
Two Applications of ML in Finance

Coding Exercises

Sebastian Becker and Patrick Cheridito

RiskLab, ETH Zurich

ETH Zurich, April 9, 2021

I) Estimating Default Risk

What we are going to do

1 Simulate two artificial data sets with a logistic model and a non-linear generalization

2 Apply logistic regression to both data sets

3 Improve the performance on the non-linear data set with the help of neural networks

4 Run a simple P&L analysis on different loan portfolios

The toolset

Google Colab https://colab.research.google.com

Python with Numpy, Sklearn, Keras, Tensoflow

https://colab.research.google.com

Simulation of the two datasets
Simulation of the features

x1 = age uniformly distributed over [18, 80]
x2 = monthly income in CHF 1000 uniformly distributed over [4, 30]
x3 = salaried/self-employed Bernoulli distributed over {0, 1} with probabilities 0.9 and 0.1
(We generate 80,000 training samples and 20,000 test samples of x = (x1, x2, x3))

In the logistic model we set the “true" default probability equal to

p1(x) = ψ (1 + 0.33x1 − 3.5x2 + 3x3)

In the non-linear logistic model we set it equal to

p2(x) = ψ
(
−1.25 + 2.5

[
1(−∞,25)(x1) + 1(75,∞)(x1)

]
− 0.25x2 + x3

)
For every x = (x1, x2, x3) we run an independent Bernoulli experiment and attach to x the label

y =

{
1 with probability pi(x)
0 with probability 1− pi(x)

, i = 1, 2

The empirical default rate is about 5% on both data sets i = 1, 2

Example dataset

age (years) income (K) self-employed (y/n) default (y/n)
55.8 24.6 1 0
34.8 13.0 0 0
57.6 9.1 0 0
53.2 11.2 0 0
78.7 5.8 0 1
46.0 14.3 0 0
19.5 21.8 0 0
18.7 9.0 1 0
66.9 6.2 0 1
35.9 13.5 0 0

...
...

...
...

Fitting a logistic regression model to both datasets

We use a numerical method (lbfgs) to estimate the coefficients from the two data sets

Standard logistic regression for the ...

linear data set

p̂1(x) = fθ(x) = ψ(θ0 + θ1x1 + θ2x2 + θ3x3)

and the non-linear data set

p̂2(x) = fθ′ (x) = ψ(θ
′
0 + θ

′
1x1 + θ

′
2x2 + θ

′
3x3)

Comparison of the logistic regression applied to the two datasets

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC curve (logistic regression)

Linear model AUC=1.00
Non-linear model AUC=0.84

AUC = Area under the curve

A closer look at ROC curves

For every decision threshold we calculate

the true positive rate (TPR):
TPR = TP

TP+FN ,

the false positive rate (FPR):
FPR = FP

TN+FP ,

and plot TPR against FPR
(TPR = 0.6, FPR = 0.2)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
default probability

0

1

la
be

l

non-default
default
threshold 0.55

Fitting a neural network to the non-linear dataset

Standard logistic regression can only fit linear logits!

One could use a more sophisticated method like random forests, gradient boosting, SVMs,
or neural networks ...

We fit a neural network with two hidden layers and train it with a variant of the stochastic gradient
descent optimizer:

p̂2(x) = fθ̂(x) = ψ ◦ A3 ◦ ρ ◦ A2 ◦ ρ ◦ A1,

where

A1:R3 → R32, A2:R32 → R32, A3:R32 → R are affine and ρ(x) = max{x, 0} (ReLU)

Loss function: total deviance (negative conditional log-likelihood)

θ 7→
J∑

j=1

−yj log fθ(x
j)− (1− yj) log

(
1− fθ(x

j)
)

Comparison of the NN model against logistic regression in the non-linear case

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

ROC curve (NN vs. LR)

NN non-linear model AUC=0.90
LR non-linear model AUC=0.84

P&L analysis in the non-linear case

We consider a loan portfolio of 5000 loans with a loan amount of CHF 1000

The 5000 borrowers are sampled from the non-linear test data set

To estimate the distribution of the P&L, we simulate the following 50,000 times:

Scenario 1 We lend money with an interest rate of 5.5% to all 5000 candidates

Scenario 2 We lend money with an interest rate of 1.5% to everybody with a predicted default
probability p̂i(xj) ≤ 5% according to the logistic regression (i = 1) or the neural network (i = 2)

In both scenarios, we

plot histograms of the P&L

estimate the expected P&L

compute the 99%-Value-at-Risk = negative of the 1%-quantile of the P&L

P&L analysis of Scenario 1

Expected P&L = 9863; 99%-VaR = 23,565

-60,000 -40,000 -20,000 0 20,000 40,000 60,000
0

200

400

600

800

1,000

1,200

1,400

P&L analysis of Scenario 2

Logistic regression: expected P&L = 4298; 99%-VaR = 11,855

Neural network: expected P&L = 18,154; 99%-VaR = −3000

-30,000 -20,000 -10,000 0 10,000 20,000 30,000 40,000
0

500

1,000

1,500

2,000

2,500

3,000

3,500 LR
NN

Remarks ...

