Two Applications of ML in Finance

I) Estimating Default Risk II) Pricing and Hedging American-Style Derivatives

Sebastian Becker and Patrick Cheridito
RiskLab, ETH Zurich

ETH Zurich, April 9, 2021

A Closer Look at Supervised ML

- **Olimination** Classical example: The Titanic dataset
 - Label: did a passenger survive the Titanic disaster? $y \in \mathcal{Y} = \{0, 1\} = \{\text{yes}, \text{no}\}$
 - Features: $x_1 = 1 \text{st/2nd/3rd class}, x_2 = \text{gender}, x_3 = \text{age}$
 - Split the data into training data and test data: random choice of holdout data, or cross-validation
 More information is available here: https://www.kaggle.com/c/titanic
- **Modern example:** Covid 19
 - Label: who is at risk of being hospitalized if infected? $y \in \mathcal{Y} = \{0, 1\} = \{\text{no, yes}\}$
 - Features: $x_1 = age$, $x_2 = gender$, $x_3 = blood$ pressure, $x_4 = blood$ type

Note there are different types of data

- 1st/2nd/3rd class: discrete numerical data
- blood pressure: continuous numerical data
- age: discrete or continuous numerical data
- gender, blood type: categorical data

In general ...

- there is a feature set $\mathcal{X} = \{(x_1, \dots, x_d) : x_1 \in \mathcal{X}_1, \dots, x_d \in \mathcal{X}_d\}$ and a label set $\mathcal{Y} \subseteq \mathbb{R}$
- there is training data $(x^j, y^j)_{j=1}^J \subseteq \mathcal{X} \times \mathcal{Y}$ and test data $(x^j, y^j)_{i=J+1}^{J+K} \subseteq \mathcal{X} \times \mathcal{Y}$
- supervised learning tries to find a function $f_{\theta}: \mathcal{X} \to \mathcal{Y}$ parametrized by a parameter $\theta \in \Theta \subseteq \mathbb{R}^q$ that minimizes the empirical loss

$$\sum_{i=1}^{J} \ell\left(y^{i}, f_{\theta}(x^{i})\right) \quad \text{for a given function } \ell: \mathcal{Y} \times \mathcal{Y} \to [0, \infty)$$

• popular choice: $\ell(y,z) = (y-z)^2$

Popular models for $f_{\theta} \colon \mathcal{X} \to \mathcal{Y}, \ \theta \in \Theta \dots$

Decision trees

Grow the tree by iteratively splitting the *training* set based on relevant *features* and corresponding *thresholds*

Neural networks

Train the network on the *training data* with a *stochastic gradient descent* method

The quality of the results depends on ...

- the relevance and quality of the data ... data collection and preparation
- is the training data $(x^j, y^j)_{i=1}^J$ representative of the test data $(x^j, y^j)_{i=l+1}^{J+K}$? ... generalization
- is there enough training data $(x^j, y^j)_{i=1}^J$ compared to the complexity of $f_\theta, \theta \in \Theta$? ... overfitting

Advantages of trees

easy to understand/interpret can be used with relatively little training data

Advantages of neural networks

can find structure in large data sets outcome is continuous in the features

Drawbacks of trees

often unstable not suitable for large data sets

Drawbacks of neural networks

needs a lot of training data "black box"

Assessing the performance

• Accuracy: percentage of correct predictions on the test set

Class imbalance

In many applications, there is a large negative class and a small positive class

- Most people screened for a disease are not sick
- Most payments are not fraudulent

So, only predicting negatives trivially accomplishes high accuracy

- Precision: percentage of positive predictions that were correct
- Recall: percentage of actual positives that were predicted correctly

Application I

Estimating Default Risk

- *Label*: default probability $p \in (0,1)$
- Features: $x_1 = age$, $x_2 = income$, $x_3 = salaried/self-employed$

We consider two different approaches

• Logistic regression
$$p(x) = f_{\theta}(x) = \psi (\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3),$$

where
$$\psi(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

(logistic function)

