Optimal Stopping with Neural Networks

Sebastian Becker
ZENAI

Patrick Cheridito
RiskLab, ETH Zurich

ETH Zurich, November 8, 2019

based on the the paper Deep Optimal Stopping, JMLR, 2019

- Let $X_{0}, X_{1}, \ldots, X_{N}$ be a d-dimensional Markov process on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, i.e. $X_{0}, X_{1}, \ldots, X_{N}: \Omega \rightarrow \mathbb{R}^{d}$ are random vectors such that

$$
\mathbb{P}\left[X_{n+1} \in B \mid X_{n}\right]=\mathbb{P}\left[X_{n+1} \in B \mid X_{0}, \ldots, X_{n}\right]
$$

every random sequence can be made Markov by adding enough past information to the current state

- $g:\{0,1, \ldots, N\} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ a measurable function such that $\mathbb{E}\left|g\left(n, X_{n}\right)\right|<\infty$ for all n
- Optimal Stopping Problem

$$
\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

where \mathcal{T} is the set of all X-stopping times $\tau: \Omega \rightarrow\{0,1, \ldots, N\}$ that is, $1_{\{\tau=n\}}=h_{n}\left(X_{0}, \ldots, X_{n}\right)$ for all n

Example I

$$
X_{0}=0, \quad \mathbb{P}\left[X_{1}= \pm 1\right]=\frac{1}{2}, \quad \mathbb{P}\left[X_{2}=X_{1} \pm 1 \mid X_{1}\right]=\frac{1}{2}
$$

$$
\tau^{*}= \begin{cases}2 & \text { if } X_{1}=1 \\ 1 & \text { if } X_{1}=-1\end{cases}
$$

$$
\mathbb{E} g\left(\tau^{*}, X_{\tau^{*}}\right)=\frac{1}{2} \times 2+\frac{1}{4} \times 1+\frac{1}{4} \times 2=1.75
$$

General Solution: Snell Envelope

- The Snell envelope is recursively given by

$$
\begin{aligned}
H_{N} & :=g\left(N, X_{N}\right) \\
H_{n} & :=g\left(n, X_{n}\right) \vee \mathbb{E}\left[H_{n+1} \mid X_{n}\right]
\end{aligned}
$$

- It is the smallest $\left(\mathcal{F}_{n}^{X}\right)$-super-martingale such that $H_{n} \geq g\left(n, X_{n}\right)$ for all n,

$$
\text { where } \mathcal{F}_{n}^{X}=\sigma\left(X_{0}, X_{1}, \ldots, X_{n}\right)
$$

Proof:

1) By definition, $H_{n} \geq \mathbb{E}\left[H_{n+1} \mid X_{n}\right]=\mathbb{E}\left[H_{n+1} \mid \mathcal{F}_{n}^{X}\right]$ and $H_{n} \geq g\left(n, X_{n}\right)$
2) Every $\left(\mathcal{F}_{n}^{X}\right)$-super-martingale $\left(Y_{n}\right)$ that dominates $g\left(n, X_{n}\right)$ satisfies

$$
Y_{n} \geq \mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}^{X}\right] \text { and } Y_{n} \geq g\left(n, X_{n}\right) . \text { So } Y_{n} \geq H_{n} .
$$

- For every, X-stopping time τ,

$$
\mathbb{E} g\left(\tau, X_{\tau}\right) \leq \mathbb{E} H_{\tau} \leq \mathbb{E} H_{0}
$$

Optimal Solution

- Define

$$
\begin{aligned}
& \tau_{N}^{*}:=N \\
& \tau_{n}^{*}:=n 1_{\left\{g\left(n, X_{n}\right)=H_{n}\right\}}+\tau_{n+1}^{*} 1_{\left\{g\left(n, X_{n}\right)<H_{n}\right\}}, \quad n \leq N-1
\end{aligned}
$$

- Then, one verifies recursively for all $n \leq N-1$,

$$
\begin{aligned}
\mathbb{E}\left[g\left(\tau_{n}^{*}, X_{\tau_{n}^{*}}\right) \mid X_{n}\right] & =\mathbb{E}\left[g\left(n, X_{n}\right) 1_{\left\{g\left(n, X_{n}\right)=H_{n}\right\}}+g\left(\tau_{n+1}^{*}, X_{\tau_{n+1}^{*}}\right) 1_{\left\{g\left(n, X_{n}\right)<H_{n}\right\}} \mid X_{n}\right] \\
& =g\left(n, X_{n}\right) 1_{\left\{g\left(n, X_{n}\right)=H_{n}\right\}}+\mathbb{E}\left[g\left(\tau_{n+1}^{*}, X_{\tau_{n+1}^{*}}\right) \mid X_{n}\right] 1_{\left\{g\left(n, X_{n}\right)<H_{n}\right\}} \\
& =g\left(n, X_{n}\right) \vee \mathbb{E}\left[H_{n+1} \mid X_{n}\right]=H_{n}
\end{aligned}
$$