The artificial data sets are not very realistic ... real data sets can have several
hundred features

Logistic regression is still the industry standard. Why?

Explainability, regulation

Could the results of the logistic regression on the non-linear data set be improved?

Yes, with clever feature engineering!

Can other ML methods compete with neural networks on the non-linear data set?

Yes, even a simple decision tree can solve this task quite well!

Some ideas how the code can be modified ...

1 Choose numbers J,K ≥ 5000 and simulate J + K vectors xj = (xj
1, x

j
2, x

j
3) ∈ R3 with

xj
1 = age in [18, 80]

xj
2 = monthly income in CHF 1000 in [4, 30]

xj
3 = salaried/self-employed in {0, 1}

Let ξj, j = 1, . . . , J + K be independent random variables that are uniformly distributed on (0, 1)
and ψ:R→ (0, 1) the logistic (or sigmoid) function given by

ψ(z) =
ez

1 + ez
=

1
1 + e−z

Consider a function p:R3 → (0, 1) of the form p(x) = ψ (a0 + a1|x1 − 50|+a2x2 + a3x3)

and generate an artificial data set (xj, yj
1), j = 1, . . . , J + K by setting

yj =

{
1 if ξj ≤ p(xj)

0 otherwise.

a) Choose a0, a1, a2, a3 ∈ R such that approximately 5% of all yj, j = 1, . . . , J, are 1.

b) “Learn" p̂1:R3 → R on the training data (xj, yj), j = 1, . . . , J, with logistic regression.

c) Which fraction of
{

yj : p̂1(xj) ∈ [3%, 4%], j = J + 1, . . . , J + K
}

is 1?

d) “Learn" p̂2:R3 → R from the training data (xj, yj), j = 1, . . . , J, with a neural network.

e) Which fraction of
{

yj : p̂2(xj) ∈ [3%, 4%], j = J + 1, . . . , J + K
}

is 1?

2 Find good risks in the test data set based on the features xj, j = J + 1, . . . , J + K, to form a portfolio
of loans, all in the amount of CHF 1000 with interest rate 4%.

a) Estimate the expected P&L.

b) Estimate the variance of the P&L.

c) Estimate the 99%-VaR of the P&L (= negative of the 1%-quantile)

II) Pricing and Hedging American-Style Derivatives

What does the sample code do?

1 Simulate stock prices Si
n/3 = si

0 exp
(
[r − δi − σ2

i /2]n/3 + σiW i
n/3

)
, i = 1, 2, . . . , 5 for

si
0 = 100; r = 5%; δi = 10%; σi = 20% n = 0, 1, 2, 3

2 Find an optimal stopping time for the problem

sup
τ∈{t1,...,T}

E

[
e−rτ

(
max
1≤i≤d

Si
τ − K

)+
]

for K = 100

It is not optimal to stop at 0. So one only has to make a stopping decision at t1 and t2!

3 Estimate a lower bound L̂

4 Estimate an upper bound Û

Simulation of stock prices

We create the sample paths on the fly and do not distinguish between training set and test set!

Training and estimation of the lower bound:

Create mini-batches of geometric Brownian motion sample paths

Si
n/3 = si

0 exp
(
[r − δi − σ2

i /2]n/3 + σiW i
n/3

)
, i = 1, 2, . . . , 5, for

si
0 = 100; r = 5%; δi = 10%; σi = 20% n = 0, 1, 2, 3

Estimation of the upper bound:

For every sample of Si
n/3, i = 1, 2, . . . , 5, n = 0, 1, 2, we need a set of independent continuation prices

Ŝi
j/3 = Si

n/3 exp
(
[r − δi − σ2

i /2](j− n)/3 + σi(Ŵ i
j/3 − Ŵ i

n/3)
)

, j = n + 1, . . . , 3

The neural network architecture

For the training we use neural networks Fθ:Rd → (0, 1) of the form

Fθ = ψ ◦ aθ3 ◦ ρ ◦ aθ2 ◦ ρ ◦ aθ1 for ψ(x) =
ex

1 + ex .

