
Optimal Stopping with Neural Networks

Sebastian Becker Patrick Cheridito
ZENAI RiskLab, ETH Zurich

ETH Zurich, November 8, 2019

based on the the paper Deep Optimal Stopping, JMLR, 2019



The Problem

Let X0,X1, . . . ,XN be a d-dimensional Markov process on a probability space (Ω,F ,P),
i.e. X0,X1, . . . ,XN : Ω→ Rd are random vectors such that

P[Xn+1 ∈ B | Xn] = P[Xn+1 ∈ B | X0, . . . ,Xn]

every random sequence can be made Markov by adding enough past information to the current state

g: {0, 1, . . . ,N} × Rd → R a measurable function such that E|g(n,Xn)|<∞ for all n

Optimal Stopping Problem
sup
τ∈T

E g(τ,Xτ )

where T is the set of all X-stopping times τ : Ω→ {0, 1, . . . ,N}

that is, 1{τ=n} = hn(X0, . . . ,Xn) for all n



Example I

X0 = 0, P[X1 = ±1] =
1
2
, P[X2 = X1 ± 1 | X1] =

1
2

1

1

1 2

2

1

1

τ∗ =

{
2 if X1 = 1
1 if X1 = −1

E g(τ∗,Xτ∗) =
1
2
× 2 +

1
4
× 1 +

1
4
× 2 = 1.75



General Solution: Snell Envelope

The Snell envelope is recursively given by

HN := g(N,XN)

Hn := g(n,Xn) ∨ E[Hn+1 | Xn]

It is the smallest (FX
n )-super-martingale such that Hn ≥ g(n,Xn) for all n,

where FX
n = σ(X0,X1, . . . ,Xn)

Proof:
1) By definition, Hn ≥ E[Hn+1 | Xn] = E[Hn+1 | FX

n ] and Hn ≥ g(n,Xn)

2) Every (FX
n )-super-martingale (Yn) that dominates g(n,Xn) satisfies

Yn ≥ E[Yn+1 | FX
n ] and Yn ≥ g(n,Xn). So Yn ≥ Hn.

For every, X-stopping time τ ,

E g(τ,Xτ ) ≤ EHτ ≤ EH0



Optimal Solution

Define

τ∗N := N

τ∗n := n1{g(n,Xn)=Hn} + τ∗n+11{g(n,Xn)<Hn}, n ≤ N − 1

Then, one verifies recursively for all n ≤ N − 1,

E
[
g
(
τ∗n ,Xτ∗

n

)
| Xn
]

= E
[
g (n,Xn) 1{g(n,Xn)=Hn} + g

(
τ∗n+1,Xτ∗

n+1

)
1{g(n,Xn)<Hn} | Xn

]
= g (n,Xn) 1{g(n,Xn)=Hn} + E

[
g
(
τ∗n+1,Xτ∗

n+1

)
| Xn

]
1{g(n,Xn)<Hn}

= g(n,Xn) ∨ E [Hn+1 | Xn] = Hn

In particular, E g
(
τ∗0 ,Xτ∗

0

)
= EH0 = supτ∈T E g (τ,Xτ ) that is, τ∗0 is optimal

In fact, E g
(
τ∗n ,Xτ∗

n

)
= EHn = Vn := supn≤τ≤N E g (τ,Xτ ) for all n = 0, 1, . . . ,N.



Dual Problem

Let Hn = H0 + MH
n − AH

n be the Doob decomposition with respect to (FX
n ) , that is,

(MH
n ) is an (FX

n )-martingale and (AH
n ) a non-decreasing (FX

n )-predictable process such that
MH

0 = AH
0 = 0

Theorem (Rogers (2002), Haugh–Kogan (2004))
For every (FX

n )-martingale (Mn) with M0 = 0, one has

E
[

max
0≤n≤N

{g(n,Xn)−Mn}
]
≥ V0 = E

[
max

0≤n≤N

{
g(n,Xn)−MH

n

}]
Proof: 1) For every X-stopping time τ ,

E g(τ,Xτ ) = E [g(τ,Xτ )−Mτ ] ≤ E
[

max
0≤n≤N

{g(n,Xn)−Mn}
]
.

