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We show that the sum of a Brownian motion and a non-trivial multiple of an indepen-
dent fractional Brownian motion with Hurst parameter H ∈ (0, 1] is not a semimartin-
gale if H ∈ (0, 1

2) ∪ (1
2 , 3

4 ], that it is equivalent to a multiple of Brownian motion if
H = 1

2 and equivalent to Brownian motion if H ∈ (3
4 , 1]. As an application we discuss

the price of a European call option on an asset driven by a linear combination of a
Brownian motion and an independent fractional Brownian motion.
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1 Introduction

Let (Ω,A, P ) be a probability space.

Definition 1.1 A fractional Brownian motion
(
BH

t

)
t∈IR

with Hurst parameter

H ∈ (0, 1] is an a.s. continuous, centered Gaussian process with

Cov
(
BH

t , B
H
s

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, t, s ∈ IR . (1.1)

These processes were first studied by Kolmogorov (1940) within a Hilbert space
framework. For H ∈ (0, 1), Mandelbrot and Van Ness (1968) defined fractional
Brownian motion more constructively as

BH
t = cH

∫
IR

[
1{s≤t} (t− s)H− 1

2 − 1{s≤0} (−s)H− 1
2

]
dWs , t ∈ IR , (1.2)

where (Ws)s∈IR is a two-sided Brownian motion and cH a normalizing constant.
For H = 1, fractional Brownian motion can be constructed by setting

B1
t = tξ , t ∈ IR , (1.3)

where ξ is a standard normal random variable. It can be deduced from (1.1) that

fractional Brownian motions divide into three different families. B
1
2 is a two-

sided Brownian motion. For H ∈ (1
2
, 1] the covariance between two increments

over non-overlapping time-intervals is positive, and for H ∈ (0, 1
2
) it is negative.

From the representations (1.2) and (1.3) it can be seen that fractional Brownian

1



motion has stationary increments. Furthermore, it can easily be checked that for
all a > 0, (

aHBH
t
a

)
t∈IR

has the same distribution as
(
BH

t

)
t∈IR

.

This property is called self-similarity.
By mixed fractional Brownian motion we mean a linear combination of dif-

ferent fractional Brownian motions. In this paper we examine whether a mixed
fractional Brownian motion is a semimartingale when it is of the special form

MH,α := B + αBH ,

where B is a Brownian motion, BH an independent fractional Brownian motion
and α ∈ IR \ {0} .

To avoid localization arguments we consider
(
MH,α

t

)
t∈[0,T ]

for T <∞. It follows

from self-similarity of fractional Brownian motion that the process(
Bt + αBH

t

)
t∈[0,T ]

has the same distribution as(
T

1
2B t

T
+ αTHBH

t
T

)
t∈[0,T ]

= T
1
2

(
B t

T
+ αTH− 1

2BH
t
T

)
t∈[0,T ]

.

This shows that there is no loss of generality in assuming T = 1.

Definition 1.2 A filtration lF = (Ft)t∈[0,1] is said to fulfil the usual assumptions
if it is right-continuous, F1 is complete and F0 contains all null sets of F1.
For an arbitrary filtration lF = (Ft)t∈[0,1] we denote by l̄F =

(
F̄t

)
t∈[0,1]

the smallest

filtration that contains lF and satisfies the usual assumptions.

The classical notion of a semimartingale stands at the end of a chain of gen-
eralizations of Brownian motion, each of which extended the class of stochastic
processes that can play the role of the integrator in stochastic integration in
the Itô-sense (see Itô (1944) for Itô’s construction of the stochastic integral).
It reached its final form in Doléans-Dade and Meyer (1970). In their paper a
stochastic process (Xt) that is adapted to a filtration lF = (Ft) satisfying the
usual assumptions is called an lF-semimartingale if it admits a decomposition of
the form

Xt = X0 +Mt + At , (1.4)

where X0 is an F0-measurable random variable, M0 = A0 = 0, M is an a.s. right-
continuous local martingale with respect to lF and A an a.s. right-continuous,
lF-adapted finite variation process. Later it was found that if a filtration lF =
(F)t∈[0,1] satisfies the usual assumptions, an a.s. right-continuous, lF-adapted
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stochastic process (Xt)t∈[0,1] is of the form (1.4) if and only ifX fulfils the following
condition:

IX (β (lF)) is bounded in L0 , (1.5)

where

β (lF) =




n−1∑
j=0

fj1(tj ,tj+1] |n ∈ IN, 0 ≤ t0 < . . . < tn ≤ 1,

∀j, fj is Ftj -measurable and |fj | ≤ 1 a.s.
}

(1.6)

and

IX(ϑ) =
n−1∑
j=0

fj

(
Xtj+1

−Xtj

)
for ϑ =

n−1∑
j=0

fj1(tj ,tj+1] ∈ β (lF) .

This result is usually referred to as the Bichteler-Dellacherie theorem (see e.g.
VIII.4 of Dellacherie and Meyer (1980) for a proof). For our purposes it is more
convenient to work with condition (1.5) than with the decomposition property
(1.4). If one does not require the process to be a.s. right-continuous and the
filtration to satisfy the usual assumptions, one obtains a weaker form of the
semimartingale property than the classical one.

Definition 1.3 A stochastic process (Xt)t∈[0,1] is a weak semimartingale with
respect to a filtration lF = (Ft)t∈[0,1] if X is lF-adapted and satisfies (1.5).

Let (Xt)t∈[0,1] be a stochastic process. If lF1 = (F1
t )t∈[0,1] and lF2 = (F2

t )t∈[0,1]

are two filtrations with F1
t ⊂ F2

t for all t ∈ [0, 1], then β
(
lF1
)
⊂ β

(
lF2
)
. Hence,

L0-boundedness of IX
(
β
(
lF2
))

implies L0-boundedness of IX
(
β
(
lF1
))

. This
shows that if X is not a weak semimartingale with respect to the filtration gen-
erated by X, then it is not a weak semimartingale with respect to any other
filtration. Therefore it is natural to introduce the following definition.