Neural network with two hidden layers

$$p(x) = f_{\theta}(x) = \psi \circ A_3 \circ \rho \circ A_2 \circ \rho \circ A_1$$

where

$$A_1: \mathbb{R}^3 \to \mathbb{R}^m, \ A_2: \mathbb{R}^m \to \mathbb{R}^n, \ A_3: \mathbb{R}^n \to \mathbb{R}$$
 are affine and $\rho(x) = \max\{x, 0\}$ (ReLU)

• *Likelihood* of a Bernoulli(p) random variable to take the value $y \in \{0, 1\}$:

$$p^{y}(1-p)^{1-y} = \begin{cases} p & \text{for } y = 1\\ 1-p & \text{for } y = 0 \end{cases}$$

• Likelihood of J i.i.d. Bernoulli(p) random variables to take the values y^1, \ldots, y^J :

$$\prod_{j=1}^{J} p^{y^j} (1-p)^{1-y^j}$$

Log-likelihood

$$\sum_{i=1}^{J} y^{i} \log p + (1 - y^{i}) \log(1 - p)$$

Training: try to minimize the total deviance (negative conditional log-likelihood)

$$\theta \mapsto \sum_{i=1}^{J} -y^{i} \log f_{\theta}(x^{i}) - (1-y^{i}) \log (1-f_{\theta}(x^{i}))$$

on the training data

Evaluating the performance of the default model

- Conditional distribution of the test data (contingency table) which percentage of the *test data* x^j with prediction $p(x^j) \in (a\%, b\%]$ is positive?
- A ROC (receiver operating characteristic) curve plots the true positive rate TP/P against the false positive rate FP/N for different decision thresholds

- What is important in this particular application? (compared to e.g. radar detection of incoming missiles)
 - A false positive is a "false alarm" or lost business opportunity
 - A false negative is a "miss" or **DEFAULTED LOAN!**
- Calculate estimates of the expected P&L and the 99%-Value-at-Risk on the test data

Application II

Pricing and Hedging American-Style Derivatives

• Let X_0, X_1, \ldots, X_N be a d-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, i.e. $X_0, X_1, \ldots, X_N : \Omega \to \mathbb{R}^d$ are random vectors such that

$$\mathbb{P}[X_{n+1} \in B \mid X_n] = \mathbb{P}[X_{n+1} \in B \mid X_0, \dots, X_n]$$

every random sequence can be made Markov by adding enough past information to the current state

- $g: \{0, 1, ..., N\} \times \mathbb{R}^d \to \mathbb{R}$ a measurable function such that $\mathbb{E} g(n, X_n)^2 < \infty$ for all n
- Optimal Stopping Problem

$$\sup_{\tau \in \mathcal{T}} \mathbb{E} \, g(\tau, X_\tau)$$

where \mathcal{T} is the set of all *X*-stopping times $\tau:\Omega\to\{0,1,\ldots,N\}$

that is,
$$1_{\{\tau=n\}} = h_n(X_0, ..., X_n)$$
 for all n

Toy Example

$$X_0 = 0$$
, $\mathbb{P}[X_1 = \pm 1] = \frac{1}{2}$, $\mathbb{P}[X_2 = X_1 \pm 1 \mid X_1] = \frac{1}{2}$

 $\tau^* = \begin{cases} 2 & \text{if } X_1 = 1\\ 1 & \text{if } X_1 = -1 \end{cases} \qquad \mathbb{E} g(\tau^*, X_{\tau^*}) = \frac{1}{4} \times 1 + \frac{1}{4} \times 2 + \frac{1}{2} \times 2 = 1.75$

Deriving an Optimal Stopping Time

Then

• In particular,

$$\mathbb{E}$$

$$\mathbb{E}$$

$$\mathbb{E}\left[g\right]$$

$$n \, 1_{I_{a}}$$

 $\tau_n^* = n \mathbf{1}_{\{g(n,X_n) > C_n\}} + \tau_{n+1}^* \mathbf{1}_{\{g(n,X_n) < C_n\}}, \quad n \le N-1$ $V_n = \sup \mathbb{E} g (\tau, X_{\tau}) = \mathbb{E} g (\tau_n^*, X_{\tau_n^*})$

 $V_{0} = \sup_{ au \in \mathcal{T}} \mathbb{E} \, g \left(au, X_{ au}
ight) = \mathbb{E} \, g \left(au_{0}^{st}, X_{ au_{0}^{st}}
ight)$

So τ_0^* is an optimal stopping time!