- In particular, $\mathbb{E} g\left(\tau_{0}^{*}, X_{\tau_{0}^{*}}\right)=\mathbb{E} H_{0}=\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right) \quad$ that is, τ_{0}^{*} is optimal
- In fact, $\mathbb{E} g\left(\tau_{n}^{*}, X_{\tau_{n}^{*}}\right)=\mathbb{E} H_{n}=V_{n}:=\sup _{n \leq \tau \leq N} \mathbb{E} g\left(\tau, X_{\tau}\right)$ for all $n=0,1, \ldots, N$.

Dual Problem

Let $H_{n}=H_{0}+M_{n}^{H}-A_{n}^{H}$ be the Doob decomposition with respect to $\left(\mathcal{F}_{n}^{X}\right)$, that is, $\left(M_{n}^{H}\right)$ is an $\left(\mathcal{F}_{n}^{X}\right)$-martingale and $\left(A_{n}^{H}\right)$ a non-decreasing $\left(\mathcal{F}_{n}^{X}\right)$-predictable process such that $M_{0}^{H}=A_{0}^{H}=0$

Theorem (Rogers (2002), Haugh-Kogan (2004))
For every $\left(\mathcal{F}_{n}^{X}\right)$-martingale $\left(M_{n}\right)$ with $M_{0}=0$, one has

$$
\mathbb{E}\left[\max _{0 \leq n \leq N}\left\{g\left(n, X_{n}\right)-M_{n}\right\}\right] \geq V_{0}=\mathbb{E}\left[\max _{0 \leq n \leq N}\left\{g\left(n, X_{n}\right)-M_{n}^{H}\right\}\right]
$$

Proof: 1) For every X-stopping time τ,

$$
\begin{aligned}
& \mathbb{E} g\left(\tau, X_{\tau}\right)=\mathbb{E}\left[g\left(\tau, X_{\tau}\right)-M_{\tau}\right] \leq \mathbb{E}\left[\max _{0 \leq n \leq N}\left\{g\left(n, X_{n}\right)-M_{n}\right\}\right] . \\
& \Rightarrow V_{0} \leq \mathbb{E}\left[\max _{0 \leq n \leq N}\left\{g\left(n, X_{n}\right)-M_{n}\right\}\right] .
\end{aligned}
$$

2) $\mathbb{E}\left[\max _{0 \leq n \leq N}\left\{g\left(n, X_{n}\right)-M_{n}^{H}\right\}\right] \leq \mathbb{E}\left[\max _{0 \leq n \leq N}\left\{H_{n}-M_{n}^{H}\right\}\right]=\mathbb{E}\left[\max _{0 \leq n \leq N}\left\{H_{0}-A_{n}^{H}\right\}\right]=\mathbb{E} H_{0}=V_{0}$

Stopping Times and Stopping Decisions

- Denote by \mathcal{T}_{n} the set of all X-stopping times τ such that $n \leq \tau \leq N$
- Let $f_{n}, f_{n+1}, \ldots, f_{N}: \mathbb{R}^{d} \rightarrow\{0,1\}$ be measurable functions such that $f_{N} \equiv 1$. Then

$$
\tau_{n}=\sum_{m=n}^{N} m f_{m}\left(X_{m}\right) \prod_{j=n}^{m-1}\left(1-f_{j}\left(X_{j}\right)\right) \quad \text { with } \quad \prod_{j=n}^{n-1}\left(1-f_{j}\left(X_{j}\right)\right):=1
$$

is a stopping time in \mathcal{T}_{n}

$$
\tau_{n}=n f_{n}\left(X_{n}\right)+\tau_{n+1}\left(1-f_{n}\left(X_{n}\right)\right), \quad \text { where } \quad \tau_{n+1}=\sum_{m=n+1}^{N} m f_{m}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f_{j}\left(X_{j}\right)\right)
$$