Definition 1.4 Let (Xt)t∈[0,1] be a stochastic process. We define the filtration

lFX =
(
FX

t

)
t∈[0,1]

by

FX
t = σ

(
(Xs)0≤s≤t

)
, t ∈ [0, 1] .

We call X a weak semimartingale if it is a weak semimartingale with respect to

lFX. We call X a semimartingale if it is a semimartingale with respect to l̄F
X
.

Example 1.5 It is easy to see that the deterministic process

Xt =

{
0 for t ∈ [0, 1

2
]

1 for t ∈ (1
2
, 1]

,

is a weak semimartingale. But it is not a semimartingale because it is not a.s.
right-continuous.
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However, it follows from Lemma 2.4 below that for every filtration lF = (Ft)t∈[0,1],

an a.s right-continuous lF-weak semimartingale is also an l̄F-semimartingale.
The problem of determining whether MH,α is a semimartingale is easiest when

H ∈
{

1
2
, 1
}
. It is clear that

1√
1 + α2

M
1
2
,α

is a Brownian motion. In particular, it is an l̄F
M

1
2 ,α

-semimartingale. Hence, M
1
2
,α

is a semimartingale. M1,α can be represented as

M1,α
t = Bt + αtξ, t ∈ [0, 1] ,

where B is a Brownian motion and ξ an independent standard normal ran-
dom variable. This shows that M1,α is a semimartingale with respect to l̄F =(
F̄t

)
t∈[0,1]

, where

Ft = σ
(
ξ, (Bs)0≤s≤t

)
, t ∈ [0, 1] .

With the help of Girsanov’s theorem we can show even more. Unlike M
1
2
,α, M1,α

is not a multiple of a Brownian motion under the measure P . But it is a Brownian
motion under an equivalent measure Q. It can be deduced from Fubini’s theorem
that

E
[
exp

(
−αξB1 − 1

2
(αξ)2

)]
= 1 .

Therefore,

Q = exp
(
−αξB1 − 1

2
(αξ)2

)
· P

is a probability measure that is equivalent to P and it follows from Girsanov’s
theorem that M1,α is a Brownian motion under Q. Hence, M1,α is equivalent to
Brownian motion in the sense of the following definition.

Definition 1.6 Let (C[0, 1],B) be the space of continuous functions with the σ-
algebra generated by the cylinder sets. If (Xt)t∈[0,1] is an a.s. continuous stochastic
process, we denote by PX the measure induced by X on (C[0, 1],B). We call two
a.s. continuous stochastic processes (Xt)t∈[0,1] and (Yt)t∈[0,1] equivalent if PX and
PY are equivalent.

It can be seen from Definition 1.3 that the weak semimartingale property is
invariant under a change of the probability measure within the same equivalence
class. The same is true for the semimartingale property. Hence, all processes
that are equivalent to Brownian motion are semimartingales.

We express the main results of this paper in the following theorem.

Theorem 1.7
(
MH,α

)
t∈[0,1]

is not a weak semimartingale if H ∈ (0, 1
2
) ∪ (1

2
, 3

4
],

it is equivalent to
√

1 + α2 times Brownian motion if H = 1
2

and equivalent to
Brownian motion if H ∈ (3

4
, 1].
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For H ∈
{

1
2
, 1
}
, we have already proved Theorem 1.7. For

(
0, 1

2

)
∪
(

1
2
, 1
)

it

has been shown by several authors (e.g Lipster and Shiryaev (1989), Lin (1995),
Rogers (1997)) that fractional Brownian motion BH cannot be a semimartingale.

Since lFBH

does not satisfy the usual assumptions, the statement that BH is
not a weak semimartingale is slightly stronger. We will prove it in Section 2.
Nothing in this proof is essentially new. We give it to make clear which parts of
it can also be used to deal with MH,α and when new methods are needed. For
H ∈

(
0, 1

2

)
the proof is based on the fact that the quadratic variation of BH

is infinite. The same argument can be used to show that MH,α is not a weak
semimartingale for H ∈

(
0, 1

2

)
because, as we will show in Section 3, in this

case MH,α has also infinite quadratic variation. For H ∈
(

1
2
, 1
)
, BH is not a

weak semimartingale because it is a stochastic process with vanishing quadratic
variation and a.s. paths of infinite variation. This reasoning cannot be applied to
treat MH,α for H ∈

(
1
2
, 1
)

because then MH,α has the same quadratic variation
as Brownian motion. In this case we need more refined methods to see whether
MH,α is a semimartingale. Surprisingly, MH,α is not a weak semimartingale if
H ∈ (1

2
, 3

4
] and it is equivalent to Brownian motion if H ∈ (3

4
, 1]. In Section

4 we prove Theorem 1.7 for H ∈ (1
2
, 3

4
]. The proof depends on a theorem of

Stricker (1984) on Gaussian processes. In Section 5 we prove Theorem 1.7 for
H ∈ (3

4
, 1]. In this case we use the concept of relative entropy and the fact that

two Gaussian measures are either equivalent or singular. In Section 6 we discuss
the price of a European call option on a stock that is modelled as an exponential
mixed fractional Brownian motion with drift.

2 BH is not a weak semimartingale if H ∈
(
0, 1

2

)
∪(

1
2, 1

)

From now on we use the following notation. For a stochastic process (Xt)t∈[0,1]

and n ∈ IN, we set for j = 1, . . . n, ∆n
jX = X j

n
−X j−1

n
.

That BH is not a weak semimartingale for H ∈
(
0, 1

2

)
∪
(

1
2
, 1
)
, can be derived

from the fact that in this case BH does not have the ’right’ variation. The fol-
lowing facts about the p-variation of fractional Brownian motion are well known.

Lemma 2.1 Let p, q > 0. Then
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a) npH−1∑n
j=1

∣∣∣∆n
jB

H
∣∣∣p (n→∞)−→ E

[∣∣∣BH
1

∣∣∣p] in L1

b) npH−1−q ∑n
j=1

∣∣∣∆n
jB

H
∣∣∣p (n→∞)−→ 0 in L1

c) npH−1+q ∑n
j=1

∣∣∣∆n
jB

H
∣∣∣p (n→∞)−→ ∞ in probability,

i.e. for all L > 0 there exists an n0 such that

P
[
npH−1+q ∑n

j=1

∣∣∣∆n
jB

H
∣∣∣p < L

]
< 1

L
for all n ≥ n0.

