Machine Learning in Finance Presession

Dr. Sebastian Becker
RiskLab, ETH Zurich

We will use the following tools:

- Google Colab (colab.research.google.com)
- Numpy
- Keras
- Tensorflow
- Tensorboard
- Matplotlib

A toy example

Goal: "Learn" /Approximate a function with a fully connected/feedforward neural network

How?

(1) Create a dataset
(2) Build a model
(3) Train the model

Why does this work?

- Feedforward neural networks are universal approximators
- Universal approximation theorems (e.g., George Cybenko in 1989 for sigmoid activation functions)

A toy example

What happens if we

- pick another optimizer?
- change the learning rate?
- change the number of hidden layers?
- change the size of the hidden layers?
- pick another activation function?
- evaluate our model outside the trained domain?
- shift our labels?
- shift the domain?
- disturb our labels?

Data and preprocessing

Data driven problems:

- Only a finite number of samples available
- Split the dataset into train- and testset
- Only use information from the trainingset (!)
- We may use a sample more than one time (epochs)
- Shuffle the data in each epoch

Model driven problems:

- An infinite number of samples available (?!)
- The concept of splitting is not necessary
- The concept of epochs is not necessary

In both cases we may pre-process the data

Fully connected neural networks

A fully connected neural network is a function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}^{\hat{d}}$ of the form

$$
F=a_{l} \circ \varphi_{q_{I-1}} \circ a_{l-1} \circ \cdots \circ \varphi_{q_{1}} \circ a_{1}
$$

where

- $d, \hat{d}, I, q_{1}, q_{2}, \ldots, q_{I}$ are positive integers,
- $a_{1}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{q_{1}}, \ldots, a_{I-1}: \mathbb{R}^{q_{I-2}} \rightarrow \mathbb{R}^{q_{I-1}}, a_{l}: \mathbb{R}^{q_{I-1}} \rightarrow \mathbb{R}^{\hat{d}}$ are affine functions given by matrices $W_{1} \in \mathbb{R}^{q_{1} \times d}, \ldots$, $W_{I} \in R^{\hat{d} \times q_{l-1}}$ and vectors $b_{1} \in \mathbb{R}^{q_{1}}, \ldots, b_{l} \in \mathbb{R}^{\hat{d}}$ such that

$$
a_{i}(x)=W_{i} x+b_{i}, \quad i=1, \ldots l
$$

- for every $j \in \mathbb{N}, \varphi_{j}: \mathbb{R}^{j} \rightarrow \mathbb{R}^{j}$ is a component-wise activation function.

Activation functions

RELU:

- $f(x)=\max (0, x) \in[0, \infty)$
- $f^{\prime}(x)= \begin{cases}0 & x<0 \\ 1 & x>0 \\ \text { undefined } & x=0\end{cases}$

Logistic function/"sigmoid"/soft step:

- $f(x)=\frac{1}{1+e^{-x}} \in(0,1)$
- $f^{\prime}(x)=f(x)(1-f(x))$

tanh:
- $f(x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \in(-1,1)$
- $f^{\prime}(x)=1-f(x)^{2}$

Initialization

Our weights/trainable variables need to be initialized!

Matrices:

- random normal
- random uniform
- Xavier/Glorot normal with variance $\sigma=\sqrt{\frac{2}{d_{\text {in }}+d_{\text {out }}}}$
- Xavier/Glorot uniform in $[-r, r]$ with $r=\sqrt{\frac{6}{d_{\text {in }}+d_{\text {out }}}}$

Idea behind Glorot/Xavier initialization is to avoid vanishing or exploding gradients! Variance of the output of each layer should equal the variance of the inputs.

Bias: mostly zero

Training

Stochastic gradient descent with mini-batches:
(1) Initialize the weights
(2) Pick a batch of training samples
(3) Calculate the gradients of the loss function with respect to the weights (forward pass)
(9) Update the weights as $w_{\text {new }}=w_{\text {old }}$ - learning rate $*$ gradient (backward pass)
(0) repeat from step 2
(0) (evaluate some metric on the testset)

Thank you for your attention!

Appendix

Batch normalization (loffe \& Szegedy 2015):

- Avoid unstable gradients
- Reduces the effect of bad initialization
- Allow for higher learning rates and hence faster training

Batch normalization is applied after the affine transormation but before activation.

How:

- Calculate mean and variance of a mini-batch
- Normalize by $\hat{x}_{i}=\frac{x_{i}-\mu}{\sqrt{\sigma^{2}+\varepsilon}}$
- Scale and shift by $y_{i}=\gamma \hat{x}_{i}+\beta$