Idea Recursively approximate f_{n} by a neural network $f^{\theta}: \mathbb{R}^{d} \rightarrow\{0,1\}$ of the form

$$
f^{\theta}=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta}
$$

where

- q_{1} and q_{2} are positive integers specifying the number of nodes in the two hidden layers,
- $a_{1}^{\theta}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{q_{1}}, a_{2}^{\theta}: \mathbb{R}^{q_{1}} \rightarrow \mathbb{R}^{q_{2}}$ and $a_{3}^{\theta}: \mathbb{R}^{q_{2}} \rightarrow \mathbb{R}$ are affine functions given by

$$
a_{i}^{\theta}(x)=A_{i} x+b_{i}, i=1,2,3,
$$

- for $j \in \mathbb{N}, \varphi_{j}: \mathbb{R}^{j} \rightarrow \mathbb{R}^{j}$ is the component-wise ReLU activation function given by $\varphi_{j}\left(x_{1}, \ldots, x_{j}\right)=\left(x_{1}^{+}, \ldots, x_{j}^{+}\right)$
The components of θ consist of the entries of A_{i} and $b_{i}, i=1,2,3$

More precisely,

- assume parameter values $\theta_{n+1}, \theta_{n+2}, \ldots, \theta_{N} \in \mathbb{R}^{q}$ have been found such that $f^{\theta_{N}} \equiv 1$ and the stopping time

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f^{\theta_{m}}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

produces an expectation $\mathbb{E} g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)$ close to the optimal value V_{n+1}

- now try to find a maximizer $\theta_{n} \in \mathbb{R}^{q}$ of

$$
\theta \mapsto \mathbb{E}\left[g\left(n, X_{n}\right) f^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{n+1}\right)\left(1-f^{\theta}\left(X_{n}\right)\right)\right]
$$

- Goal find an (approximately) optimal $\theta_{n} \in \mathbb{R}^{q}$ with a stochastic gradient ascent method
- Problem for $x \in \mathbb{R}^{d}$, the θ-gradient of

$$
f^{\theta}(x)=1_{[0, \infty)} \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta}(x)
$$

is 0 or does not exist

- As an intermediate step consider a neural network $F^{\theta}: \mathbb{R}^{d} \rightarrow(0,1)$ of the form

$$
F^{\theta}=\psi \circ a_{3}^{\theta} \circ \varphi_{q_{2}} \circ a_{2}^{\theta} \circ \varphi_{q_{1}} \circ a_{1}^{\theta} \quad \text { for } \quad \psi(x)=\frac{e^{x}}{1+e^{x}}
$$

- Use stochastic gradient ascent to find an approximate optimizer $\theta_{n} \in \mathbb{R}^{q}$ of

$$
\theta \mapsto \mathbb{E}\left[g\left(n, X_{n}\right) F^{\theta}\left(X_{n}\right)+g\left(\tau_{n+1}, X_{\tau_{n+1}}\right)\left(1-F^{\theta}\left(X_{n}\right)\right)\right]
$$

- Approximate

$$
f_{n} \approx f^{\theta_{n}}=1_{[0, \infty)} \circ a_{3}^{\theta_{n}} \circ \varphi_{q_{2}} \circ a_{2}^{\theta_{n}} \circ \varphi_{q_{1}} \circ a_{1}^{\theta_{n}}
$$

- Repeat the same steps at times $n-1, n-2, \ldots, 0$

Training the Networks

- Let $\left(x_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots$ be independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- Let $\theta_{n+1}, \ldots, \theta_{N} \in \mathbb{R}^{q}$ be given, and consider the corresponding stopping time

$$
\tau_{n+1}=\sum_{m=n+1}^{N} m f^{\theta_{m}}\left(X_{m}\right) \prod_{j=n+1}^{m-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

- τ_{n+1} is of the form $\tau_{n+1}=l_{n+1}\left(X_{n+1}, \ldots, X_{N-1}\right)$ for a measurable function

$$
l_{n+1}: \mathbb{R}^{d(N-n-1)} \rightarrow\{n+1, n+2, \ldots, N\}
$$

- Denote

$$
l_{n+1}^{k}= \begin{cases}N & \text { if } n=N-1 \\ l_{n+1}\left(x_{n+1}^{k}, \ldots, x_{N-1}^{k}\right) & \text { if } n \leq N-2\end{cases}
$$

- The realized reward

$$
r_{n}^{k}(\theta)=g\left(n, x_{n}^{k}\right) F^{\theta}\left(x_{n}^{k}\right)+g\left(l_{n+1}^{k}, x_{l_{n+1}^{k}}^{k}\right)\left(1-F^{\theta}\left(x_{n}^{k}\right)\right)
$$

is continuous and almost everywhere differentiable in θ

Stochastic Gradient Ascent

- Initialize $\theta_{n, 0}$ typically random; e.g. Xavier initialization
- Standard updating $\quad \theta_{n, k+1}=\theta_{n, k}+\eta \nabla r_{n}^{k}\left(\theta_{n, k}\right)$
- Variants
- Mini-batches
- Batch normalization
- Momentum
- Adagrad
- RMSProp
- AdaDelta
- ADAM
- Decoupling weight decay
- Warm restarts
- ...