Proof. To show a) we recall that the sequence

(
BH

j −BH
j−1

)∞
j=1

is stationary. Since it is Gaussian and

Cov
(
BH

1 −BH
0 , B

H
j −BH

j−1

)
(n→∞)−→ 0 ,

it is also mixing. Hence, the Ergodic Theorem implies

1

n

n∑
j=1

∣∣∣BH
j − BH

j−1

∣∣∣p (n→∞)−→ E
[∣∣∣BH

1

∣∣∣p] in L1 . (2.1)

On the other hand, it follows from the self-similarity of BH that for all n ∈ IN,

npH−1
n∑

j=1

∣∣∣∆n
jB

H
∣∣∣p =

1

n

n∑
j=1

∣∣∣BH
j −BH

j−1

∣∣∣p in law.

This together with (2.1) proves a).
b) follows from a).
To prove c) we choose L > 0. It follows from a) that

npH−1
n∑

j=1

∣∣∣∆n
jB

H
∣∣∣p (n→∞)−→ E

[∣∣∣BH
1

∣∣∣p] in probability.

In particular, there exists an n1 ∈ IN, such that

P



∣∣∣∣∣∣E
[∣∣∣BH

1

∣∣∣p]− npH−1
n∑

j=1

∣∣∣∆n
jB

H
∣∣∣p
∣∣∣∣∣∣ >

1

2
E
[∣∣∣BH

1

∣∣∣p]

 < 1

L

for all n ≥ n1. This implies that for all n ≥ n1

P


npH−1

n∑
j=1

∣∣∣∆n
jB

H
∣∣∣p < 1

2
E
[∣∣∣BH

1

∣∣∣p]

 < 1

L

6



or, equivalently,

P


npH−1+q

n∑
j=1

∣∣∣∆n
jB

H
∣∣∣p < nq 1

2
E
[∣∣∣BH

1

∣∣∣p]

 < 1

L
.

This shows that there exists an n0 ∈ IN, such that

P


npH−1+q

n∑
j=1

∣∣∣∆n
jB

H
∣∣∣p < L


 < 1

L
for all n ≥ n0 ,

and c) is proved. 2

It follows from Lemma 2.1 c) that for H ∈
(
0, 1

2

)
, BH has infinite quadratic

variation. The next proposition shows that this implies that BH cannot be a
weak semimartingale if H ∈

(
0, 1

2

)
.

Proposition 2.2 Let (Xt)t∈[0,1] be an a.s. càdlàg process and denote by τ the set
of all finite partitions

0 = t0 < t1 < . . . < tn = 1

of [0, 1]. If 


n−1∑
j=0

(
Xtj+1

−Xtj

)2 | (t0, t1, . . . , tn) ∈ τ



is unbounded in L0, then X is not a weak semimartingale.

Proof. To simplify calculations we define Yt = Xt −X0, t ∈ [0, 1]. Then (Yt)t∈[0,1]

is an lFX-adapted, a.s. càdlàg process with Y0 = 0. It is clear that IY = IX and

n−1∑
j=0

(
Ytj+1

− Ytj

)2
=

n−1∑
j=0

(
Xtj+1

−Xtj

)2

for all partitions
(t0, t1, . . . , tn) ∈ τ .

To prove the lemma we must show that IY
(
β
(
lFX

))
is unbounded in L0. The

key ingredient in our derivation of this from the L0-unboundedness of


n−1∑
j=0

(
Ytj+1

− Ytj

)2 | (t0, t1, . . . , tn) ∈ τ



is the equality

n−1∑
j=0

(
Ytj+1

− Ytj

)2
= Y 2

1 − 2
n−1∑
j=1

Ytj

(
Ytj+1

− Ytj

)
, (2.2)
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which holds for all partitions

(t0, t1, . . . , tn) ∈ τ .

That 


n−1∑
j=0

(
Ytj+1

− Ytj

)2 | (t0, t1, . . . , tn) ∈ τ



is unbounded in L0 means that

c := lim
L→∞

sup
τ
P


n−1∑

j=0

(
Ytj+1

− Ytj

)2
> L


 > 0 . (2.3)

We will deduce from this that

lim
L→∞

sup

ϑ∈β

(
lFX

)P [|IX (ϑ)| > L] ≥ c

4
, (2.4)

which implies L0-unboundedness of IY
(
β
(
lFX

))
. To do this we choose L > 0.

Since Y is a.s. càdlàg, supt∈[0,1] |Yt| <∞ almost surely. Therefore there exists an
N > 0 such that

P

[
sup

t∈[0,1]
|Yt| > N

]
<
c

4
. (2.5)

It follows from (2.3) that there exists a partition

(t0, t1, . . . , tn) ∈ τ

with

P


n−1∑

j=0

(
Ytj+1

− Ytj

)2
> 2LN +N2


 > c

2
. (2.6)

(2.5) and (2.6) show that

P



{

sup
t∈[0,1]

|Yt| > N

}
∪



n−1∑
j=0

(
Ytj+1

− Ytj

)2 ≤ 2LN +N2






≤ P

[
sup

t∈[0,1]
|Yt| > N

]
+ P


n−1∑

j=0

(
Ytj+1

− Ytj

)2 ≤ 2LN +N2


 < 1− c

4
.

Hence,

P


{ sup

t∈[0,1]
|Yt| ≤ N

}
∩



n−1∑
j=0

(
Ytj+1

− Ytj

)2
> 2LN +N2




 > c

4
. (2.7)
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It is clear that

ϑ =
n−1∑
j=1

−1{|Ytj |≤N}
Ytj

N
1(tj ,tj+1]

is in β
(
lFX

)
, and it can be seen from (2.2) that on the event

{
sup

t∈[0,1]
|Yt| ≤ N

}
∩



n−1∑
j=0

(
Ytj+1

− Ytj

)2
> 2LN +N2




we have

IY (ϑ) =
1

2N


n−1∑

j=0

(
Ytj+1

− Ytj

)2 − Y 2
1




>
1

2N

(
2LN +N2 −N2

)
= L .

