Optimal Stopping with Neural Networks

Sebastian Becker ZENAI Patrick Cheridito RiskLab, ETH Zurich

ETH Zurich, November 8, 2019

based on the the paper Deep Optimal Stopping, JMLR, 2019

The Problem

Let X₀, X₁,..., X_N be a *d*-dimensional Markov process on a probability space (Ω, F, P),
 i.e. X₀, X₁,..., X_N: Ω → ℝ^d are random vectors such that

$$\mathbb{P}[X_{n+1} \in B \mid X_n] = \mathbb{P}[X_{n+1} \in B \mid X_0, \dots, X_n]$$

every random sequence can be made Markov by adding enough past information to the current state

• $g: \{0, 1, \dots, N\} \times \mathbb{R}^d \to \mathbb{R}$ a measurable function such that $\mathbb{E}|g(n, X_n)| < \infty$ for all n

• Optimal Stopping Problem

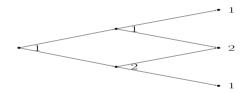
 $\sup_{\tau\in\mathcal{T}}\mathbb{E}\,g(\tau,X_{\tau})$

where \mathcal{T} is the set of all *X*-stopping times $\tau: \Omega \to \{0, 1, \dots, N\}$

that is, $1_{\{\tau=n\}} = h_n(X_0, ..., X_n)$ for all *n*

Example I

$$X_0 = 0, \quad \mathbb{P}[X_1 = \pm 1] = \frac{1}{2}, \quad \mathbb{P}[X_2 = X_1 \pm 1 \mid X_1] = \frac{1}{2}$$



$$\tau^* = \begin{cases} 2 & \text{if } X_1 = 1\\ 1 & \text{if } X_1 = -1 \end{cases}$$
$$\mathbb{E} g(\tau^*, X_{\tau^*}) = \frac{1}{2} \times 2 + \frac{1}{4} \times 1 + \frac{1}{4} \times 2 = 1.75$$

General Solution: Snell Envelope

• The Snell envelope is recursively given by

$$egin{array}{rcl} H_N &:=& g(N,X_N) \ H_n &:=& g(n,X_n) ee \mathbb{E}[H_{n+1} \mid X_n] \end{array}$$

• It is the smallest (\mathcal{F}_n^X) -super-martingale such that $H_n \ge g(n, X_n)$ for all n, where $\mathcal{F}_n^X = \sigma(X_0, X_1, \dots, X_n)$

Proof:

1) By definition,
$$H_n \ge \mathbb{E}[H_{n+1} \mid X_n] = \mathbb{E}[H_{n+1} \mid \mathcal{F}_n^X]$$
 and $H_n \ge g(n, X_n)$

2) Every (\mathcal{F}_n^X) -super-martingale (Y_n) that dominates $g(n, X_n)$ satisfies $Y_n \geq \mathbb{E}[Y_{n+1} \mid \mathcal{F}_n^X]$ and $Y_n \geq g(n, X_n)$. So $Y_n \geq H_n$.

• For every, *X*-stopping time τ ,

$$\mathbb{E}\,g(\tau,X_{\tau}) \leq \mathbb{E}\,H_{\tau} \leq \mathbb{E}\,H_0$$

Optimal Solution

• Define

$$\begin{aligned} \tau_N^* &:= N \\ \tau_n^* &:= n \mathbf{1}_{\{g(n,X_n) = H_n\}} + \tau_{n+1}^* \mathbf{1}_{\{g(n,X_n) < H_n\}}, \quad n \leq N-1 \end{aligned}$$

• Then, one verifies recursively for all $n \leq N - 1$,

$$\begin{split} \mathbb{E}\left[g\left(\tau_{n}^{*}, X_{\tau_{n}^{*}}\right) \mid X_{n}\right] &= \mathbb{E}\left[g\left(n, X_{n}\right) \mathbf{1}_{\{g(n, X_{n}) = H_{n}\}} + g\left(\tau_{n+1}^{*}, X_{\tau_{n+1}^{*}}\right) \mathbf{1}_{\{g(n, X_{n}) < H_{n}\}} \mid X_{n}\right] \\ &= g\left(n, X_{n}\right) \mathbf{1}_{\{g(n, X_{n}) = H_{n}\}} + \mathbb{E}\left[g\left(\tau_{n+1}^{*}, X_{\tau_{n+1}^{*}}\right) \mid X_{n}\right] \mathbf{1}_{\{g(n, X_{n}) < H_{n}\}} \\ &= g(n, X_{n}) \lor \mathbb{E}\left[H_{n+1} \mid X_{n}\right] = H_{n} \end{split}$$