 $C_n = \mathbb{E}\left[g\left(\tau_{n+1}^*, X_{\tau_{n+1}^*}\right) \mid X_n\right], \quad n \leq N-1, \quad \text{(continuation value)}$

where \mathcal{T}_n is the set of all X-stopping times τ such that $n < \tau < N$

Stopping Decisions

• Let $f_n, f_{n+1}, \ldots, f_N : \mathbb{R}^d \to \{0, 1\}$ be measurable functions such that $f_N \equiv 1$. Then

$$\tau_n = \sum_{m=-n}^{N} m f_m(X_m) \prod_{i=-n}^{m-1} (1 - f_j(X_j)) \quad \text{with} \quad \prod_{i=-n}^{n-1} (1 - f_j(X_j)) := 1$$

is a stopping time in \mathcal{T}_n

•
$$au_n = nf_n(X_n) + au_{n+1}(1 - f_n(X_n))$$
 where $au_{n+1} = \sum_{m=n+1}^{N} mf_m(X_m) \prod_{j=n+1}^{m-1} (1 - f_j(X_j))$

Neural Network Approximation

Idea Recursively approximate f_n by a neural network $f^{\theta} : \mathbb{R}^d \to \{0, 1\}$ of the form

$$f^{\theta} = 1_{[0,\infty)} \circ a_3^{\theta} \circ \rho \circ a_2^{\theta} \circ \rho \circ a_1^{\theta},$$

where

- \bullet q_1 and q_2 are positive integers specifying the number of nodes in the two hidden layers,
- $a_1^{\theta} \colon \mathbb{R}^d \to \mathbb{R}^{q_1}$, $a_2^{\theta} \colon \mathbb{R}^{q_1} \to \mathbb{R}^{q_2}$ and $a_3^{\theta} \colon \mathbb{R}^{q_2} \to \mathbb{R}$ are affine functions given by $a_i^{\theta}(x) = A_i x + b_i$, i = 1, 2, 3,
- for $j \in \mathbb{N}$, $\rho: \mathbb{R}^j \to \mathbb{R}^j$ is the component-wise ReLU activation function given by $\rho(x_1, \dots, x_j) = (x_1^+, \dots, x_j^+)$

The components of θ consist of the entries of A_i and b_i , i = 1, 2, 3

More precisely,

• assume parameter values $\theta_{n+1}, \theta_{n+2}, \dots, \theta_N \in \mathbb{R}^q$ have been found such that $f^{\theta_N} \equiv 1$ and the stopping time

$$au_{n+1} = \sum_{m=n+1}^{N} m f^{ heta_m}(X_m) \prod_{j=n+1}^{m-1} (1 - f^{ heta_j}(X_j))$$

produces an expectation $\mathbb{E} g(\tau_{n+1}, X_{\tau_{n+1}})$ close to the optimal value V_{n+1}

• now try to find a maximizer $\theta_n \in \mathbb{R}^q$ of

$$\theta \mapsto \mathbb{E}\left[g(n,X_n)f^{\theta}(X_n) + g(\tau_{n+1},X_{n+1})(1-f^{\theta}(X_n))\right]$$