Together with (2.7), this implies that

P [IY (ϑ) > L] >
c

4
.

Since L was chosen arbitrarily, this shows (2.4) and the proposition is proved. 2

Corollary 2.3
(
BH

t

)
t∈[0,1]

is not a weak semimartingale if H ∈
(
0, 1

2

)
.

Proof. It follows from Lemma 2.1 c) that

n∑
j=1

(
∆n

jB
H
)2 (n→∞)−→ ∞ in probability.

This implies that 


n∑
j=1

(
∆n

jB
H
)2 |n ∈ IN




is unbounded in L0. Since BH is a.s. continuous, the corollary follows from
Proposition 2.2. 2

For H ∈
(

1
2
, 1
)

a direct proof of the fact that BH is not a weak semimartingale
seems to be difficult. We go a roundabout way that permits us to use already
existing results on semimartingales.

Lemma 2.4 Let lF = (Ft)t∈[0,1] be a filtration. Then every stochastically right-

continuous lF-weak semimartingale (Xt)t∈[0,1] is also an l̄F-weak semimartingale.

In particular, if X is a.s. right-continuous, it is an l̄F-semimartingale.
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Proof. Define lF0 = (F0
t )t∈[0,1] as follows: Let F0

1 be the completion of F1, N the

null sets of F0
1 and set

F0
t = σ (Ft ∪N ) , t ∈ [0, 1] .

Let t ∈ [0, 1] and f ∈ L0 (F0
t ) such that |f | ≤ 1 almost surely. We set

A = {f > E [f |Ft]} and B = {f < E [f |Ft]} .
Since

F0
t = {G ⊂ Ω | ∃F ∈ Ft such that G4F ∈ N} ,

there exist Ã, B̃ ∈ Ft with A4Ã, B4B̃ ∈ N . The equalities∫
A
f − E [f |Ft] dP =

∫
Ã
f − E [f |Ft] dP = 0

and ∫
B
f − E [f |Ft] dP =

∫
B̃
f − E [f |Ft] dP = 0

imply P [A] = P [B] = 0. Hence,

f = E [f |Ft] almost surely. (2.8)

Let (Xt)t∈[0,1] be an lF-weak semimartingale. It follows from (2.8) that for every

ϑ ∈ β
(
lF0
)

there exists a ϑ̃ ∈ β (lF) with IX(ϑ̃) = IX (ϑ) almost surely. Therefore

IX (β (lF)) = IX
(
β
(
lF0
))

in L0 .

This shows that X is also an lF0-weak semimartingale.
Let

ψ =
n−1∑
j=0

fj1(tj ,tj+1] ∈ β
(
l̄F
)
.

For all t ∈ [0, 1],
F̄t =

⋂
s>t

F0
s∧1 .

Therefore,

ψε =
n−1∑
j=0

fj1(tj+ε,tj+1] is in β
(
lF0
)

(2.9)

for all ε with 0 < ε < minj (tj+1 − tj). If (Xt)t∈[0,1] is stochastically right-
continuous, then

lim
ε↘0

IX (ψε) = IX (ψ) in probability.

This, together with (2.9) and the fact that IX
(
β
(
lF0
))

is bounded in L0, implies

that IX
(
β
(
l̄F
))

is also bounded in L0, and therefore X is an l̄F-weak semimartin-
gale. 2
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Proposition 2.5 Let (Xt)t∈[0,1] be an a.s. right-continuous process such that

P
[
(Xt)t∈[0,1] has finite variation

]
< 1 (2.10)

and, for all ε > 0, there exists a partition

0 = t0 < t1 < . . . < tn = 1

with
max

j
(tj+1 − tj) < ε (2.11)

and

P


n−1∑

j=0

(
Xtj+1

−Xtj

)2
> ε


 < ε . (2.12)

Then X is not a weak semimartingale.

Proof. Suppose X is a weak semimartingale. By Lemma 2.4 X is also an l̄F
X

-
semimartingale. Hence, X is of the form

Xt = X0 +Mt + At ,

where X0 is an F̄0-measurable random variable, M0 = A0 = 0, M is an a.s. right-
continuous local martingale with respect to l̄F and A an a.s. right-continuous,
l̄F-adapted finite variation process. It follows from (2.11), (2.12) and Theorem
II.22 of Protter (1990) that

[X,X]t = X0 , t ∈ [0, 1] .

Hence,
[M,M ]t = 0 , t ∈ [0, 1] .

Therefore Theorem II.27 of Protter (1990) implies Mt = 0, t ∈ [0, 1]. Hence, X
is a finite variation process. This contradicts (2.10). Therefore X cannot be a
weak semimartingale. 2

Corollary 2.6
(
BH

t

)
t∈[0,1]

is not a weak semimartingale if H ∈
(

1
2
, 1
)
.

Proof. It follows from Lemma 2.1 c) that

n∑
j=1

∣∣∣∆n
jB

H
∣∣∣ (n→∞)−→ ∞ in probability.

Therefore there exists a sequence (nk)
∞
k=0 such that

nk∑
j=1

∣∣∣∆nk
j BH

∣∣∣ (k→∞)−→ ∞ almost surely.

11



Hence,

P
[(
BH

t

)
t∈[0,1]

has finite variation
]

= 0 .

On the other hand, Lemma 2.1 b) shows that

n∑
j=1

(
∆n

jB
H
)2 (n→∞)−→ 0 in L1 .

Hence, BH satisfies the assumptions of Proposition 2.5. Therefore it is not a
weak semimartingale. 2

Remark 2.7 Let H ∈
(
0, 1

2

)
∪
(

1
2
, 1
)

and define the filtration lF = (Ft)t∈[0,1] by

Ft = σ
(
(Bs)0≤s≤t ,

(
BH

s

)
0≤s≤t

)
, t ∈ [0, 1] .