• In particular, $\mathbb{E}g\left(\tau_{0}^{*}, X_{\tau_{0}^{*}}\right) = \mathbb{E}H_{0} = \sup_{\tau \in \mathcal{T}} \mathbb{E}g\left(\tau, X_{\tau}\right)$ that is, τ_{0}^{*} is optimal

• In fact, $\mathbb{E}g\left(\tau_{n}^{*}, X_{\tau_{n}^{*}}\right) = \mathbb{E}H_{n} = V_{n} := \sup_{n \leq \tau \leq N} \mathbb{E}g\left(\tau, X_{\tau}\right)$ for all $n = 0, 1, \dots, N$.

Dual Problem

1

Let $H_n = H_0 + M_n^H - A_n^H$ be the Doob decomposition with respect to (\mathcal{F}_n^X) , that is, (M_n^H) is an (\mathcal{F}_n^X) -martingale and (A_n^H) a non-decreasing (\mathcal{F}_n^X) -predictable process such that $M_0^H = A_0^H = 0$

Theorem (Rogers (2002), Haugh–Kogan (2004))

For every (\mathcal{F}_n^X) -martingale (M_n) with $M_0 = 0$, one has

$$\mathbb{E}\left[\max_{0\leq n\leq N}\left\{g(n,X_n)-M_n
ight\}
ight]\geq V_0=\mathbb{E}\left[\max_{0\leq n\leq N}\left\{g(n,X_n)-M_n^H
ight\}
ight]$$

Proof: 1) For every *X*-stopping time τ ,

$$\mathbb{E} g(\tau, X_{\tau}) = \mathbb{E} \left[g(\tau, X_{\tau}) - M_{\tau} \right] \le \mathbb{E} \left[\max_{0 \le n \le N} \left\{ g(n, X_n) - M_n \right\} \right].$$

$$\Rightarrow V_0 \le \mathbb{E} \left[\max_{0 \le n \le N} \left\{ g(n, X_n) - M_n \right\} \right].$$

2)
$$\mathbb{E} \left[\max_{0 \le n \le N} \left\{ g(n, X_n) - M_n^H \right\} \right] \le \mathbb{E} \left[\max_{0 \le n \le N} \left\{ H_n - M_n^H \right\} \right] = \mathbb{E} \left[\max_{0 \le n \le N} \left\{ H_0 - A_n^H \right\} \right] = \mathbb{E} H_0 = V_0$$

-

-

Stopping Times and Stopping Decisions

• Denote by \mathcal{T}_n the set of all X-stopping times τ such that $n \leq \tau \leq N$

• Let $f_n, f_{n+1}, \ldots, f_N : \mathbb{R}^d \to \{0, 1\}$ be measurable functions such that $f_N \equiv 1$. Then

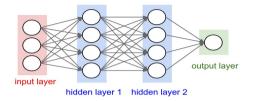
$$\tau_n = \sum_{m=n}^N m f_m(X_m) \prod_{j=n}^{m-1} (1 - f_j(X_j)) \quad \text{with} \quad \prod_{j=n}^{n-1} (1 - f_j(X_j)) := 1$$

is a stopping time in \mathcal{T}_n

۲

$$\tau_n = nf_n(X_n) + \tau_{n+1}(1 - f_n(X_n)), \text{ where } \tau_{n+1} = \sum_{m=n+1}^N mf_m(X_m) \prod_{j=n+1}^{m-1} (1 - f_j(X_j)).$$

Neural Network Approximation



Idea Recursively approximate f_n by a neural network $f^{\theta} \colon \mathbb{R}^d \to \{0, 1\}$ of the form $f^{\theta} = 1_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta},$

where

- q_1 and q_2 are positive integers specifying the number of nodes in the two hidden layers,
- $a_1^{\theta} : \mathbb{R}^d \to \mathbb{R}^{q_1}, a_2^{\theta} : \mathbb{R}^{q_1} \to \mathbb{R}^{q_2} \text{ and } a_3^{\theta} : \mathbb{R}^{q_2} \to \mathbb{R} \text{ are affine functions given by}$ $a_i^{\theta}(x) = A_i x + b_i, i = 1, 2, 3,$
- for $j \in \mathbb{N}$, $\varphi_j : \mathbb{R}^j \to \mathbb{R}^j$ is the component-wise ReLU activation function given by $\varphi_j(x_1, \ldots, x_j) = (x_1^+, \ldots, x_j^+)$

