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Abstract: It has been shown at different levels of generality that under increasing risk
aversion utility indifference sell prices of a contingent claim converge to the super-replication
price and the shortfalls of utility maximizing hedging portfolios starting from the super-
replication price tend to zero in L1.

In this paper we give an example of a one-period financial model with bounded prices
where utility optimal strategies and terminal wealths stay bounded but do not converge
when the risk aversion is going to infinity. Then we give general results on the behavior
of utility maximizing strategies and terminal wealths under increasing risk aversion in one-
period models. Thereby, the concept of a balanced strategy turns out to play a crucial role.
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1 Introduction

Consider two financial securities that can be traded at time 0 and T > 0. We assume
that the price of the first security is always positive and use it as numéraire. The time
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0 price of the second security is a positive constant S0 while at time T it is worth
ST = S0 +∆S, for a random variable ∆S on a probability space (Ω,F , P ). A portfolio
consisting of ξ ∈ R shares of the first and ϑ ∈ R shares of the second security has a
time 0 value of v = ξ + ϑS0 and a time T value of ξ + ϑST = v + ϑ∆S. In addition
to the two tradable securities we consider a contingent claim whose time T payoff is
given by a random variable B. Throughout the paper we assume that

(M) P [∆S > 0] > 0 and P [∆S < 0] > 0,
which guarantees the absence of arbitrage in the market composed of the two tradable
securities and the non-emptiness of the set

Q :=





Q probability measure on (Ω,F)

∣∣∣∣∣∣∣∣

Q equivalent to P
dQ/dP bounded
EQ [∆S] = 0
EQ [|B|] < ∞





(see Section 1.2 in [5]). The super-replicating price of B is given by

c∗(B) := inf {c ∈ R : c + ϑ∆S ≥ B for some ϑ ∈ R} ,

where inf ∅ = ∞ and the inequality, like all equalities and inequalities in this paper,
is understood in the P -almost sure sense. It can be shown (see e.g Section 1.3 in [5])
that

c∗(B) = sup
Q∈Q

EQ [B] , (1.1)

and if c∗(B) < ∞, then the set

Θ∗ := {ϑ ∈ R : c∗(B) + ϑ∆S ≥ B}

is a non-empty, closed subset of R.
However, a financial institution with time T liability B might only be willing to

invest an amount c < c∗(B) in a hedging portfolio for B. Then it is not possible
to super-replicate B, and the optimal strategy depends on the institution’s attitude
towards risk. In this paper the optimality criterion for strategies ϑ is given by the
expected utility

E [U(v + ϑ∆S −B)] ,

for a twice continuously differentiable utility function U : R→ R that satisfies
(U1) U ′ > 0, U ′′ < 0, and limx→−∞ U ′(x) = ∞
(U2) U(v + ϑ∆S −B) ∈ L1(P ) for all ϑ ∈ R
(U3) U ′(v + ϑ∆S −B)∆S ∈ L1(P ) for all ϑ ∈ R.

It can easily be checked that for given v and B the conditions (M) and (U1)-(U3)
guarantee the existence of a unique ϑB,U,v ∈ R such that

E
[
U ′(v + ϑB,U,v∆S −B)∆S

]
= 0 , (1.2)
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and for all ϑ 6= ϑB,U,v,

E [U(v + ϑ∆S −B)] < E
[
U(v + ϑB,U,v∆S −B)

]
.

If we assume that (U1)-(U3) hold for all v ∈ R and also for 0 instead of B, then

x 7→ E [U(x + ϑ∆S −B)]

is strictly increasing, and there exists a unique cB,U,v ∈ R such that

E
[
U(v + ϑ0,U,v∆S)

]
= E

[
U(v + cB,U,v + ϑB,U,v′∆S −B)

]
, (1.3)

where v′ = v + cB,U,v. cB,U,v is called utility indifference sell price of B (see e.g [8, 11,
4, 3, 1, 2, 7]), and obviously, cB,U,v ≤ c∗(B).

For the exponential utility function Vα(x) := − exp(−αx) with Arrow-Pratt abso-
lute risk aversion coefficient −V ′′

α (x)/V ′
α(x) = α > 0, equation (1.3) reduces to

E
[
Vα(ϑ0,α∆S)

]
= E

[
Vα(cB,α + ϑB,α∆S −B)

]
,

and the optimal strategies ϑ0,α, ϑB,α and the indifference price cB,α do not depend on
the initial wealth v. Moreover,

ϑ0,α =
1

α
ϑ0,1 and E

[
Vα(ϑ0,α∆S)

]
= E

[
V1(ϑ

0,1∆S)
]

for all α > 0 .