Since B is an lF-Brownian motion and therefore also an lF-weak semimartin-
gale and BH is not an lF-weak semimartingale, MH,α = B + αBH cannot be
an lF-weak semimartingale. This does not imply that MH,α is not a weak semi-
martingale. However, in the next section we show that for H ∈

(
0, 1

2

)
, MH,α has

infinite quadratic variation. Therefore MH,α cannot be a weak semimartingale
by Proposition 2.2.

3 Proof of Theorem 1.7 for H ∈
(
0, 1

2

)

Like BH , MH,α cannot be a weak semimartingale for H ∈
(
0, 1

2

)
because it has

infinite quadratic variation. To show this we write for n ∈ IN,

n∑
j=1

(
∆n

jM
H,α
)2

=
n∑

j=1

(
∆n

jB
)2

+ 2α
n∑

j=1

∆n
jB∆n

jB
H + α2

n∑
j=1

(
∆n

jB
H
)2
.

It is known that
n∑

j=1

(
∆n

jB
)2 (n→∞)−→ 1 in L2

(see e.g. Theorem I.28 of Protter (1990)). From

E




 n∑

j=1

∆n
jB∆n

jB
H




2

 =

n∑
j,k=1

E
[
∆n

jB∆n
jB

H ∆n
kB∆n

kB
H
]

=
n∑

j=1

E
[(

∆n
jB
)2
]
E
[(

∆n
jB

H
)2
]

= n
1

n

(
1

n

)2H

12



it follows that
n∑

j=1

∆n
jB∆n

jB
H (n→∞)−→ 0 in L2 .

On the other hand, it follows from Lemma 2.1 c) that

n∑
j=1

(
∆n

jB
H
)2 (n→∞)−→ ∞ in probability.

Hence,
n∑

j=1

(
∆n

jM
H,α
)2 (n→∞)−→ ∞ in probability .

In particular, 


n∑
j=1

(
∆n

jM
H,α
)2 |n ∈ IN




is unbounded in L0 and MH,α is not a weak semimartingale by Proposition 2.2.
2

4 Proof of Theorem 1.7 for H ∈ (1
2
, 3

4
]

For H ∈ (1
2
, 3

4
], the key in the proof of Theorem 1.7 is Lemma 4.2 below. It

is based on Theorem 1 of Stricker (1984). Before we can formulate Lemma
4.2, we must specify our notion of a quasimartingale. As we did in the case of
weak semimartingale, we call a stochastic process X a quasimartingale if it is a
quasimartingale with respect to lFX .

Definition 4.1 A stochastic process (Xt)t∈[0,1] is a quasimartingale if

Xt ∈ L1 for all t ∈ [0, 1], and

sup
τ

n−1∑
j=0

∥∥∥E [Xtj+1
−Xtj |FX

tj

]∥∥∥
1
<∞ ,

where τ is the set of all finite partitions

0 = t0 < t1 < . . . < tn = 1 of [0, 1] .

Lemma 4.2 If MH,α is not a quasimartingale, it is not a weak semimartingale.

Proof. Let us assume that MH,α is a weak semimartingale. Then Theorem 1 of
Stricker (1984) implies that IMH,α(β(lFMH,α

)) is bounded in L2. Therefore it is
also bounded in L1. For any partition

0 = t0 < t1, . . . < tn = 1 ,

13



n−1∑
j=0

sgn
(
E
[
MH,α

tj+1
−MH,α

tj |Ftj

])
1(tj ,tj+1] is in β(lFMH,α

) ,

and ∥∥∥∥∥∥IMH,α


n−1∑

j=0

sgn
(
E
[
MH,α

tj+1
−MH,α

tj |FMH,α

tj

])
1(tj ,tj+1]



∥∥∥∥∥∥
1

≥ E


IMH,α


n−1∑

j=0

sgn
(
E
[
MH,α

tj+1
−MH,α

tj |FMH,α

tj

])
1(tj ,tj+1]






=
n−1∑
j=0

∥∥∥E [MH,α
tj+1

−MH,α
tj |FMH,α

tj

]∥∥∥
1
.

It follows that MH,α is a quasimartingale. Hence, if MH,α is not a quasimartin-
gale, it cannot be a weak semimartingale. 2

It remains to prove that MH,α is not a quasimartingale if H ∈ (1
2
, 3

4
]. We do

this in the next two lemmas.

Lemma 4.3 If H ∈ (1
2
, 3

4
), MH,α is not a quasimartingale.

Proof. Since conditional expectation is a contraction with respect to the L1-norm,
we have for all n ∈ IN and all j = 1, . . . , n− 1,

∥∥∥∥E
[
∆n

j+1M
H,α|FMH,α

j
n

]∥∥∥∥
1
≥
∥∥∥E [∆n

j+1M
H,α|∆n

jM
H,α
]∥∥∥

1
. (4.1)

Moreover,

∥∥∥E [∆n
j+1M

H,α|∆n
jM

H,α
]∥∥∥

1
=

√
2

π

∥∥∥E [∆n
j+1M

H,α|∆n
jM

H,α
]∥∥∥

2
(4.2)

because E
[
∆n

j+1M
H,α|∆n

jM
H,α
]

is a centered Gaussian random variable. Using

(4.1) and (4.2) we obtain

n−1∑
j=0

∥∥∥∥E
[
∆n

j+1M
H,α|FMH,α

j
n

]∥∥∥∥
1
≥
√

2

π

n−1∑
j=1

∥∥∥E [∆n
j+1M

H,α|∆n
jM

H,α
]∥∥∥

2

=

√
2

π

n−1∑
j=1

∥∥∥∥∥∥
Cov

(
∆n

j+1M
H,α,∆n

jM
H,α
)

Cov
(
∆n

jM
H,α,∆n

jM
H,α
) ∆n

jM
H,α

∥∥∥∥∥∥
2

=

√
2

π

n−1∑
j=1

Cov
(
∆n

j+1M
H,α,∆n

jM
H,α
)

√
Cov

(
∆n

jM
H,α,∆n

jM
H,α
)
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=

√
2

π

n−1∑
j=1

α2n−2H
(

22H

2
− 1

)
√

1
n

+ α2n−2H
≥
√

2

π
α2

(
22H

2
− 1

)
n−1∑
j=1

n−2H√
1
n

+ α2 1
n

=

√
2

π

(
22H

2
− 1

)
α2

√
1 + α2

n−1∑
j=1

n
1
2
−2H

=

√
2

π

(
22H

2
− 1

)
α2

√
1 + α2

(n− 1)n
1
2
−2H →∞ , as n→∞ .

