
Machine Learning in Finance
Presession

Dr. Sebastian Becker

RiskLab, ETH Zurich

Programming with Python and Keras/Tensorflow



Toolset

We will use the following tools:

Google Colab (colab.research.google.com)

Numpy

Keras

Tensorflow

Tensorboard

Matplotlib

Programming with Python and Keras/Tensorflow



A toy example

Goal: “Learn”/Approximate a function with a fully
connected/feedforward neural network

How?

1 Create a dataset

2 Build a model

3 Train the model

Why does this work?

Feedforward neural networks are universal approximators

Universal approximation theorems (e.g., George Cybenko in
1989 for sigmoid activation functions)

Programming with Python and Keras/Tensorflow



A toy example

What happens if we

pick another optimizer?

change the learning rate?

change the number of hidden layers?

change the size of the hidden layers?

pick another activation function?

evaluate our model outside the trained domain?

shift our labels?

shift the domain?

disturb our labels?

Programming with Python and Keras/Tensorflow



Data and preprocessing

Data driven problems:

Only a finite number of samples available

Split the dataset into train- and testset

Only use information from the trainingset (!)

We may use a sample more than one time (epochs)

Shuffle the data in each epoch

Model driven problems:

An infinite number of samples available (?!)

The concept of splitting is not necessary

The concept of epochs is not necessary

In both cases we may pre-process the data

Programming with Python and Keras/Tensorflow



Fully connected neural networks

Input

Hidden layer Hidden layer

Output

Programming with Python and Keras/Tensorflow



Fully connected neural networks

A fully connected neural network is a function F : Rd → Rd̂ of the
form

F = aI ◦ ϕqI−1
◦ aI−1 ◦ · · · ◦ ϕq1 ◦ a1

where

d , d̂ , I , q1, q2, . . . , qI are positive integers,

a1 : Rd → Rq1 , . . . , aI−1 : RqI−2 → RqI−1 , aI : RqI−1 → Rd̂ are
affine functions given by matrices W1 ∈ Rq1×d , . . .,

WI ∈ R d̂×qI−1 and vectors b1 ∈ Rq1 , . . ., bI ∈ Rd̂ such that

ai (x) = Wix + bi , i = 1, . . . I ,

for every j ∈ N, ϕj : Rj → Rj is a component-wise activation
function.

Programming with Python and Keras/Tensorflow



Activation functions

RELU:

f (x) = max(0, x) ∈ [0,∞)

f ′(x) =


0 x < 0
1 x > 0
undefined x = 0

Logistic function/“sigmoid”/soft step:

f (x) = 1
1+e−x ∈ (0, 1)

f ′(x) = f (x)(1− f (x))

tanh:

f (x) = ex−e−x

ex+e−x ∈ (−1, 1)

f ′(x) = 1− f (x)2

Programming with Python and Keras/Tensorflow

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.5

0

0.5

1

1.5

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1.5

-1

-0.5

0

0.5

1

1.5



Initialization

Our weights/trainable variables need to be initialized!

Matrices:

random normal

random uniform

Xavier/Glorot normal with variance σ =
√

2
din+dout

Xavier/Glorot uniform in [−r , r ] with r =
√

6
din+dout

Idea behind Glorot/Xavier initialization is to avoid vanishing or
exploding gradients! Variance of the output of each layer should
equal the variance of the inputs.

Bias: mostly zero

Programming with Python and Keras/Tensorflow



Training

Stochastic gradient descent with mini-batches:

1 Initialize the weights

2 Pick a batch of training samples

3 Calculate the gradients of the loss function with respect to
the weights (forward pass)

4 Update the weights as wnew = wold − learning rate ∗ gradient
(backward pass)

5 repeat from step 2

6 (evaluate some metric on the testset)

Programming with Python and Keras/Tensorflow



Thank you for your attention!

Programming with Python and Keras/Tensorflow



Appendix

Batch normalization (Ioffe & Szegedy 2015):

Avoid unstable gradients

Reduces the effect of bad initialization

Allow for higher learning rates and hence faster training

Batch normalization is applied after the affine transormation but
before activation.

How:

Calculate mean and variance of a mini-batch

Normalize by x̂i = xi−µ√
σ2+ε

Scale and shift by yi = γx̂i + β

Programming with Python and Keras/Tensorflow