Once trained, we switch back to hard stopping decision f θ:Rd → {0, 1} of the form

f θ(x) = 1[0,∞) ◦ aθ3 ◦ ρ ◦ aθ2 ◦ ρ ◦ aθ1 (x).

Batch normalization is applied after the affine transormations before activation. We also use it to
normalize the inputs and the outputs of the neural networks.

The sample codes contains two different versions of neural networks
1 one uses two separate neural networks to model the stopping decisions at times 1 and 2
2 the other combines these two networks

Mathematically the two approaches are equivalent, but 2 is optimized for parallel computation and runs
faster on GPUs. This comes in handy for larger problems!

Batch normalization (Ioffe & Szegedy 2015)

Avoids unstable gradients

Reduces the effect of bad initialization

Allows for larger learning rates and hence faster training

How does it work?

Calculate mean µ and variance σ2 of a mini-batch and compute a moving average of mean and variance
during the training

Normalize x̂i =
xi−µ√
σ2+ε

, where ε > 0 is a small number to avoid division by 0

Scale and shift: yi = γx̂i + β, where γ and β are trainable variables

Use the moving averages after the training

The optimization problem in the sample code

We could train separate neural network recursively backwards in time. But instead,
we train all neural networks simultaneously!

The loss function is then of the following form:

loss = −
2∑

n=1

g(n, Sn)Fθn(Sn, g(n, Sn)) + g(τn+1, Sτn+1)(1− Fθn(Sn, g(n, Sn)))

where
τ3 = 3

and

τn+1 =
3∑

m=n+1

m f θm(Sm, g(m, Sm))

m−1∏
j=n+1

(1− f θj(Sj, g(j, Sj))) for n = 1

Training and estimation of the lower and upper bound

The neural networks are trained with the Adam optimizer for 5000 steps with an initial learning rate of
0.01 and ε = 0.1 and a batch size of 8192. After every 1500 training steps the learning rate is divided by
10.

The parameters above can be tuned to save training steps and speed up the training. A smaller batch size
is also possible.

The lower bound is estimated with 4,096,000 sample paths and yields a price of 18.689 with a one-sided
97.5% CI of [18.676,∞).

The upper bound is estimated with 2048 samples where for each sample path we simulate in each time
step another 2048 nested sample paths. This yields an estimate of 18.703 with a one-sided 97.5% CI of
(−∞, 18.716]. The number of samples was chosen such that the confidence margin came out about the
same as the lower bound.

The resulting price estimate V̂ is 18.696 with a two-sided 95% CI of [18.676, 18.716].

Hedging

In addition to the prices simulated in the optimal stopping example, one also needs dicounted dividend
adjusted prices on a finer grid Pi

um = pi
m
(
W i

um

)
= si

0 exp
(
σiW i

um − σ
2
i um/2

)
for m = 0, 1, . . . ,NM

For every hedging rebalancing time one needs a neural network. The problem can become very large!

We also need the trained neural networks from the optimal stopping problem to be able to evaluate
the optimal payoff g(τ, Sτ).

The sample code does not contain the hedging problem. This is left as an exercise.

Hedging results

Hedging errors V̂ +
∑τθM−1

m=0 hλm(w̃k
m) ·

(
pm+1(w̃k

m+1)− pm(w̃k
m)
)
− g̃k

for different numbers MN of rebalancing times (N = 3)

15 10 5 0 5 10 15
0

10,000

20,000

30,000

40,000

50,000

60,000

70,000 M=40
M=20
M=10
M=5

Some ideas how the code can be modified ...

1 Change the volatility from 20% to 40%. How does the price change?

2 Change the correlation between the stocks from 0% to 30%. How does the price change?
Correlated Brownian motions with correlation c > 0, can be generated as

V i
t =
√

cWt +
√

1− cW i
t , i = 1, 2, . . . , 5,

where Wt,W1
t , . . . ,W

5
t are independent standard Brownian motions

3 Use a local volatility model for Si
t, i = 1, . . . , 5. Consider prices of the form

Si
t = si

0 +

∫ t

0
(r − δi)Si

s ds +
∫ t

0
βi(s, Ss) dW i

s

for
βi(t, x) = 0.6e−0.05

√
t
(

1.2− e−0.1t−0.001(ertx−si
0)

2
)

x

Use an Euler scheme to simulate the model

4 Try to hedge the option.