⇒ V0 ≤ E [max0≤n≤N {g(n,Xn)−Mn}].

2) E
[

max
0≤n≤N

{
g(n,Xn)−MH

n

}]
≤ E

[
max

0≤n≤N

{
Hn −MH

n

}]
= E

[
max

0≤n≤N

{
H0 − AH

n

}]
= EH0 = V0



Stopping Times and Stopping Decisions

Denote by Tn the set of all X-stopping times τ such that n ≤ τ ≤ N

Let fn, fn+1, . . . , fN : Rd → {0, 1} be measurable functions such that fN ≡ 1. Then

τn =

N∑
m=n

m fm(Xm)

m−1∏
j=n

(1− fj(Xj)) with
n−1∏
j=n

(1− fj(Xj)) := 1

is a stopping time in Tn

τn = n fn(Xn) + τn+1(1− fn(Xn)), where τn+1 =

N∑
m=n+1

m fm(Xm)

m−1∏
j=n+1

(1− fj(Xj)).



Neural Network Approximation

Idea Recursively approximate fn by a neural network f θ:Rd → {0, 1} of the form

f θ = 1[0,∞) ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1 ,

where
q1 and q2 are positive integers specifying the number of nodes in the two hidden layers,

aθ
1 :Rd → Rq1 , aθ

2 :Rq1 → Rq2 and aθ
3 :Rq2 → R are affine functions given by

aθ
i (x) = Aix + bi, i = 1, 2, 3,

for j ∈ N, ϕj:Rj → Rj is the component-wise ReLU activation function given by
ϕj(x1, . . . , xj) = (x+1 , . . . , x

+
j )

The components of θ consist of the entries of Ai and bi, i = 1, 2, 3



More precisely,

assume parameter values θn+1, θn+2, . . . , θN ∈ Rq have been found such that f θN ≡ 1 and the
stopping time

τn+1 =

N∑
m=n+1

m f θm(Xm)

m−1∏
j=n+1

(1− f θj(Xj))

produces an expectation E g(τn+1,Xτn+1) close to the optimal value Vn+1

now try to find a maximizer θn ∈ Rq of

θ 7→ E
[
g(n,Xn) f θ(Xn) + g(τn+1,Xn+1)(1− f θ(Xn))

]



Goal find an (approximately) optimal θn ∈ Rq with a stochastic gradient ascent method

Problem for x ∈ Rd, the θ-gradient of

f θ(x) = 1[0,∞) ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1(x)

is 0 or does not exist

As an intermediate step consider a neural network Fθ:Rd → (0, 1) of the form

Fθ = ψ ◦ aθ3 ◦ ϕq2 ◦ aθ2 ◦ ϕq1 ◦ aθ1 for ψ(x) =
ex

1 + ex

Use stochastic gradient ascent to find an approximate optimizer θn ∈ Rq of

θ 7→ E
[
g(n,Xn)Fθ(Xn) + g(τn+1,Xτn+1)(1− Fθ(Xn))

]
Approximate fn ≈ f θn = 1[0,∞) ◦ aθn

3 ◦ ϕq2 ◦ aθn
2 ◦ ϕq1 ◦ aθn

1

Repeat the same steps at times n− 1, n− 2, . . . , 0



Training the Networks

Let (xk
n)N

n=0, k = 1, 2, . . . be independent simulations of (Xn)N
n=0

Let θn+1, . . . , θN ∈ Rq be given, and consider the corresponding stopping time

τn+1 =

N∑
m=n+1

m f θm(Xm)

m−1∏
j=n+1

(1− f θj(Xj))

