
Two Applications of ML in Finance

I) Estimating Default Risk
II) Pricing and Hedging American-Style Derivatives

Sebastian Becker and Patrick Cheridito

RiskLab, ETH Zurich

ETH Zurich, April 9, 2021

A Closer Look at Supervised ML

1 Classical example: The Titanic dataset

Label: did a passenger survive the Titanic disaster? y ∈ Y = {0, 1} = {yes, no}
Features: x1 = 1st/2nd/3rd class, x2 = gender, x3 = age
Split the data into training data and test data: random choice of holdout data, or cross-validation
More information is available here: https://www.kaggle.com/c/titanic

2 Modern example: Covid 19

Label: who is at risk of being hospitalized if infected? y ∈ Y = {0, 1} = {no, yes}
Features: x1 = age, x2 = gender, x3 = blood pressure, x4 = blood type

Note there are different types of data

1st/2nd/3rd class: discrete numerical data
blood pressure: continuous numerical data
age: discrete or continuous numerical data
gender, blood type: categorical data

In general ...

there is a feature set X = {(x1, . . . , xd) : x1 ∈ X1, . . . , xd ∈ Xd} and a label set Y ⊆ R

there is training data (xj, yj)J
j=1 ⊆ X × Y and test data (xj, yj)J+K

j=J+1 ⊆ X × Y

supervised learning tries to find a function fθ : X → Y parametrized by a parameter θ ∈ Θ ⊆ Rq

that minimizes the empirical loss

J∑
j=1

`
(
yj, fθ(xj)

)
for a given function ` : Y × Y → [0,∞)

popular choice: `(y, z) = (y− z)2

Popular models for fθ:X → Y , θ ∈ Θ ...

Decision trees Neural networks

y=0 y=1 y=0

y=0

y=0 y=1

Input

Hidden layer Hidden layer

Output

Grow the tree by iteratively splitting the training Train the network on the training data with a
set based on relevant features and corresponding stochastic gradient descent method
thresholds

The quality of the results depends on ...

the relevance and quality of the data ... data collection and preparation

is the training data (xj, yj)J
j=1 representative of the test data (xj, yj)J+K

j=J+1? ... generalization

is there enough training data (xj, yj)J
j=1 compared to the complexity of fθ , θ ∈ Θ? ... overfitting

Advantages of trees Drawbacks of trees
easy to understand/interpret often unstable
can be used with relatively little training data not suitable for large data sets

Advantages of neural networks Drawbacks of neural networks
can find structure in large data sets needs a lot of training data
outcome is continuous in the features “black box"

Assessing the performance

Accuracy: percentage of correct predictions on the test set

Class imbalance

In many applications, there is a large negative class and a small positive class

Most people screened for a disease are not sick
Most payments are not fraudulent

So, only predicting negatives trivially accomplishes high accuracy

Precision: percentage of positive predictions that were correct

Recall: percentage of actual positives that were predicted correctly

Application I
Estimating Default Risk

Label: default probability p ∈ (0, 1)

Features: x1 = age, x2 = income, x3 = salaried/self-employed

We consider two different approaches

1 Logistic regression p(x) = fθ(x) = ψ (θ0 + θ1x1 + θ2x2 + θ3x3),

where ψ(z) =
ez

1 + ez
=

1
1 + e−z

(logistic function)

2 Neural network with two hidden layers

p(x) = fθ(x) = ψ ◦ A3 ◦ ρ ◦ A2 ◦ ρ ◦ A1,

where

A1:R3 → Rm, A2:Rm → Rn, A3:Rn → R are affine and ρ(x) = max{x, 0} (ReLU)

Likelihood of a Bernoulli(p) random variable to take the value y ∈ {0, 1}:

py(1− p)1−y =

{
p for y = 1

1− p for y = 0
Likelihood of J i.i.d. Bernoulli(p) random variables to take the values y1, . . . , yJ :

J∏
j=1

pyj
(1− p)1−yj

Log-likelihood
J∑

j=1

yj log p + (1− yj) log(1− p)

Training: try to minimize the total deviance (negative conditional log-likelihood)

θ 7→
J∑

j=1

−yj log fθ(xj)− (1− yj) log
(
1− fθ(xj)

)
on the training data

Evaluating the performance of the default model

Is the normalized total deviance on the test data larger than on the training data? overfitting!

