ETH Zurich

Problem Set 3

Due on March 24

- 1. Let L be of the form L = YZ, where Y is a Bernoulli random variable with mean $p \in (0, 1)$ and Z an independent exponential random variable with mean m > 0. (This is a simple example of a mixture distribution.)
 - a) Calculate the mean and the variance of L.
 - b) Derive the cdf of L.
 - c) Does L have a density?
 - d) Calculate $\operatorname{VaR}_{\alpha}(L)$.
 - e) Calculate $\text{ES}_{\alpha}(L)$.
- 2. Let L be a random variable taking values in an interval $I \subseteq \mathbb{R}$. Show that

$$\operatorname{VaR}_{\alpha}(f(L)) = f(\operatorname{VaR}_{\alpha}(L))$$

for each $\alpha \in (0,1)$ and every strictly increasing continuous function $f: I \to \mathbb{R}$.

- 3. Let L be a random variable with cdf $F_L(x) = 1 x^{-\lambda}$, $x \ge 1$, for a parameter $\lambda > 0$. Calculate $\operatorname{VaR}_{\alpha}(L + \log(L))$.
- 4. Let $L = \mu + \sigma t_{\nu}$, where t_{ν} is a Student-t random variable with $\nu > 1$ degrees of freedom. Calculate $\operatorname{VaR}_{\alpha}(X)$ and $\operatorname{ES}_{\alpha}(X)$.
- 5. Let L be a random variable and $a \in \mathbb{R}$ a number such that $\mathbb{P}[L \ge a] > 0$. Show that

$$\mathbb{E}[L \mid L \ge a] = a + \frac{\int_a^\infty \mathbb{P}[L > x] dx}{\mathbb{P}[L \ge a]} = a + \frac{\int_a^\infty \mathbb{P}[L \ge x] dx}{\mathbb{P}[L \ge a]}$$

 $\text{Hint: One can write } \mathbb{E}[L \mid L \ge a] = a + \mathbb{E}[L - a \mid L \ge a] = a + \mathbb{E}\left[\int_0^\infty \mathbf{1}_{\{L - a > u\}} du \mid L \ge a\right].$