The components of θ consist of the entries of A_i and b_i , i = 1, 2, 3

More precisely,

• assume parameter values $\theta_{n+1}, \theta_{n+2}, \dots, \theta_N \in \mathbb{R}^q$ have been found such that $f^{\theta_N} \equiv 1$ and the stopping time

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f^{\theta_m}(X_m) \prod_{j=n+1}^{m-1} (1 - f^{\theta_j}(X_j))$$

produces an expectation $\mathbb{E} g(\tau_{n+1}, X_{\tau_{n+1}})$ close to the optimal value V_{n+1}

• now try to find a maximizer $\theta_n \in \mathbb{R}^q$ of

$$heta \mapsto \mathbb{E}\left[g(n, X_n)f^{ heta}(X_n) + g(au_{n+1}, X_{n+1})(1 - f^{ heta}(X_n))
ight]$$

- Goal find an (approximately) optimal $\theta_n \in \mathbb{R}^q$ with a stochastic gradient ascent method
- **Problem** for $x \in \mathbb{R}^d$, the θ -gradient of

$$f^{\theta}(x) = \mathbf{1}_{[0,\infty)} \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta}(x)$$

is 0 or does not exist

• As an intermediate step consider a neural network F^{θ} : $\mathbb{R}^d \to (0, 1)$ of the form

$$F^{\theta} = \psi \circ a_3^{\theta} \circ \varphi_{q_2} \circ a_2^{\theta} \circ \varphi_{q_1} \circ a_1^{\theta}$$
 for $\psi(x) = \frac{e^x}{1 + e^x}$

• Use stochastic gradient ascent to find an approximate optimizer $\theta_n \in \mathbb{R}^q$ of

$$\theta \mapsto \mathbb{E}\left[g(n, X_n)F^{\theta}(X_n) + g(\tau_{n+1}, X_{\tau_{n+1}})(1 - F^{\theta}(X_n))\right]$$

- Approximate $f_n \approx f^{\theta_n} = 1_{[0,\infty)} \circ a_3^{\theta_n} \circ \varphi_{q_2} \circ a_2^{\theta_n} \circ \varphi_{q_1} \circ a_1^{\theta_n}$
- **Repeat the same steps** at times $n 1, n 2, \dots, 0$

Training the Networks

• Let $(x_n^k)_{n=0}^N$, k = 1, 2, ... be independent simulations of $(X_n)_{n=0}^N$

• Let $\theta_{n+1}, \ldots, \theta_N \in \mathbb{R}^q$ be given, and consider the corresponding stopping time

$$\tau_{n+1} = \sum_{m=n+1}^{N} m f^{\theta_m}(X_m) \prod_{j=n+1}^{m-1} (1 - f^{\theta_j}(X_j))$$

• τ_{n+1} is of the form $\tau_{n+1} = l_{n+1}(X_{n+1}, \ldots, X_{N-1})$ for a measurable function

$$l_{n+1}: \mathbb{R}^{d(N-n-1)} \to \{n+1, n+2, \dots, N\}$$

Denote

$$l_{n+1}^{k} = \begin{cases} N & \text{if } n = N-1 \\ l_{n+1}(x_{n+1}^{k}, \dots, x_{N-1}^{k}) & \text{if } n \le N-2 \end{cases}$$

• The realized reward

$$r_n^k(\theta) = g(n, x_n^k) F^{\theta}(x_n^k) + g(l_{n+1}^k, x_{l_{n+1}^k}^k)(1 - F^{\theta}(x_n^k))$$

is continuous and almost everywhere differentiable in θ

Stochastic Gradient Ascent

- Initialize $\theta_{n,0}$ typically random; e.g. Xavier initialization
- Standard updating $\theta_{n,k+1} = \theta_{n,k} + \eta \nabla r_n^k(\theta_{n,k})$

• Variants

- Mini-batches
- Batch normalization
- Momentum
- Adagrad
- RMSProp
- AdaDelta
- ADAM
- Decoupling weight decay
- Warm restarts

• ...