This proves the lemma. 2

Lemma 4.4 M
3
4
,α is not a quasimartingale.

Proof. In this case the estimate (4.1) is not good enough. Now we need that for
all n ∈ IN and all j = 1, . . . , n− 1,

∥∥∥∥E
[
∆n

j+1M
3
4
,α|FM

3
4

,α

j
n

]∥∥∥∥
1
≥
∥∥∥E [∆n

j+1M
3
4
,α|∆n

jM
3
4
,α, . . . ,∆n

1M
3
4
,α
]∥∥∥

1
,

which follows, like (4.1) from the fact that conditional expectation is a contraction
with respect to the L1-norm. Since

E
[
∆n

j+1M
3
4
,α|∆n

jM
3
4
,α, . . . ,∆n

1M
3
4
,α
]

is centered Gaussian,∥∥∥E [∆n
j+1M

3
4
,α|∆n

jM
3
4
,α, . . . ,∆n

1M
3
4
,α
]∥∥∥

1

=

√
2

π

∥∥∥E [∆n
j+1M

3
4
,α|∆n

jM
3
4
,α, . . . ,∆n

1M
3
4
,α
]∥∥∥

2
.

Hence,

n−1∑
j=0

∥∥∥∥E
[
∆n

j+1M
3
4
,α|FM

3
4

,α

j
n

]∥∥∥∥
1
≥
√

2

π

n−1∑
j=1

∥∥∥E [∆n
j+1M

3
4
,α|∆n

jM
3
4
,α, . . . ,∆n

1M
3
4
,α
]∥∥∥

2

and the lemma is proved if we can show that

n−1∑
j=1

∥∥∥E [∆n
j+1M

3
4
,α|∆n

jM
3
4
,α, . . . ,∆n

1M
3
4
,α
]∥∥∥

2
→∞ , as n→∞ . (4.3)

For n ∈ IN and j ∈ {1, . . . , n− 1},
(
∆n

j+1M
3
4
,α,∆n

jM
3
4
,α, . . . ,∆n

1M
3
4
,α
)
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is a Gaussian vector. Therefore

E
[
∆n

j+1M
3
4
,α|∆n

jM
3
4
,α, . . . ,∆n

1M
3
4
,α
]

=
j∑

k=1

bk∆
n
kM

3
4
,α , (4.4)

where the vector b = (b1, . . . , bj)
T solves the system of linear equations

m = Ab , (4.5)

where m is a j-vector whose k-th component mk is

Cov
(
∆n

j+1M
3
4
,α,∆n

kM
3
4
,α
)

and A is the covariance matrix of the Gaussian vector(
∆n

1M
3
4
,α, . . . ,∆n

jM
3
4
,α
)
.

Note that A is symmetric and, since the random variables ∆n
1M

3
4
,α, . . . ,∆n

jM
3
4
,α

are linearly independent, also positive definite. It follows from (4.4) and (4.5)
that ∥∥∥E [∆n

j+1M
3
4
,α|∆n

jM
3
4
,α, . . . ,∆n

1M
3
4
,α
]∥∥∥2

2
(4.6)

= bTAb = mTA−1m ≥ ‖m‖2
2 λ

−1 ,

where λ is the largest eigenvalue of the matrix A. Since

A =
1

n
id + α2C ,

where C is the covariance matrix of the increments of fractional Brownian motion(
∆n

1B
3
4 , . . . ,∆n

jB
3
4

)
,

we have

λ =
1

n
+ α2µ ,

where µ is the largest eigenvalue of C. As

Ckl = n−
3
2
1

2

(
(|k − l|+ 1)

3
2 − 2 |k − l| 32 + ||k − l| − 1| 32

)
, k, l = 1, . . . , j ,

it follows from the Gershgorin Circle Theorem (see e.g. Golub and Van Loan
(1989)) and the special form of C that

µ ≤ max
k=1,...,j

j∑
l=1

|Ckl| ≤ 2
j∑

l=1

|C1l|
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= 2n−
3
2
1

2

j−1∑
l=0

(
(l + 1)

3
2 − 2l

3
2 + |l − 1| 32

)
= n−

3
2

(
1 + j

3
2 − (j − 1)

3
2

)
.

Furthermore,

n−
3
2

(
1 + j

3
2 − (j − 1)

3
2

)
≤ 1

n
+ n−

3
2
∂

∂j
j

3
2

=
1

n
+ n−

3
2
3

2
j

1
2 ≤ 1

n
+ n−

3
2
3

2
n

1
2 ≤ 3

1

n
.

Hence,

λ ≤ 1

n
+ α23

1

n
=
(
1 + 3α2

) 1

n
and

λ−1 ≥ n

1 + 3α2
. (4.7)

On the other hand,

‖m‖2
2 =

j∑
k=1

(
Cov

(
∆n

j+1M
3
4
,α,∆n

kM
3
4
,α
))2

= α4
j∑

k=1

(
Cov

(
∆n

j+1B
3
4 ,∆n

kB
3
4

))2

= α41

4
n−3

j∑
k=1

(
(k + 1)

3
2 − 2k

3
2 + (k − 1)

3
2

)2
.

Since the function x 7→ x
3
2 is analytic on {x ∈ Cl |Rex > 0},

(k + 1)
3
2 − 2k

3
2 + (k − 1)

3
2 =

∞∑
m=1

(
1

m!

∂m

∂km
k

3
2 + (−1)m 1

m!

∂m

∂km
k

3
2

)

≥ ∂2

∂k2
k

3
2 =

3

4
k−

1
2 , k = 2, . . . j .