Conditional distribution of the test data (contingency table)
which percentage of the test data xj with prediction p(xj) ∈ (a%, b%] is positive?

A ROC (receiver operating characteristic) curve
plots the true positive rate TP/P against the false
positive rate FP/N for different decision thresholds

What is important in this particular application? (compared to e.g. radar detection of incoming missiles)
A false positive is a “false alarm" or lost business opportunity
A false negative is a “miss" or DEFAULTED LOAN!

Calculate estimates of the expected P&L and the 99%-Value-at-Risk on the test data

Application II
Pricing and Hedging American-Style Derivatives

Let X0,X1, . . . ,XN be a d-dimensional Markov process on a probability space (Ω,F ,P),

i.e. X0,X1, . . . ,XN : Ω→ Rd are random vectors such that

P[Xn+1 ∈ B | Xn] = P[Xn+1 ∈ B | X0, . . . ,Xn]

every random sequence can be made Markov by adding enough past information to the current state

g: {0, 1, . . . ,N} × Rd → R a measurable function such that E g(n,Xn)
2 <∞ for all n

Optimal Stopping Problem
sup
τ∈T

E g(τ,Xτ)

where T is the set of all X-stopping times τ : Ω→ {0, 1, . . . ,N}

that is, 1{τ=n} = hn(X0, . . . ,Xn) for all n

Toy Example

X0 = 0, P[X1 = ±1] =
1
2
, P[X2 = X1 ± 1 | X1] =

1
2

g = 1

 g = 1 g = 2

g = 2

g = 1

1

g = 1

n = 2n = 1 n = 0

τ∗ =

{
2 if X1 = 1
1 if X1 = −1

E g(τ∗,Xτ∗) =
1
4
× 1 +

1
4
× 2 +

1
2
× 2 = 1.75

Deriving an Optimal Stopping Time

Set τ∗N = N

Cn = E
[
g
(
τ∗n+1,Xτ∗n+1

)
| Xn

]
, n ≤ N − 1, (continuation value)

τ∗n = n 1{g(n,Xn)≥Cn} + τ∗n+11{g(n,Xn)<Cn}, n ≤ N − 1

Then Vn = sup
τ∈Tn

E g (τ,Xτ) = E g
(
τ∗n ,Xτ∗n

)
where Tn is the set of all X-stopping times τ such that n ≤ τ ≤ N

In particular, V0 = sup
τ∈T

E g (τ,Xτ) = E g
(
τ∗0 ,Xτ∗0

)
So τ∗0 is an optimal stopping time!

Stopping Decisions

Let fn, fn+1, . . . , fN : Rd → {0, 1} be measurable functions such that fN ≡ 1. Then

τn =

N∑
m=n

m fm(Xm)

m−1∏
j=n

(1− fj(Xj)) with
n−1∏
j=n

(1− fj(Xj)) := 1

is a stopping time in Tn

τn = n fn(Xn) + τn+1(1− fn(Xn)) where τn+1 =
N∑

m=n+1

m fm(Xm)

m−1∏
j=n+1

(1− fj(Xj))

Neural Network Approximation

Idea Recursively approximate fn by a neural network f θ:Rd → {0, 1} of the form

f θ = 1[0,∞) ◦ aθ3 ◦ ρ ◦ aθ2 ◦ ρ ◦ aθ1 ,

where
q1 and q2 are positive integers specifying the number of nodes in the two hidden layers,

aθ1 :R
d → Rq1 , aθ2 :R

q1 → Rq2 and aθ3 :R
q2 → R are affine functions given by

aθi (x) = Aix + bi, i = 1, 2, 3,

for j ∈ N, ρ:Rj → Rj is the component-wise ReLU activation function given by
ρ(x1, . . . , xj) = (x+

1 , . . . , x
+
j)

The components of θ consist of the entries of Ai and bi, i = 1, 2, 3

More precisely,

assume parameter values θn+1, θn+2, . . . , θN ∈ Rq have been found such that f θN ≡ 1 and the stopping
time

τn+1 =
N∑

m=n+1

m f θm (Xm)

m−1∏
j=n+1

(1− f θj (Xj))

produces an expectation E g(τn+1,Xτn+1) close to the optimal value Vn+1

now try to find a maximizer θn ∈ Rq of

θ 7→ E
[
g(n,Xn) f θ(Xn) + g(τn+1,Xn+1)(1− f θ(Xn))