Stochastic Gradient Ascent

- Initialize $\theta_{n, 0}$ typically random; e.g. Xavier initialization
- Standard updating $\quad \theta_{n, m+1}=\theta_{n, m}+\eta \nabla r_{n}^{m}\left(\theta_{n, m}\right)$
- Variants
- Mini-batches
- Batch normalization
- Momentum
- Adagrad
- RMSProp
- AdaDelta
- ADAM
- Decoupling weight decay
- Warm restarts
- ...

Lower bound

- The candidate optimal stopping time

$$
\tau^{\Theta}=\sum_{n=1}^{N} n f^{\theta_{n}}\left(X_{n}\right) \prod_{j=0}^{n-1}\left(1-f^{\theta_{j}}\left(X_{j}\right)\right)
$$

yields a lower bound

$$
L=\mathbb{E} g\left(\tau^{\Theta}, X_{\tau^{\ominus}}\right) \quad \text { for the optimal value } \quad V_{0}=\sup _{\tau} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

- Let $\left(y_{n}^{k}\right)_{n=0}^{N}, k=1,2, \ldots, K$, be a new set of independent simulations of $\left(X_{n}\right)_{n=0}^{N}$
- τ^{Θ} can be written as $\tau^{\Theta}=l\left(X_{0}, \ldots, X_{N-1}\right)$ for a measurable function $l: \mathbb{R}^{d N} \rightarrow\{0,1, \ldots, N\}$
- Denote $l^{k}=l\left(y_{0}^{k}, \ldots, y_{N-1}^{k}\right)$
- Use the Monte Carlo approximation

$$
\hat{L}=\frac{1}{K} \sum_{k=1}^{K} g\left(l^{k}, y_{k^{k}}^{k}\right) \quad \text { as an estimate for } \quad L
$$

Upper Bound and Confidence Intervals

Analogously, one can estimate

- An upper bound \hat{U} by solving the dual problem and a
- 95% confidence interval $\left[\hat{L}-\Delta_{L}, \hat{U}+\Delta_{U}\right]$

Example II

(1) Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$
S_{t}^{i}=s_{0}^{i} \exp \left(\left[r-\delta_{i}-\sigma_{i}^{2} / 2\right] t+\sigma_{i} W_{t}^{i}\right), \quad i=1,2, \ldots, d
$$

for

- initial values $s_{0}^{i} \in(0, \infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_{i} \in[0, \infty)$
- volatilities $\sigma_{i} \in(0, \infty)$
- and a d-dimensional Brownian motion W with constant correlation $\rho_{i j}$ between increments of different components W^{i} and W^{j}
A Bermudan max-call option has time- t payoff $\left(\max _{1 \leq i \leq d} S_{t}^{i}-K\right){ }^{+}$ and can be exercised at one of finitely many times $0=t_{0}<t_{1}=\frac{T}{N}<t_{2}=\frac{2 T}{N}<\cdots<t_{N}=T$

$$
\text { Price: } \sup _{\tau \in\left\{t_{0}, t_{1}, \ldots, T\right\}} \mathbb{E}\left[e^{-r \tau}\left(\max _{1 \leq i \leq d} S_{\tau}^{i}-K\right)^{+}\right]=\sup _{\tau \in \mathcal{T}} \mathbb{E} g\left(\tau, X_{\tau}\right)
$$

Numerical results

$$
\text { for } s_{0}^{i}=100, \sigma_{i}=20 \%, r=5 \%, \delta=10 \%, \rho_{i j}=0, K=100, T=3, N=9 \text { : }
$$

\# Assets	Point Est.	Comp. Time	95% Conf. Int.	Bin. Tree	Broadie-Cao 95\% Conf. Int.
2	13.899	$28.7 s$	$[13.880,13.910]$	13.902	
3	18.690	$28.9 s$	$[18.673,18.699]$	18.69	
5	26.159	$28.1 s$	$[26.138,26.174]$		$[26.115,26.164]$
10	38.337	$30.5 s$	$[38.300,38.367]$		
20	51.668	$37.5 s$	$[51.549,51.803]$		
30	59.659	$45.5 s$	$[59.476,59.872]$		
50	69.736	$59.1 s$	$[69.560,69.945]$		
100	83.584	$95.9 s$	$[83.357,83.862]$		
200	97.612	$170.1 s$	$[97.381,97.889]$		
500	116.425	$493.5 s$	$[116.210,116.685]$		

