ETH Zurich

Problem Set 9

Due on May 4

- 1. a) Let $Y_i \sim S_d(\psi_i)$, i = 1, ..., n, be independent spherically distributed random vectors and $\alpha_1, ..., \alpha_n \in \mathbb{R}$. Show that $Z = \sum_{i=1}^n \alpha_i Y_i$ is again spherically distributed.
 - b) Assume that the daily losses of an investment during the next t days are given by $(X_1, \ldots, X_t) \sim M_t(0, \Sigma, \widehat{F}_W)$ for a non-negative random variable W and a $t \times t$ matrix $\Sigma = \sigma^2 P$, where $\sigma > 0$ is a constant and P a correlation matrix with $P_{ij} = \rho$ for all $i \neq j$. Show that there exists a function $f: \mathbb{N} \to \mathbb{R}$ such that

 $\operatorname{VaR}_{\alpha}(X_1 + \dots + X_t) = f(t)\operatorname{VaR}_{\alpha}(X_1)$

for all $\alpha \in (0, 1)$. Can you compute f explicitly?

- c) Let $X \sim E_d(\mu, \Sigma, \psi)$ and $Y \sim E_d(\nu, \Sigma, \varphi)$ be two independent elliptical random vectors. Is Z = X + Y again elliptically distributed? If yes, derive $m \in \mathbb{R}^d$, $M \in \mathbb{R}^{d \times d}$ and $\xi \colon \mathbb{R}_+ \to \mathbb{R}$ such that $Z \sim E_d(m, M, \xi)$. If no, give a counterexample.
- 2. a) Does there exist a two-dimensional random vector with a $t_2(\nu, \mu, \Sigma)$ -distribution such that Σ is invertible and the components are independent of each other?
 - b) Does there exist a two-dimensional random vector with a $t_2(\nu, \mu, \Sigma)$ -distribution such that the components are independent of each other?
 - c) Does there exist a two-dimensional random vector such that both components have a standard one-dimensional *t*-distribution and are independent of each other?
 - d) Does there exist a $t_2(\nu, \mu, \Sigma)$ -distribution that is spherical?
- 3. Give a two-dimensional elliptical distribution that is not a normal or a t-distribution.