That

(k + 1)
3
2 − 2k

3
2 + (k − 1)

3
2 ≥ 3

4
k−

1
2

also holds for k = 1, can be checked directly. It follows that

‖m‖2
2 ≥ α41

4
n−3 9

16

j∑
k=1

1

k
≥ α4 9

64
n−3

∫ j

1

1

x
dx = α4 9

64
n−3 log j . (4.8)

Putting (4.6), (4.7) and (4.8) together, we obtain

n−1∑
j=1

∥∥∥E [∆n
j+1M

3
4
,α|∆n

jM
3
4
,α, . . . ,∆n

1M
3
4
,α
]∥∥∥

2

≥ 3

8

α2

√
1 + 3α2

1

n

n−1∑
j=1

√
log j → ∞ as n→∞ .

Hence, (4.3) holds and the lemma is proved. 2
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5 Proof of Theorem 1.7 for H ∈ (3
4, 1]

To show that for H ∈ (3
4
, 1], MH,α is equivalent to Brownian motion we use the

concept of relative entropy. The following definition and all results on relative
entropy that we need in this section can be found in Chapter 6 of Hida and
Hitsuda (1976).

Definition 5.1 Let Q1 and Q2 be probability measures on a measurable space
(Ω, E) and denote by P all finite partitions,

Ω =
n⋃

j=1

Ej, where Ej ∈ E and Ej ∩ Ek = ∅ if j 6= k ,

of Ω. The entropy of Q1 relative to Q2 is given by

H (Q1|Q2) := sup
P

n∑
j=1

log

(
Q1[Ej ]

Q2[Ej ]

)
Q1[Ej] ,

where we assume 0
0

= 0 log 0 = 0.

For all n ∈ IN, we define Yn : C[0, 1] → IRn by

Yn(ω) =
(
ω
(

1

n

)
− ω (0) , ω

(
2

n

)
− ω

(
1

n

)
, . . . , ω (1)− ω

(
n− 1

n

))T

,

and Bn = σ(Yn). Note that
∨∞

n=1 Bn is equal to the σ-algebra B generated by the
cylinder sets. We denote by QMH,α the measure induced by MH,α on (C[0, 1],B)
and by QW Wiener measure on (C[0, 1],B). Further, we let for all n ∈ IN, Qn

MH,α

and Qn
W be the restrictions of QMH,α and QW to Bn, respectively.

To show that MH,α is equivalent to Brownian motion, we make use of the
following lemma.

Lemma 5.2 If
sup

n
H (Qn

MH,α|Qn
W ) <∞, (5.1)

then QMH,α and QW are equivalent.

Proof. From (5.1) it follows by Lemma 6.3 of Hida and Hitsuda (1976) that
QMH,α is absolutely continuous with respect to QW . But two Gaussian measures
on (C[0, 1],B) can only be equivalent or singular (see e.g. Theorem 6.1 of Hida
and Hitsuda (1976)). Therefore QMα,H and QW must be equivalent. 2

In the following lemma we show that (5.1) holds.

Lemma 5.3
sup

n
H (Qn

MH,α|Qn
W ) <∞
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Proof. For all n ∈ IN, Yn is a centered Gaussian vector under both measures
Qn

MH,α and Qn
W . The covariance matrices of Yn under Qn

MH,α and Qn
W are

EQn

MH,α

[
YnY

T
n

]
=

1

n
id + α2Cn ,

where Cn is the covariance matrix of the increments of fractional Brownian motion(
∆n

1B
H , . . . ,∆n

nB
H
)

and

EQn
W

[
YnY

T
n

]
=

1

n
id .

Since Cn is symmetric, there exists an orthogonal n × n-matrix Un such that
UnCnU

T
n is a diagonal matrix Dn = diag (λn

1 , . . . λ
n
n). Xn =

√
nUnYn is still a

centered Gaussian vector under both measures Qn
MH,α and Qn

W . The covariance
matrices of Xn under these two measures are

EQn

MH,α

[
XnX

T
n

]
= id + nα2Dn

and
EQn

W

[
XnX

T
n

]
= id .

Through Xn, Qn
MH,α and Qn

W induce measures Rn
MH,α and Rn

W on IRn. It can
easily be seen from Definition 5.1 that

H (Qn
MH,α|Qn

W ) = H (Rn
MH,α|Rn

W ) .

Since both measures Rn
MH,α and Rn

W are non-degenerate Gaussian measures on
IRn, they are equivalent. We denote by ϕn the Radon-Nikodym derivative of
Rn

MH,α with respect to Rn
W . Lemma 6.1 of Hida and Hitsuda (1976) and a calcu-

lation show that

H (Rn
MH,α|Rn

W ) = ERn

MH,α
[logϕn] =

1

2

n∑
j=1

(
nα2λn

j − log
(
1 + nα2λn

j

))
.

For all x ≥ 0, we have

x− log (1 + x) =
∫ x

0

u

1 + u
du ≤

∫ x

0
udu =

1

2
x2 .

Therefore,

H (Rn
MH,α|Rn

W ) ≤ 1

4
n2α4

n∑
j=1

(
λn

j

)2
.

Hence, the lemma is proved if we can show that

sup
n
n2

n∑
j=1

(
λn

j

)2
<∞ , (5.2)
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where λn
1 , . . . , λ

n
n are the eigenvalues of the covariance matrix of the increments

of fractional Brownian motion(
∆n

1B
H , . . . ,∆n

nB
H
)
.

Since orthogonal transformation leaves the Hilbert-Schmidt norm of a matrix
invariant,

n∑
j=1

(
λn

j

)2
=

n∑
j,k=1

Cov
(
∆n

jB
H ,∆n

kB
H
)2
.

As fractional Brownian motion has stationary increments,

n∑
j,k=1

Cov
(
∆n

jB
H ,∆n

kB
H
)2 ≤ 2n

n∑
k=1

Cov
(
∆n

kB
H ,∆n

1B
H
)2

= 2nn−4H


1 +

(
22H

2
− 1

)2

+ 2n

n∑
k=3

Cov
(
∆n

kB
H ,∆n

1B
H
)2
.