- Goal find an (approximately) optimal $\theta_n \in \mathbb{R}^q$ with a stochastic gradient ascent method
- **Problem** for $x \in \mathbb{R}^d$, the θ -gradient of

$$f^{\theta}(x) = 1_{[0,\infty)} \circ a_3^{\theta} \circ \rho \circ a_2^{\theta} \circ \rho \circ a_1^{\theta}(x)$$

is 0 or does not exist

• As an intermediate step consider a neural network F^{θ} : $\mathbb{R}^{d} \to (0,1)$ of the form

$$F^{\theta} = \psi \circ a_3^{\theta} \circ \rho \circ a_2^{\theta} \circ \rho \circ a_1^{\theta}$$
 for $\psi(x) = \frac{e^x}{1 + e^x}$

• Use **stochastic gradient ascent** to find an approximate optimizer $\theta_n \in \mathbb{R}^q$ of

$$\theta \mapsto \mathbb{E}\left[g(n,X_n)F^{\theta}(X_n) + g(\tau_{n+1},X_{\tau_{n+1}})(1-F^{\theta}(X_n))\right]$$

- Approximate $f_n \approx f^{\theta_n} = 1_{[0,\infty)} \circ a_3^{\theta_n} \circ \rho \circ a_2^{\theta_n} \circ \rho \circ a_1^{\theta_n}$
- Repeat the same steps at times $n-1, n-2, \ldots, 0$

Training the Networks

- Let $(x_n^k)_{n=0}^N$, $k=1,2,\ldots$ be independent simulations of $(X_n)_{n=0}^N$
- Let $\theta_{n+1}, \ldots, \theta_N \in \mathbb{R}^q$ be given, and consider the corresponding stopping time

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f^{\theta_m}(X_m) \prod_{i=n+1}^{m-1} (1 - f^{\theta_j}(X_j))$$

• τ_{n+1} is of the form $\tau_{n+1} = l_{n+1}(X_{n+1}, \dots, X_{N-1})$ for a measurable function

$$l_{n+1}: \mathbb{R}^{d(N-n-1)} \to \{n+1, n+2, \dots, N\}$$

Denote

$$l_{n+1}^{k} = \begin{cases} N & \text{if } n = N - 1\\ l_{n+1}(x_{n+1}^{k}, \dots, x_{N-1}^{k}) & \text{if } n \leq N - 2 \end{cases}$$

• The realized reward
$$r_n^k(\theta)=g(n,x_n^k)F^\theta(x_n^k)+g(f_{n+1}^k,x_{jk}^k-)(1-F^\theta(x_n^k))$$

is continuous and almost everywhere differentiable in θ

Stochastic Gradient Ascent

- Initialize $\theta_{n,0}$ typically random; e.g. Xavier initialization
- Standard updating $\theta_{n,k+1} = \theta_{n,k} + \eta \nabla r_n^k(\theta_{n,k})$

Variants

- Mini-batches
- Batch normalization
- Momentum
- Adagrad
- RMSProp
- AdaDelta
- Adam
- Decoupled weight decay
- Warm restarts
- ...

Lower Bound

• The candidate optimal stopping time

$$au^{\Theta} = \sum_{n=1}^N n f^{ heta_n}(X_n) \prod_{j=0}^{n-1} (1 - f^{ heta_j}(X_j))$$

yields a lower bound

$$L = \mathbb{E} g(\tau^{\Theta}, X_{\tau^{\Theta}})$$
 for the optimal value $V_0 = \sup_{\tau} \mathbb{E} g(\tau, X_{\tau})$

- Let $(y_n^k)_{n=0}^N$, $k=1,2,\ldots,K_L$, be a new set of independent simulations of $(X_n)_{n=0}^N$
- τ^{Θ} can be written as $\tau^{\Theta} = l(X_0, \dots, X_{N-1})$ for a measurable function $l : \mathbb{R}^{dN} \to \{0, 1, \dots, N\}$
- Denote $l^k = l(y_0^k, \dots, y_{N-1}^k)$
- Use the Monte Carlo approximation $\hat{L} = \frac{1}{K} \sum_{k=1}^{K_L} g(l^k, y_{jk}^k)$ as an estimate for L