Hence, for XB,α = cB,α + ϑB,α∆S −B, we get from Jensen’s inequality,

E
[
X−

B,α

] ≤ 1

α
log E

[
exp(αX−

B,α)
]

(1.4)

≤ 1

α
log (1 + E [exp(−αXB,α)]) =

1

α
log

(
1− E

[
V1(ϑ

0,1∆S
]) → 0

for α →∞. This implies that for all Q ∈ Q,

lim inf
α→∞

cB,α − EQ [B] = lim inf
α→∞

EQ [XB,α] ≥ 0 ,

which, by (1.1), shows that

cB,α → c∗(B) for α →∞ . (1.5)

Under additional assumptions on S and B, the results (1.4) and (1.5) can also be
proved in a continuous-time setup (see e.g [3, 1, 2]). However they do not give insight
into the behavior of the optimal strategies ϑB,α or terminal wealths v + ϑB,α∆S − B
as the risk aversion tends to infinity.

In this paper we study convergence questions for utility maximizing strategies ϑB,U,v

under increasing risk aversion in one-period models. In our setup this is equivalent to
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studying the behavior of the optimal terminal wealths v +ϑB,U,v∆S−B corresponding
to fixed v and B under increasing risk aversion. The structure of the paper is as
follows: In Section 2, we give an example of a one-period model with bounded ∆S and
B such that the optimal strategies ϑB,α corresponding to B and exponential utility
Vα(x) = − exp(−αx) stay bounded but do not converge when the absolute risk aversion
α tends to infinity. In Section 3, we study the behavior of utility maximizing strategies
and terminal wealths under increasing risk aversion in general one-period models. This
naturally leads to the concept of a balanced strategy, which also helps clarifying the
structure of the example in Section 2. More on balanced strategies and wealth processes
can be found in the Ph.D. thesis [12]. For balanced strategies and wealth processes
in multi-period models and connections to the optional decomposition see [6]. [9] and
[10] contain results on the convergence of expected utility optimal trading strategies in
continuous-time models.

2 Utility maximizing strategies and terminal wealths

need not converge when the risk aversion is going

to infinity

Let the probability space be of the form

Ω =
⋃

n∈Z\{0}
{ωn} ,

F consists of all subsets of Ω, and the probability measure P is given by

P [ωn] = pn and P [ω−n] = p−n , n ≥ 1 ,

where

p1 := p−1 := a ,

pn := p−(n−1)3
3−3·22n−3

, n ≥ 2 , (2.1)

p−n := pn33−3·22n−2

, n ≥ 2 , (2.2)

and the constant a is chosen such that
∑

n≥1 pn +
∑

n≥1 p−n = 1. Let S be given by
S0 := 1 and S1 := S0 + ∆S, where

∆S(ωn) := 3−2n+2 and ∆S(ω−n) := −3−2n+1 , n ≥ 1 ,

and the contingent claim B by

B(ωn) := 1−∆S(ωn) and B(ω−n) := 1 + ∆S(ω−n) , n ≥ 1 .
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This gives for n ≥ 1,

v + ϑ∆S(ωn)−B(ωn) = v − 1 + (ϑ + 1)∆S(ωn) and

v + ϑ∆S(ω−n)−B(ω−n) = v − 1 + (ϑ− 1)∆S(ω−n) .

It can easily be seen that the super-replication price c∗(B) is equal to 1, and starting
with initial capital c∗(B), all strategies ϑ ∈ [−1, 1] super-replicate B.

We consider the exponential utility functions Vα(x) = −e−αx for α > 0. Then (1.4)
and (1.5) hold true. On the other hand, we will show that as the risk aversion α tends
to infinity, the utility maximizing strategies ϑB,α and therefore the terminal wealths
v + ϑB,α∆S −B do not converge. Obviously, (U1)-(U3) are satisfied. Therefore, there
exists for each fixed α, a unique strategy ϑB,α ∈ R, independent of the initial wealth,
that maximizes the function ϑ 7→ E [Vα(ϑ∆S −B)]. By (1.2), it is the solution of the
equation

∑
n≥1

pn exp
(−α(3ϑB,α + 3)3−2n+1

)
3−2n+2

=
∑
n≥1

p−n exp
(−α(3− 3ϑB,α)3−2n

)
3−2n+1 .

