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Welcome

Welcome to the ETH Risk Center!

PD Dr. Volker Britz
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Center of Economic Research at ETH Ziirich
Ziirichbergstrasse 18
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Program for this Talk

What is (supervised) Machine Learning?

H What are the key concepts in ML?

What kind of ML algorithms exist?

A How do we evaluate the quality of ML algorithms?
B How do you get started?

@ What are some common pitfalls?

What are examples in industry and academia?
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What is (supervised) Machine Learning?

An algorithm learns (from training data) how a variable of interest
(class, labels) is related to other observable variables (features).
When confronted with new data (test data), it then predicts labels
from features.

Classical example: The Titanic dataset.

m Class / Labels: Did the passenger survive the Titanic disaster?
m Features: Man or Woman? Age? 1st/2nd/3rd class? ...

m Splitting Training / Test data: Random choice of holdout
data, or Cross-Validation

You can take a closer look here: https://www.kaggle.com/c/titanic
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Supervised Machine Learning: Severity of Road Accidents

m Labels: Each car accident is “slight” or “serious.”

m Features: When was the accident? Which day? What time?
Which speed limit? Urban or Rural?

The Road Accidents data and many other datasets can be found on Kaggle:
https://www.kaggle.com /tsiaras/uk-road-safety-accidents-and-vehicles

To improve predictions, work (at least) on the following:
Data collection and relevance
Data preparation
ML algorithm

—Presession— PD Dr. Volker Britz Center of Economic Research at ETH Ziirich




Point of Caution: Better algorithms or better data?

Example: Try to predict who is most at risk from COVID.

Possible features: Number of contacts, commuting, home office,
household size, mobility etc.

Missing information: What is patients’ profession? How much do
they use public transport? Do they have children in school? How
much home office do they do?

— In this example, probably (my guess!) better data offers more
opportunities than a sophisticated algorithm: Data collection,
cleaning, and preparation is of the essence!
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Some Examples of ML Algorithms

m Nearest Neighbors
Use a metric for feature similarity b/w instances
H To make prediction:
Look for the 5 most similar instances
m Tree-Based Algorithms
m Which feature best separates classes?
m Use that feature to create branches.
m Repeat this process within each branch.
m Neural Network
m Data sent through /ayers of neurons.

m lterative incremental changes to parameters to boost accuracy.
m Sometimes: Use of different filters to detect specific features.
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A Simple Notion of Accuracy

“Which share of predictions is correct?”
Basic answer: “If 830 out of 1000 cases are predicted correctly,
then we have an accuracy of 0.83."

Some (potential) issues:
m Distinguish between accuracy on training and test sets.
— Detect overfitting.
m Data relevance and quality affect what “good” performance is.

m Relative class size distorts accuracy measures.
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Class Imbalance

Class Imbalance: In many applications, one has a small “positive”
class and a (much) larger “negative’ class:

m Most people screened for a disease are not sick.
m Most payments / transactions are not fraudulent.

m Most road accidents are not serious.

Predicting only negatives trivially accomplishes high accuracy.
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Remedies for Class Imbalance

Downsampling the majority class
H Upsampling the minority class

Smarter accuracy measures

In order to describe accuracy:

m Which share of positive predictions is accurate? (“Precision”)
m Which share of positives is predicted accurately? (“Recall”)
m Give greater weight to accurate predictions in minority class
m Cohen’s Kappa adjusts directly for “luck” in prediction

m Visualize performance in a confusion matrix
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Working with ML Algorithms

Good news: It’s easy to get started!

All you need:
m Some basic coding skill, ideally in Python
m Some knowledge of an ML library like Keras

m And of course: Datal

(Some) challenges:
m Collect good quality data
m Define suitable questions and engineer features
m Choose suitable algorithms

m Assess performance adequately
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Two Fundamental Problems

“Why can you not predict the financial crisis?”
— “Why can you not predict the global pandemic?”

Fundamental problems with “predictions”:

m Predictions may fail when behavior is adapted to them.
m If a machine learns from data on the last five years, it cannot
and will not predict the once-in-a-lifetime event that is around

the corner.
— Although in principle, ML techniques can be applied to

time series data.
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Use Cases in Political Economy

m Treating word use as features, use ML to classify news stories
as CNN or Fox News.

m Using voting behavior of members of Congress, classify them
as Democrat or Republican.

— Measure political polarization and media bias by the accuracy
with which such predictions are possible.

See for instance work in the Law, Economics, and Data Science group at ETH:
https://lawecondata.ethz.ch/research /workingpapers.html
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Interpretability of ML Predictions

Compared to plain regression analysis, sophisticated ML algorithms
detect more complex pattern in data.

Drawback: Results are hard to interpret.
(“What drives the prediction?")

“If it works, why do we care how it works?”

m Industry: Interpretability may be ethically or legally required
(scoring, credit decisions, discrimination)

m Academia: Understanding things is the ultimate goall!
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Game-theoretic Approach to Interpretability

Computing Shapley values reveals how much each feature
contributes to classification of a particular instance.

Example: Use voting behavior to classify House members as
Democrats or Republicans.

— For each House member, how did each feature affect prediction?

Note: Feature importance may differ for each instance!
— Contrary to the interpretation of regression coefficients,
for example.
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Thank you for your attention!

Now over to Sebastian Becker for...
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