Lower Confidence Bound

• Consider the *sample variance*

$$\hat{\sigma}_{L}^{2} = \frac{1}{K_{L} - 1} \sum_{k=1}^{K_{L}} \left(g(l^{k}, y_{j^{k}}^{k}) - \hat{L} \right)^{2}$$

• By the central limit theorem,

$$\left[\hat{L} - z_{\alpha} \frac{\hat{\sigma}_L}{\sqrt{K_L}} \,,\, \infty\right)$$

is an asymptotically valid $1 - \alpha$ confidence interval for L where z_{α} is the $1 - \alpha$ quantile of the standard normal distribution

• As a consequence,

$$\left[\hat{L} - z_{\alpha} \frac{\hat{\sigma}_L}{\sqrt{K_L}}, \infty\right)$$

is also an asymptotically valid $1-\alpha$ confidence interval for the true optimal value V_0

Dual Problem

- The value process $H_n = g(n, X_n) \vee C_n$ is a super-martingale
- Let $H_n = H_0 + M_n^H A_n^H$ be the Doob decomposition, that is, $(M_n^H)_{n=0}^N$ is a martingale and $(A_n^H)_{n=0}^N$ a non-decreasing predictable process such that $M_0^H = A_0^H = 0$

$$V_0 = \mathbb{E}\left[\max_{0 \leq n \leq N}\left\{g(n, X_n) - M_n^H
ight\}
ight]$$

and

$$V_0 \leq \mathbb{E}\left[\max_{0 \leq n \leq N} \left\{g(n, X_n) - M_n - \varepsilon_n\right\}
ight]$$

for every martingale $(M_n)_{n=0}^N$ with $M_0=0$ and estimation errors $(\varepsilon_n)_{n=0}^N$ satisfying $\mathbb{E}[\varepsilon_n\mid\mathcal{F}_n^X]=0$

Approximate Upper Bound

- Let $(M_n^{\Theta})_{n=0}^N$ be the martingale part of the value process generated by $f^{\theta_0}, ..., f^{\theta_{N-1}}$
- Use nested simulation to generate realizations M_n^k of $M_n^{\Theta} + \varepsilon_n$ (unbiased estimation errors) along simulated paths ε_n^k of X_n , n = 0, ..., N

•

$$U = \mathbb{E}\left[\max_{0 \leq n \leq N} \left(g(n, X_n) - M_n^{\Theta} - \varepsilon_n\right)
ight]$$
 is an upper bound for V_0

• Use the Monte Carlo approximation

$$\hat{U} = \frac{1}{K_U} \sum_{k=1}^{K_U} \max_{0 \le n \le N} \left(g(n, z_n^k) - M_n^k \right) \quad \text{as an estimate for} \quad U$$

Our point estimate of
$$V_0$$
 is $\hat{V} = \frac{\hat{L} + \hat{U}}{2}$

Confidence Interval for V_0

• By the central limit theorem,

$$\left(-\infty\,,\,\hat{U}+z_{\alpha}\frac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}\right]$$

is an asymptotically valid $1 - \alpha$ confidence interval for U, where $\hat{\sigma}_U$ is the corresponding sample standard deviation

So,

$$\left[\hat{L} - z_{\alpha} \frac{\hat{\sigma}_{L}}{\sqrt{K_{L}}}, \ \hat{U} + z_{\alpha} \frac{\hat{\sigma}_{U}}{\sqrt{K_{U}}}\right]$$

is an asymptotically valid $1 - 2\alpha$ confidence interval for V_0 .