We denote the left hand side of the above equality by LHS(ϑB,α, α) and the right hand
side by RHS(ϑB,α, α). Note that LHS(ϑ, α) is decreasing and RHS(ϑ, α) increasing in
ϑ.

In the following we will construct two sequences {αk}k≥1 and {βk}k≥1 that converge
to infinity such that

LHS(−1/3, αk) ≤ RHS(−1/3, αk) (2.3)

and
LHS(1/3, βk) ≥ RHS(1/3, βk) . (2.4)

This implies that ϑB,αk ≤ −1/3 and ϑB,βk ≥ 1/3 and shows that ϑB,α cannot con-
verge as α →∞.

We set

αk :=
1

2
32k log(2 · 3−2+3·22k−2

) and βk :=
1

2
32k+1 log(2 · 3−2+3·22k−1

) .

These two sequences obviously are increasing and tend to ∞ for k → ∞. Note that
(2.1) and (2.2) are equivalent to

pn = p−(n−1)
4

3
exp(−4αn−13

−2n+2) (2.5)

and

p−n = pn
4

3
exp(−4βn−13

−2n+1) .
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We first show (2.3):

LHS(−1/3, αk) ≤
k∑

n=1

pn exp
(−2αk3

−2n+1
)
3−2n+2 +

∑

n≥k+1

pk+13
−2n+2 . (2.6)

For n = 1, . . . , k, we deduce from

1

6
exp

(
2αk3

−2n
) ≥ 1

6
exp

(
2αn3−2n

)
=

1

6
2 · 3−2+3·22n−2

= 3−3+3·22n−2

=
pn

p−n

that

pn exp
(−2αk3

−2n+1
)
3−2n+2 ≤ 1

2
p−n exp

(−4αk3
−2n

)
3−2n+1 .

If we plug this into (2.6) and use for the second step (2.5), we get

LHS(−1/3, αk) ≤ 1

2

k∑
n=1

p−n exp
(−4αk3

−2n
)
3−2n+1 + pk+1

1

8
3−2k+2

=
1

2

k∑
n=1

p−n exp
(−4αk3

−2n
)
3−2n+1 +

1

2
p−k exp

(−4αk3
−2k

)
3−2k+1

≤
∑
n≥1

p−n exp
(−4αk3

−2n
)
3−2n+1 = RHS(−1/3, αk) ,

which proves (2.3).
To see (2.4), note that for n = 1, . . . , k, we get from

1

6
exp

(
2βk3

−2n−1
) ≥ 1

6
exp

(
2βn3−2n−1

)
= 3−3+3·22n−1

=
p−n

pn+1

that

p−n exp
(−2βk3

−2n
)
3−2n+1 ≤ 1

2
pn+1 exp

(−4βk3
−2n−1

)
3−2n, .

It follows that

RHS(1/3, βk) ≤
k∑

n=1

p−n exp
(−2βk3

−2n
)
3−2n+1 +

∑

n≥k+1

p−(k+1)3
−2n+1

=
k∑

n=1

p−n exp
(−2βk3

−2n
)
3−2n+1 + p−(k+1)

1

8
3−2k+1

≤ 1

2

k∑
n=1

pn+1 exp
(−4βk3

−2n−1
)
3−2n +

1

2
pk+1 exp

(−4βk3
−2k−1

)
3−2k

≤
∑
n≥1

pn+1 exp
(−4βk3

−2n−1
)
3−2n

=
∑
n≥2

pn exp
(−4βk3

−2n+1
)
3−2n+2 ≤ LHS(1/3, βk) .
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Although we have just shown that for α → ∞, the optimal strategies ϑB,α cannot
converge to a single point in R, it follows from Theorem 3.7 below that

dist(ϑB,α, [−1, 1]) → 0 as α →∞ ,

where for x ∈ R and a set A ⊂ R, dist(x,A) := inf {|x− y| : y ∈ A}. This implies that

dist(ϑB,αk , [−1,−1/3]) → 0 and dist(ϑB,βk , [1/3, 1]) → 0 as k →∞ .