Since for H ∈ (3
4
, 1],

n22nn−4H


1 +

(
22H

2
− 1

)2

→ 0 , as n→∞ ,

it is enough to show

sup
n
n3

n∑
k=3

Cov
(
∆n

kB
H ,∆n

1B
H
)2
<∞ (5.3)

to prove (5.2). For all k ≥ 3, we have

Cov
(
∆n

kB
H ,∆n

1B
H
)

= n−2H 1

2

(
k2H − 2 (k − 1)2H + (k − 2)2H

)

≤ n−2H 1

2

(
∂

∂k
k2H − ∂

∂k
(k − 2)2H

)
= Hn−2H

(
k2H−1 − (k − 2)2H−1

)

≤ Hn−2H2
∂

∂k
(k − 2)2H−1 = 2H (2H − 1)n−2H (k − 2)2H−2 .

Using this, we obtain

n3
n∑

k=3

Cov
(
∆n

kB
H ,∆n

1B
H
)2 ≤ 4H2 (2H − 1)2 n3−4H

n−2∑
k=1

k4H−4

≤ 4H2 (2H − 1)2 n3−4H
∫ n−2

0
x4H−4dx =

4H2 (2H − 1)2

4H − 3
n3−4H (n− 2)4H−3

≤ 4H2 (2H − 1)2

4H − 3

Hence, (5.3) holds and the lemma is proved. 2
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Remark 5.4 In this section we have shown that for H ∈ (3
4
, 1], QMH,α and QW

are equivalent. But our method of proof has not given us the Radon-Nikodym
derivative, nor have we found the semimartingale decomposition of MH,α. These
problems will be addressed in future work.

6 Mixed fractional Brownian motion and option

pricing

Theorem 1.7 enables us to present an example that calls in question a current
practice in mathematical finance.

Let us consider a market that consists of a bank account and a stock that pays
no dividends. There are no transaction costs. Borrowing and short-selling are
allowed. The borrowing and the lending rate are both equal to a constant r and
the discounted stock price follows a stochastic process (St)t∈[0,1].

We are interested in the time zero price C0 of a European call option on S with
strike price K and maturity T = 1. Its discounted pay-off is (S1 − e−rK)

+
. To

exclude trivial arbitrage strategies, C0 must be in the interval

((
S0 − e−rK

)+
, S0

)
.

Samuelson (1965) proposed modelling the discounted stock price as follows:

St = S0 exp (νt+ σBt) , t ∈ [0, 1] ,

where ν, σ are constants and B is a Brownian motion. In this model Black and
Scholes (1973) derived an explicit formula for C0. For given S0, r, K and maturity
T = 1, the Black-Scholes price BS of a European call option depends only on the
volatility σ and not on ν. As a function of σ, BS is continuous, increasing and
bijective from (0,∞) to

(
(S0 −Ke−r)

+
, S0

)
.

The Samuelson model has several deficiencies and up to now there have been
many efforts to build better models, including several attempts to remedy some
shortcomings of the Samuelson model with the help of fractional Brownian motion
(for a discussion see Cutland et al. (1995)).

For our example let us assume that empirical data suggests that the discounted
price of the stock should be modelled as

St = S0 exp
(
νt+ σBH

t

)
, t ∈ [0, 1] , (6.1)

for constants ν, σ and a fractional Brownian motion BH . In Cheridito (2000) it

is shown that for H ∈
(
0, 1

2

)
∪
(

1
2
, 1
)

such a model admits arbitrage. However,

if H ∈
(

3
4
, 1
)
, we can exclude all arbitrage strategies by regularizing fractional

Brownian motion in the following way:
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If (Bt)t∈[0,1] is a Brownian motion independent of BH , Theorem 1.7 implies
that for all ε > 0,(

εBt + BH
t

)
t∈[0,1]

is equivalent to (εBt)t∈[0,1] .

We observe that

Cov
(
εBt +BH

t , εBs +BH
s

)
= ε2 (t ∧ s) + Cov

(
BH

t , B
H
s

)
, t, s ∈ [0, 1] .

Hence,
(
εBt +BH

t

)
t∈[0,1]

is an a.s. continuous centered Gaussian process that

has up to ε2 the same covariance structure as
(
BH

t

)
t∈[0,1]

. This shows that if the

model (6.1) fits empirical data, then so does

St = S0 exp
{
νt+ σ

(
εBt +BH

t

)}
, t ∈ [0, 1] , (6.2)

for ε > 0 small enough. But in contrast to (6.1), and like the Samuelson model,
(6.2) has a unique equivalent martingale measure Qε. This implies that the model
(6.2) is arbitrage-free and complete. According to current practice in mathemat-
ical finance, in such a framework options are priced by taking the expected value
under the equivalent martingale measure of the option’s discounted pay-off. In
the model (6.2) this leads to the following option price:

C0(ε) = EQε

[(
S0 exp

{
ν + σ

(
εB1 +BH

1

)}
− e−rK

)+
]

= BS(εσ) . (6.3)

By the above mentioned properties of the function BS, C0(ε) in (6.3) is close to
(S0− e−rK)+ when ε > 0 is small. The deeper reason why C0(ε) is so low in this
situation, is that (6.3) gives the initial capital necessary to replicate the pay-off of
the call option with a predictable trading strategy satisfying certain admissibility
conditions, and this strategy seems to exploit small movements of the stochastic
process (6.2) over very short time intervals.

In reality a seller of the option can only carry out finitely many transactions to
hedge the option. Moreover he cannot buy and sell within nanoseconds. Therefore
he will demand a higher price than BS(εσ) ≈ (S0 − e−rK)

+
.

To find a reasonable option price, one should introduce a waiting time h > 0
and restrict trading strategies to the class Θh

(
lFS
)

of strategies that can buy

and sell at lFS-stopping times but after each transaction there must be a waiting
period of minimal length h before the next. For small ε > 0, the discounted gain
process of such a strategy is similar in both models (6.1) and (6.2), as should be
the case. Moreover, it is shown in Cheridito (2000) that the model (6.1) has no

arbitrage in Θh
(
lFS
)
. Hence, if we confine the strategies to the class Θh

(
lFS
)
, we

can return to the model (6.1) to value the option. Since (6.1) with the strategies

Θh
(
lFS
)

is an incomplete model, one has to decide in which sense the pay-off of
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the option should be approximated and then search for an optimal strategy. It
is not clear whether the regularization (6.2) is of any use in such a procedure.
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