárfás].
- G and H cycles [Łuczak, Rödl, and Szemerédi; Allen; Bessy and Thomassé].
- G a matching, H a complete graph [folklore].
- G a forest of k paths, H a balanced complete $(k+1)$-partite graph. [P.]
- G a cycle, H a graph with $\Delta(H) \geq \frac{1}{2}(|H| - 1)$. [P.]