Stochastic Gradient Ascent

- Initialize $\theta_{n,0}$ typically random; e.g. Xavier initialization
- Standard updating $\theta_{n,m+1} = \theta_{n,m} + \eta \nabla r_n^m(\theta_{n,m})$

• Variants

- Mini-batches
- Batch normalization
- Momentum
- Adagrad
- RMSProp
- AdaDelta
- ADAM
- Decoupling weight decay
- Warm restarts
- ...

Lower bound

• The candidate optimal stopping time

$$\tau^{\Theta} = \sum_{n=1}^{N} n f^{\theta_n}(X_n) \prod_{j=0}^{n-1} (1 - f^{\theta_j}(X_j))$$

yields a lower bound

$$L = \mathbb{E} g(\tau^{\Theta}, X_{\tau^{\Theta}})$$
 for the optimal value $V_0 = \sup_{\tau} \mathbb{E} g(\tau, X_{\tau})$

• Let $(y_n^k)_{n=0}^N$, k = 1, 2, ..., K, be a new set of independent simulations of $(X_n)_{n=0}^N$

- τ^{Θ} can be written as $\tau^{\Theta} = l(X_0, \dots, X_{N-1})$ for a measurable function $l : \mathbb{R}^{dN} \to \{0, 1, \dots, N\}$
- Denote $l^k = l(y_0^k, ..., y_{N-1}^k)$
- Use the Monte Carlo approximation

$$\hat{L} = \frac{1}{K} \sum_{k=1}^{K} g(l^k, y_{l^k}^k)$$
 as an estimate for L

Upper Bound and Confidence Intervals

Analogously, one can estimate

- An upper bound \hat{U} by solving the dual problem and a
- 95% confidence interval $[\hat{L} \Delta_L, \hat{U} + \Delta_U]$

Example II

Bermudan max-call options

Consider d assets with prices evolving according to a multi-dimensional Black-Scholes model

$$S_t^i = s_0^i \exp\left([r - \delta_i - \sigma_i^2/2]t + \sigma_i W_t^i\right), \quad i = 1, 2, \dots, d,$$

for

- initial values $s_0^i \in (0,\infty)$
- a risk-free interest rate $r \in \mathbb{R}$
- dividend yields $\delta_i \in [0,\infty)$
- volatilities $\sigma_i \in (0,\infty)$
- and a *d*-dimensional Brownian motion *W* with constant correlation ρ_{ij} between increments of different components W^i and W^j

A Bermudan max-call option has time-*t* payoff $\left(\max_{1 \le i \le d} S_t^i - K\right)^+$ and can be exercised at one of finitely many times $0 = t_0 < t_1 = \frac{T}{N} < t_2 = \frac{2T}{N} < \cdots < t_N = T$

Price:
$$\sup_{\tau \in \{t_0, t_1, \dots, T\}} \mathbb{E}\left[e^{-r\tau} \left(\max_{1 \le i \le d} S^i_{\tau} - K\right)^+\right] = \sup_{\tau \in \mathcal{T}} \mathbb{E}g(\tau, X_{\tau})$$

Numerical results

for $s_0^i = 100$, $\sigma_i = 20\%$, r = 5%, $\delta = 10\%$, $\rho_{ij} = 0$, K = 100, T = 3, N = 9:

# Assets	Point Est.	Comp. Time	95% Conf. Int.	Bin. Tree	Broadie-Cao 95% Conf. Int.
	12 000	2 0 7		10.000	
2	13.899	28.7s	[13.880, 13.910]	13.902	
3	18.690	28.9 <i>s</i>	[18.673, 18.699]	18.69	
5	26.159	28.1 <i>s</i>	[26.138, 26.174]		[26.115, 26.164]
10	38.337	30.5 <i>s</i>	[38.300, 38.367]		
20	51.668	37.5 <i>s</i>	[51.549, 51.803]		
30	59.659	45.5 <i>s</i>	[59.476, 59.872]		
50	69.736	59.1 <i>s</i>	[69.560, 69.945]		
100	83.584	95.9 <i>s</i>	[83.357, 83.862]		
200	97.612	170.1 <i>s</i>	[97.381,97.889]		
500	116.425	493.5s	[116.210, 116.685]		