]

Goal find an (approximately) optimal θn ∈ Rq with a stochastic gradient ascent method

Problem for x ∈ Rd, the θ-gradient of

f θ(x) = 1[0,∞) ◦ aθ3 ◦ ρ ◦ aθ2 ◦ ρ ◦ aθ1 (x)

is 0 or does not exist

As an intermediate step consider a neural network Fθ:Rd → (0, 1) of the form

Fθ = ψ ◦ aθ3 ◦ ρ ◦ aθ2 ◦ ρ ◦ aθ1 for ψ(x) =
ex

1 + ex

Use stochastic gradient ascent to find an approximate optimizer θn ∈ Rq of

θ 7→ E
[
g(n,Xn)Fθ(Xn) + g(τn+1,Xτn+1)(1− Fθ(Xn))

]
Approximate fn ≈ f θn = 1[0,∞) ◦ aθn

3 ◦ ρ ◦ aθn
2 ◦ ρ ◦ aθn

1

Repeat the same steps at times n− 1, n− 2, . . . , 0

Training the Networks

Let (xk
n)

N
n=0, k = 1, 2, . . . be independent simulations of (Xn)

N
n=0

Let θn+1, . . . , θN ∈ Rq be given, and consider the corresponding stopping time

τn+1 =
N∑

m=n+1

m f θm (Xm)

m−1∏
j=n+1

(1− f θj (Xj))

τn+1 is of the form τn+1 = ln+1(Xn+1, . . . ,XN−1) for a measurable function

ln+1 : Rd(N−n−1) → {n + 1, n + 2, . . . ,N}

Denote

lk
n+1 =

{
N if n = N − 1
ln+1(xk

n+1, . . . , x
k
N−1) if n ≤ N − 2

The realized reward
rk

n(θ) = g(n, xk
n)Fθ(xk

n) + g(lk
n+1, x

k
lkn+1

)(1− Fθ(xk
n))

is continuous and almost everywhere differentiable in θ

Stochastic Gradient Ascent

Initialize θn,0 typically random; e.g. Xavier initialization

Standard updating θn,k+1 = θn,k + η∇rk
n(θn,k)

Variants

Mini-batches
Batch normalization
Momentum
Adagrad
RMSProp
AdaDelta
Adam
Decoupled weight decay
Warm restarts
...

Lower Bound

The candidate optimal stopping time

τΘ =
N∑

n=1

n f θn (Xn)

n−1∏
j=0

(1− f θj (Xj))

yields a lower bound

L = E g(τΘ,XτΘ) for the optimal value V0 = sup
τ

E g(τ,Xτ)

Let (yk
n)

N
n=0, k = 1, 2, . . . ,KL, be a new set of independent simulations of (Xn)

N
n=0

τΘ can be written as τΘ = l(X0, . . . ,XN−1) for a measurable function l : RdN → {0, 1, . . . ,N}

Denote lk = l(yk
0, . . . , y

k
N−1)

Use the Monte Carlo approximation L̂ =
1
K

KL∑
k=1

g(lk, yk
lk) as an estimate for L

Lower Confidence Bound

Consider the sample variance

σ̂2
L =

1
KL − 1

KL∑
k=1

(
g(lk, yk

lk)− L̂
)2

By the central limit theorem, [
L̂− zα

σ̂L√
KL

, ∞
)

is an asymptotically valid 1− α confidence interval for L

where zα is the 1− α quantile of the standard normal distribution

As a consequence, [
L̂− zα

σ̂L√
KL

, ∞
)

is also an asymptotically valid 1− α confidence interval for the true optimal value V0

Dual Problem

The value process Hn = g(n,Xn) ∨ Cn is a super-martingale

Let Hn = H0 + MH
n − AH

n be the Doob decomposition, that is,

(MH
n)N

n=0 is a martingale and (AH
n)N

n=0 a non-decreasing predictable process such that MH
0 = AH

0 = 0

Theorem V0 = E
[

max
0≤n≤N

{
g(n,Xn)−MH

n
}]

and

V0 ≤ E
[

max
0≤n≤N

{g(n,Xn)−Mn − εn}
]

for every martingale (Mn)
N
n=0 with M0 = 0 and estimation errors (εn)

