ETH Zurich

Problem Set 7

Due on April 20

- 1. Calculate the density of a generalized Pareto distribution $G_{\xi,\beta}$.
- 2. Let X be a non-negative random random variable with cdf

$$F_X(x) = \frac{x}{x+1}, \quad x \ge 0.$$

- a) Calculate the excess distribution function $F_u(x) = \mathbb{P}[X u \le x \mid X > u], x \ge 0.$
- b) Does there exist a parameter $\xi \in \mathbb{R}$ and a function β such that

$$\lim_{u \to \infty} \sup_{x>0} |F_u(x) - G_{\xi,\beta(u)}(x)| = 0,$$

where $G_{\xi,\beta}$ denotes the cdf of a GPD? If yes, for which ξ and β does this hold?

3. Let X be a non-negative random random variable with cdf

$$F_X(x) = 1 - x^{-4}, \quad x \ge 1.$$

- a) Does X have a density? If yes, can you derive it?
- b) Find all $k \in \mathbb{N} = \{1, 2, ...\}$ such that $\mathbb{E}[|X|^k] < \infty$.
- c) Does F_X belong to MDA (H_{ξ}) for a standard GEV distribution H_{ξ} ? If yes, what is ξ and what are the normalizing sequences?
- d) Calculate the excess distribution function $F_u(x) = \mathbb{P}[X u \le x \mid X > u], x \ge 0.$
- e) Does there exist a parameter $\xi \in \mathbb{R}$ and a function β such that

$$\lim_{u \to \infty} \sup_{x>0} |F_u(x) - G_{\xi,\beta(u)}(x)| = 0,$$

where $G_{\xi,\beta}$ denotes the cdf of a GPD? If yes, for which ξ and β does this hold?