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The Problem

Let X0,X1, . . . ,XN be a d-dimensional Markov process on a probability space (Ω,F ,P),
i.e. X0,X1, . . . ,XN : Ω→ Rd are random vectors such that

P[Xn+1 ∈ B | Xn] = P[Xn+1 ∈ B | X0, . . . ,Xn]

every random sequence can be made Markov by adding enough past information to the current state

g: {0, 1, . . . ,N} × Rd → R a measurable function such that E|g(n,Xn)|<∞ for all n

Optimal Stopping Problem
sup
τ∈T

E g(τ,Xτ )

where T is the set of all X-stopping times τ : Ω→ {0, 1, . . . ,N}

that is, 1{τ=n} = hn(X0, . . . ,Xn) for all n



Example I

X0 = 0, P[X1 = ±1] =
1
2
, P[X2 = X1 ± 1 | X1] =

1
2

1

1

1 2
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1

τ∗ =

{
2 if X1 = 1
1 if X1 = −1

E g(τ∗,Xτ∗) =
1
2
× 2 +

1
4
× 1 +

1
4
× 2 = 1.75



General Solution: Snell Envelope

The Snell envelope is recursively given by

HN := g(N,XN)

Hn := g(n,Xn) ∨ E[Hn+1 | Xn]

It is the smallest (FX
n )-super-martingale such that Hn ≥ g(n,Xn) for all n,

where FX
n = σ(X0,X1, . . . ,Xn)

Proof:
1) By definition, Hn ≥ E[Hn+1 | Xn] = E[Hn+1 | FX

n ] and Hn ≥ g(n,Xn)

2) Every (FX
n )-super-martingale (Yn) that dominates g(n,Xn) satisfies

Yn ≥ E[Yn+1 | FX
n ] and Yn ≥ g(n,Xn). So Yn ≥ Hn.

For every, X-stopping time τ ,

E g(τ,Xτ ) ≤ EHτ ≤ EH0



Optimal Solution

Define

τ∗N := N

τ∗n := n1{g(n,Xn)=Hn} + τ∗n+11{g(n,Xn)<Hn}, n ≤ N − 1

Then, one verifies recursively for all n ≤ N − 1,

E
[
g
(
τ∗n ,Xτ∗

n

)
| Xn
]

= E
[
g (n,Xn) 1{g(n,Xn)=Hn} + g

(
τ∗n+1,Xτ∗

n+1

)
1{g(n,Xn)<Hn} | Xn

]
= g (n,Xn) 1{g(n,Xn)=Hn} + E

[
g
(
τ∗n+1,Xτ∗

n+1

)
| Xn

]
1{g(n,Xn)<Hn}

= g(n,Xn) ∨ E [Hn+1 | Xn] = Hn

In particular, E g
(
τ∗0 ,Xτ∗

0

)
= EH0 = supτ∈T E g (τ,Xτ ) that is, τ∗0 is optimal

In fact, E g
(
τ∗n ,Xτ∗

n

)
= EHn = Vn := supn≤τ≤N E g (τ,Xτ ) for all n = 0, 1, . . . ,N.



Dual Problem

Let Hn = H0 + MH
n − AH

n be the Doob decomposition with respect to (FX
n ) , that is,

(MH
n ) is an (FX

n )-martingale and (AH
n ) a non-decreasing (FX

n )-predictable process such that
MH

0 = AH
0 = 0

Theorem (Rogers (2002), Haugh–Kogan (2004))
For every (FX

n )-martingale (Mn) with M0 = 0, one has

E
[

max
0≤n≤N

{g(n,Xn)−Mn}
]
≥ V0 = E

[
max

0≤n≤N

{
g(n,Xn)−MH

n

}]
Proof: 1) For every X-stopping time τ ,

E g(τ,Xτ ) = E [g(τ,Xτ )−Mτ ] ≤ E
[

max
0≤n≤N

{g(n,Xn)−Mn}
]
.

⇒ V0 ≤ E [max0≤n≤N {g(n,Xn)−Mn}].

2) E
[

max
0≤n≤N

{
g(n,Xn)−MH

n

}]
≤ E

[
max

0≤n≤N

{
Hn −MH

n

}]
= E

[
max

0≤n≤N

{
H0 − AH

n

}]
= EH0 = V0



Stopping Times and Stopping Decisions

Denote by Tn the set of all X-stopping times τ such that n ≤ τ ≤ N

Let fn, fn+1, . . . , fN : Rd → {0, 1} be measurable functions such that fN ≡ 1. Then

τn =

N∑
m=n

m fm(Xm)

m−1∏
j=n

(1− fj(Xj)) with
n−1∏
j=n

(1− fj(Xj)) := 1

is a stopping time in Tn

τn = n fn(Xn) + τn+1(1− fn(Xn)), where τn+1 =

N∑
m=n+1

m fm(Xm)

m−1∏
j=n+1

(1− fj(Xj)).