Bermudan Max-Call Options

Consider d assets with prices evolving according to a multi-dimensional Black–Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

for

- initial values $s_0^i \in (0, \infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_i \in [0, \infty)$
- volatilities $\sigma_i \in (0, \infty)$
- and a *d*-dimensional Brownian motion W with constant correlation ρ_{ij} between increments of different components W^i and W^j

A Bermudan max-call option has time-t payoff $\left(\max_{1 \le i \le d} S_t^i - K\right)^+$ and can be exercised at one of finitely many times $0 = t_0 < t_1 = \frac{T}{N} < t_2 = \frac{2T}{N} < \dots < t_N = T$

Price:
$$\sup_{\tau \in \{t_0, t_1, \dots, T\}} \mathbb{E} \left[e^{-r\tau} \left(\max_{1 \le i \le d} S_{\tau}^i - K \right)^+ \right] = \sup_{\tau \in \mathcal{T}} \mathbb{E} g(\tau, X_{\tau})$$

Numerical Results

for $s_0^i = 100$, $\sigma_i = 20\%$, r = 5%, $\delta = 10\%$, $\rho_{ij} = 0$, K = 100, T = 3 years, N = 9:

# Assets	Point Est.	Comp. Time	95% Conf. Int.	Bin. Tree	Broadie–Cao 95% Conf. Int.
2	13.899	28.7 <i>s</i>	[13.880, 13.910]	13.902	
3	18.690	28.7 <i>s</i> 28.9 <i>s</i>	[18.673, 18.699]	18.69	
5	26.159	28.1 <i>s</i>	[26.138, 26.174]	10.07	[26.115, 26.164]
10	38.337	30.5s	[38.300, 38.367]		[]
20	51.668	37.5 <i>s</i>	[51.549, 51.803]		
30	59.659	45.5s	[59.476, 59.872]		
50	69.736	59.1 <i>s</i>	[69.560, 69.945]		
100	83.584	95.9 <i>s</i>	[83.357, 83.862]		
200	97.612	170.1s	[97.381, 97.889]		
500	116.425	493.5s	[116.210, 116.685]		

Hedging

$$S_t^i = S_0^i \exp([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i)$$

$$t_n = \frac{nT}{N}, \ n = 0, 1, \dots, N$$

$$u_m = \frac{mT}{NM}, \ m = 0, 1, \dots, NM$$

• Discounted dividend-adjusted prices
$$P_{u_m}^i = p_m^i \left(W_{u_m}^i \right) = s_0^i \exp \left(\sigma_i W_{u_m}^i - \sigma_i^2 u_m / 2 \right)$$

Hedging portfolio

$$(h\cdot P)_{u_m} = \sum_{i=0}^{m-1}\sum_{i=1}^d h_j^i\left(P_{u_j}
ight)\left(P_{u_{j+1}}^i-P_{u_j}^i
ight)$$

- Simulate paths $(w_m^k)_{m=0}^{NM}$, $k=1,\ldots,K_H$, of $(W_{u_m})_{m=0}^{NM}$
- Train neural networks $h^{\lambda_m}: \mathbb{R}^d \to \mathbb{R}^d$ to minimize

$$\sum_{k=1}^{K_H} \left(\hat{V} + \sum_{m=0}^{\tau^{\theta} M - 1} h^{\lambda_m}(w_m^k) \cdot \left(p_{m+1}(w_{m+1}^k) - p_m(w_m^k) \right) - g^k \right)^2$$

where

$$g^k = \exp\left(-r\frac{\tau^{\Theta}T}{N}\right) \left(\max_{1 \le i \le d} s_0^i \exp\left(\left\lceil r - \delta_i - \frac{\sigma_i^2}{2} \right\rceil \frac{\tau^{\theta}T}{N} + \sigma_i w_{\tau^{\theta}M}^{k,i}\right) - K\right)^+ \quad \text{(discounted payoff)}$$

Evaluate

$$\hat{V} + \sum_{m=0}^{\tau^{\infty} M-1} h^{\lambda_m}(\tilde{w}_m^k) \cdot \left(p_{m+1}(\tilde{w}_{m+1}^k) - p_m(\tilde{w}_m^k) \right) - \tilde{g}^k$$

along independent samples $(\tilde{w}_m^k)_{m=0}^{NM}$, $k=1,\ldots,K_T$, of $(W_{u_m})_{m=0}^{NM}$

vields an empirical distribution of the hedging error