τn+1 is of the form τn+1 = ln+1(Xn+1, . . . ,XN−1) for a measurable function

ln+1 : Rd(N−n−1) → {n + 1, n + 2, . . . ,N}

Denote

lkn+1 =

{
N if n = N − 1
ln+1(xk

n+1, . . . , x
k
N−1) if n ≤ N − 2

The realized reward

rk
n(θ) = g(n, xk

n)Fθ(xk
n) + g(lkn+1, x

k
lkn+1

)(1− Fθ(xk
n))

is continuous and almost everywhere differentiable in θ



Stochastic Gradient Ascent

Initialize θn,0 typically random; e.g. Xavier initialization

Standard updating θn,k+1 = θn,k + η∇rk
n(θn,k)

Variants

Mini-batches

Batch normalization

Momentum

Adagrad

RMSProp

AdaDelta

ADAM

Decoupling weight decay

Warm restarts

...



Stochastic Gradient Ascent

Initialize θn,0 typically random; e.g. Xavier initialization

Standard updating θn,m+1 = θn,m + η∇rm
n (θn,m)

Variants

Mini-batches

Batch normalization

Momentum

Adagrad

RMSProp

AdaDelta

ADAM

Decoupling weight decay

Warm restarts

...



Lower bound

The candidate optimal stopping time

τΘ =

N∑
n=1

n f θn(Xn)

n−1∏
j=0

(1− f θj(Xj))

yields a lower bound

L = E g(τΘ,XτΘ) for the optimal value V0 = sup
τ

E g(τ,Xτ )

Let (yk
n)N

n=0, k = 1, 2, . . . ,K, be a new set of independent simulations of (Xn)N
n=0

τΘ can be written as τΘ = l(X0, . . . ,XN−1) for a measurable function l : RdN → {0, 1, . . . ,N}

Denote lk = l(yk
0, . . . , y

k
N−1)

Use the Monte Carlo approximation

L̂ =
1
K

K∑
k=1

g(lk, yk
lk ) as an estimate for L



Upper Bound and Confidence Intervals

Analogously, one can estimate

An upper bound Û by solving the dual problem and a

95% confidence interval [L̂−∆L , Û + ∆U]



Example II

1 Bermudan max-call options
Consider d assets with prices evolving according to a multi-dimensional Black–Scholes model

Si
t = si

0 exp
(
[r − δi − σ2

i /2]t + σiW i
t

)
, i = 1, 2, . . . , d,

for
initial values si

0 ∈ (0,∞)

a risk-free interest rate r ∈ R
dividend yields δi ∈ [0,∞)

volatilities σi ∈ (0,∞)

and a d-dimensional Brownian motion W with constant correlation ρij between
increments of different components W i and W j

A Bermudan max-call option has time-t payoff
(
max1≤i≤d Si

t − K
)+

and can be exercised at one of finitely many times 0 = t0 < t1 = T
N < t2 = 2T

N < · · · < tN = T

Price: sup
τ∈{t0,t1,...,T}

E

[
e−rτ

(
max
1≤i≤d

Si
τ − K

)+
]

= sup
τ∈T

E g(τ,Xτ )



Numerical results

for si
0 = 100, σi = 20%, r = 5%, δ = 10%, ρij = 0, K = 100, T = 3, N = 9:

# Assets Point Est. Comp. Time 95% Conf. Int. Bin. Tree Broadie–Cao 95% Conf. Int.

2 13.899 28.7s [13.880, 13.910] 13.902
3 18.690 28.9s [18.673, 18.699] 18.69
5 26.159 28.1s [26.138, 26.174] [26.115, 26.164]
10 38.337 30.5s [38.300, 38.367]
20 51.668 37.5s [51.549, 51.803]
30 59.659 45.5s [59.476, 59.872]
50 69.736 59.1s [69.560, 69.945]
100 83.584 95.9s [83.357, 83.862]
200 97.612 170.1s [97.381, 97.889]
500 116.425 493.5s [116.210, 116.685]


	The Problem
	The 