Neural Network Approximation

Idea Recursively approximate fn by a neural network f θ:Rd → {0, 1} of the form

f θ = 1[0,∞) ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1 ,

where
q1 and q2 are positive integers specifying the number of nodes in the two hidden layers,

aθ
1 :Rd → Rq1 , aθ

2 :Rq1 → Rq2 and aθ
3 :Rq2 → R are affine functions given by

aθ
i (x) = Aix + bi, i = 1, 2, 3,

for j ∈ N, ϕj:Rj → Rj is the component-wise ReLU activation function given by
ϕj(x1, . . . , xj) = (x+1 , . . . , x

+
j )

The components of θ consist of the entries of Ai and bi, i = 1, 2, 3



More precisely,

assume parameter values θn+1, θn+2, . . . , θN ∈ Rq have been found such that f θN ≡ 1 and the
stopping time

τn+1 =

N∑
m=n+1

m f θm(Xm)

m−1∏
j=n+1

(1− f θj(Xj))

produces an expectation E g(τn+1,Xτn+1) close to the optimal value Vn+1

now try to find a maximizer θn ∈ Rq of

θ 7→ E
[
g(n,Xn) f θ(Xn) + g(τn+1,Xn+1)(1− f θ(Xn))

]



Goal find an (approximately) optimal θn ∈ Rq with a stochastic gradient ascent method

Problem for x ∈ Rd, the θ-gradient of

f θ(x) = 1[0,∞) ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1(x)

is 0 or does not exist

As an intermediate step consider a neural network Fθ:Rd → (0, 1) of the form

Fθ = ψ ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1 for ψ(x) =
ex

1 + ex

Use stochastic gradient ascent to find an approximate optimizer θn ∈ Rq of

θ 7→ E
[
g(n,Xn)Fθ(Xn) + g(τn+1,Xτn+1)(1− Fθ(Xn))

]
Approximate fn ≈ f θn = 1[0,∞) ◦ aθn

3 ◦ ϕq2 ◦ aθn
2 ◦ ϕq1 ◦ aθn

1

Repeat the same steps at times n− 1, n− 2, . . . , 0



Training the Networks

Let (xk
n)N

n=0, k = 1, 2, . . . be independent simulations of (Xn)N
n=0

Let θn+1, . . . , θN ∈ Rq be given, and consider the corresponding stopping time

τn+1 =

N∑
m=n+1

m f θm(Xm)

m−1∏
j=n+1

(1− f θj(Xj))

τn+1 is of the form τn+1 = ln+1(Xn+1, . . . ,XN−1) for a measurable function

ln+1 : Rd(N−n−1) → {n + 1, n + 2, . . . ,N}

Denote

lkn+1 =

{
N if n = N − 1
ln+1(xk

n+1, . . . , x
k
N−1) if n ≤ N − 2

The realized reward

rk
n(θ) = g(n, xk

n)Fθ(xk
n) + g(lkn+1, x

k
lkn+1

)(1− Fθ(xk
n))

is continuous and almost everywhere differentiable in θ



Stochastic Gradient Ascent

Initialize θn,0 typically random; e.g. Xavier initialization

Standard updating θn,k+1 = θn,k + η∇rk
n(θn,k)

Variants

Mini-batches

Batch normalization

Momentum

Adagrad

RMSProp

AdaDelta

ADAM

Decoupling weight decay

Warm restarts

...



Stochastic Gradient Ascent
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Lower bound

The candidate optimal stopping time

τΘ =

N∑
n=1

n f θn(Xn)

n−1∏
j=0

(1− f θj(Xj))

yields a lower bound

L = E g(τΘ,XτΘ) for the optimal value V0 = sup
τ

E g(τ,Xτ )

Let (yk
n)N

n=0, k = 1, 2, . . . ,K, be a new set of independent simulations of (Xn)N
n=0

τΘ can be written as τΘ = l(X0, . . . ,XN−1) for a measurable function l : RdN → {0, 1, . . . ,N}

Denote lk = l(yk
0, . . . , y

k
N−1)

Use the Monte Carlo approximation

L̂ =
1
K

K∑
k=1

g(lk, yk
lk ) as an estimate for L



Upper Bound and Confidence Intervals

Analogously, one can estimate

An upper bound Û by solving the dual problem and a

95% confidence interval [L̂−∆L , Û + ∆U]



Example II

1 Bermudan max-call options
Consider d assets with prices evolving according to a multi-dimensional Black–Scholes model

Si
t = si

0 exp
(
[r − δi − σ2

i /2]t + σiW i
t

)
, i = 1, 2, . . . , d,

for
initial values si

0 ∈ (0,∞)

a risk-free interest rate r ∈ R
dividend yields δi ∈ [0,∞)

volatilities σi ∈ (0,∞)

and a d-dimensional Brownian motion W with constant correlation ρij between
increments of different components W i and W j

A Bermudan max-call option has time-t payoff
(
max1≤i≤d Si

t − K
)+

and can be exercised at one of finitely many times 0 = t0 < t1 = T
N < t2 = 2T

N < · · · < tN = T

Price: sup
τ∈{t0,t1,...,T}

E

[
e−rτ

(
max
1≤i≤d

Si
τ − K

)+
]

= sup
τ∈T

E g(τ,Xτ )



Numerical results

for si
0 = 100, σi = 20%, r = 5%, δ = 10%, ρij = 0, K = 100, T = 3, N = 9:

# Assets Point Est. Comp. Time 95% Conf. Int. Bin. Tree Broadie–Cao 95% Conf. Int.

2 13.899 28.7s [13.880, 13.910] 13.902
3 18.690 28.9s [18.673, 18.699] 18.69
5 26.159 28.1s [26.138, 26.174] [26.115, 26.164]
10 38.337 30.5s [38.300, 38.367]
20 51.668 37.5s [51.549, 51.803]
30 59.659 45.5s [59.476, 59.872]
50 69.736 59.1s [69.560, 69.945]
100 83.584 95.9s [83.357, 83.862]
200 97.612 170.1s [97.381, 97.889]
500 116.425 493.5s [116.210, 116.685]
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