N
n=0 satisfying E[εn | FX

n] = 0

Approximate Upper Bound

Let (MΘ
n)N

n=0 be the martingale part of the value process generated by f θ0 , ..., f θN−1

Use nested simulation to generate realizations Mk
n of MΘ

n + εn (unbiased estimation errors)

along simulated paths zk
n of Xn, n = 0, ...,N

U = E
[

max
0≤n≤N

(
g(n,Xn)−MΘ

n − εn

)]
is an upper bound for V0

Use the Monte Carlo approximation

Û =
1

KU

KU∑
k=1

max
0≤n≤N

(
g(n, zk

n)−Mk
n

)
as an estimate for U

Our point estimate of V0 is V̂ =
L̂ + Û

2

Confidence Interval for V0

By the central limit theorem, (
−∞ , Û + zα

σ̂U√
KU

]
is an asymptotically valid 1− α confidence interval for U, where σ̂U is the corresponding

sample standard deviation

So, [
L̂− zα

σ̂L√
KL

, Û + zα
σ̂U√
KU

]

is an asymptotically valid 1− 2α confidence interval for V0.

Bermudan Max-Call Options

Consider d assets with prices evolving according to a multi-dimensional Black–Scholes model

Si
t = si

0 exp
(

[r − δi − σ2
i /2]t + σiW i

t

)
, i = 1, 2, . . . , d,

for
initial values si

0 ∈ (0,∞)

a risk-free interest rate r ∈ R
dividend yields δi ∈ [0,∞)

volatilities σi ∈ (0,∞)

and a d-dimensional Brownian motion W with constant correlation ρij between
increments of different components W i and W j

A Bermudan max-call option has time-t payoff
(
max1≤i≤d Si

t − K
)+

and can be exercised at one of finitely many times 0 = t0 < t1 = T
N < t2 = 2T

N < · · · < tN = T

Price: sup
τ∈{t0,t1,...,T}

E

[
e−rτ

(
max
1≤i≤d

Si
τ − K

)+
]

= sup
τ∈T

E g(τ,Xτ)

Numerical Results

for si
0 = 100, σi = 20%, r = 5%, δ = 10%, ρij = 0, K = 100, T = 3 years, N = 9:

Assets Point Est. Comp. Time 95% Conf. Int. Bin. Tree Broadie–Cao 95% Conf. Int.

2 13.899 28.7s [13.880, 13.910] 13.902
3 18.690 28.9s [18.673, 18.699] 18.69
5 26.159 28.1s [26.138, 26.174] [26.115, 26.164]
10 38.337 30.5s [38.300, 38.367]
20 51.668 37.5s [51.549, 51.803]
30 59.659 45.5s [59.476, 59.872]
50 69.736 59.1s [69.560, 69.945]

100 83.584 95.9s [83.357, 83.862]
200 97.612 170.1s [97.381, 97.889]
500 116.425 493.5s [116.210, 116.685]

Hedging

Price evolution Si
t = si

0 exp
(
[r − δi − σ2

i /2]t + σiW i
t
)

Exercise times tn = nT
N , n = 0, 1, . . . ,N

Hedging rebalancing times um = mT
NM , m = 0, 1, . . . ,NM

Discounted dividend-adjusted prices Pi
um = pi

m
(
W i

um

)
= si

0 exp
(
σiW i

um − σ
2
i um/2

)
Hedging portfolio

(h · P)um =

m−1∑
j=0

d∑
i=1

hi
j
(
Puj

) (
Pi

uj+1 − Pi
uj

)

Simulate paths (wk
m)

NM
m=0, k = 1, . . . ,KH , of (Wum)

NM
m=0

Train neural networks hλm : Rd → Rd to minimize

KH∑
k=1

V̂ +

τθM−1∑
m=0

hλm (wk
m) ·

(
pm+1(wk

m+1)− pm(wk
m)
)
− gk

2

where

gk = exp

(
−r

τΘ T
N

)(
max

1≤i≤d
si

0 exp

([
r − δi −

σ2
i

2

]
τθT

N
+ σi wk,i

τθM

)
− K

)+

(discounted payoff)

Evaluate

V̂ +

τθM−1∑
m=0

hλm (w̃k
m) ·

(
pm+1(w̃k

m+1)− pm(w̃k
m)
)
− g̃k

along independent samples (w̃k
m)

NM
m=0, k = 1, . . . ,KT , of (Wum)

NM
m=0

 yields an empirical distribution of the hedging error

