Quantitative Risk Management

ETH Zurich

Problem Set 11

Due on May 25

1. Consider a bivariate random vector $X = (X_1, X_2)$ with components

 $X_1 = \sqrt{W}(Z_1 + Z_2)$ and $X_2 = \sqrt{W}(Z_1 - Z_2)$,

where Z_1 and Z_2 are independent N(0, 1)-distributed and W is a non-negative random variable with cdf $F(x) = 1 - x^{-\beta}, x \ge 1, \beta > 0$, independent of (Z_1, Z_2) .

- a) Show that X has a normal variance mixture distribution.
- b) Calculate the covariance matrix of X.
- c) Calculate the correlation matrix of X.
- 2. Let C be an Archimedean copula with generator ψ given by $\psi(x) = \mathbb{E} e^{-xV}$, where V is an exponentially distributed random variable with expectation 1. Calculate the probability $\mathbb{P}[U_1 > 1/2, U_2 > 1/2]$ for $(U_1, U_2) \sim C$.
- 3. Calculate the lower and upper tail dependence coefficients λ_l and λ_u of a two-dimensional copula C if ...
 - a) C is a Clayton copula.
 - b) C is a Gumbel copula.
- 4. Total annual operational loss in a unit of measure is usually modeled with a random variable of the form $L = \sum_{j=1}^{N} X_j$ for an N-valued random variable N and a sequence X_1, X_2, \ldots of i.i.d. \mathbb{R}_+ -valued random variables that are independent of N.

Assume N has a Poisson distribution with parameter $\lambda > 0$ (that is, $\mathbb{P}[N = n] = e^{-\lambda}\lambda^n/n!$) and all X_j are exponentially distributed with parameter $\mu > 0$ (that is, $\mathbb{P}[X_j > x] = e^{-\mu x}$). Calculate the expectation of L.