3 General results for one-period models

In this section, ∆S and B are random variables on a general probability space (Ω,F , P )
such that condition (M) is satisfied. We define the events

Ω+ := {ω ∈ Ω : 4S(ω) > 0} ,
Ω0 := {ω ∈ Ω : 4S(ω) = 0} ,
Ω− := {ω ∈ Ω : 4S(ω) < 0} .

and set Z(ϑ) := ϑ∆S −B. Moreover, we denote

z+(ϑ) := ess infω∈Ω+Z(ϑ)(ω) and z−(ϑ) := ess infω∈Ω−Z(ϑ)(ω) .

Note that for ω ∈ Ω+, Z(ϑ)(ω) is strictly increasing and affine in ϑ, and for ω ∈ Ω−,
Z(ϑ)(ω) is strictly decreasing and affine in ϑ. Therefore, z+(.) is a right-continuous,
increasing, concave function with limϑ→−∞ z+(ϑ) = −∞, whereas z−(.) is a left-
continuous, decreasing, concave function with limϑ→∞ z−(ϑ) = −∞. It might happen
that z+(ϑ) or z−(ϑ) take the value −∞. However, if the probability space (Ω,F , P )
is finite, then z+(ϑ) is a strictly increasing real-valued function, z−(ϑ) is a strictly de-
creasing real-valued function, and there exists a unique ϑ̄ ∈ R such that z+(ϑ̄) = z−(ϑ̄).
For general probability spaces we need the following definitions:

Definition 3.1

Θ+ := {ϑ ∈ R : P [{ω ∈ Ω− : z+(ϑ) ≥ Z(ϑ)(ω)}] > 0} ,
Θ− := {ϑ ∈ R : P [{ω ∈ Ω+ : z−(ϑ) ≥ Z(ϑ)(ω)}] > 0} .

By the above discussed properties of z+(ϑ) and z−(ϑ), Θ+ is of the form (ϑ,∞) or [ϑ,∞)
and Θ+ is of the form (−∞, ϑ) or (−∞, ϑ], where ϑ might be ±∞ and (−∞,−∞) :=
∅ =: (∞,∞). Let

A+ := {ϑ : z+(ϑ) > z−(ϑ)} and A− := {ϑ : z+(ϑ) < z−(ϑ)} .

If the probability space (Ω,F , P ) is finite, the sets Θ+ and Θ− are equal to closure(A+)
and closure(A−), respectively. For general (Ω,F , P ), the following inclusions are valid:

A+ ⊂ Θ+ ⊂ closure(A+) and A− ⊂ Θ− ⊂ closure(A−) .
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Definition 3.2 We call

Θba := {ϑ ∈ [−∞,∞] : ϑ− ≤ ϑ ≤ ϑ+ for all ϑ− ∈ Θ− and all ϑ+ ∈ Θ+}

the set of balanced strategies.

The set of balanced strategies Θba is a non-empty subset of [−∞,∞]. Indeed, if it
were empty, there would exist ϑ+ ∈ Θ+ and ϑ− ∈ Θ− such that ϑ− > ϑ+, implying
the existence of a ϑ ∈ A− ∩ A+ = ∅. Furthermore, Θba is a closed interval, possibly
equal to {−∞} or {∞}. It does not have to be singleton. For instance, in the example
of Section 2, Θba is equal to [−1, 1]. However, if (Ω,F , P ) is finite, then Θba = {ϑ̄},
where ϑ̄ is the unique real number such that z+(ϑ̄) = z−(ϑ̄). If B is a constant, then
Θba = {0}. To see this notice that Z(0) = −B. Therefore z+(0) = −B = z−(0) and
0 ∈ Θ+, 0 ∈ Θ−, yielding Θba = {0}.

Proposition 3.3 Assume (M) and c∗(B) < ∞. Then Θba ⊂ Θ∗.

Proof. If c∗(B) < ∞, then there exists a ϑ∗ ∈ R such that ϑ∗∆S − B ≥ −c∗(B). In
particular, z+(ϑ∗), z−(ϑ∗) > −∞, from which it can be deduced that Θ− and Θ+ are
non-empty. Hence, Θba ⊂ R, and to finish the proof it is enough to show that for each
ϑ̄ ∈ Θba, ess infω∈ΩZ(ϑ̄)(ω) ≥ ess infω∈ΩZ(ϑ)(ω) for all ϑ ∈ R. Since Z(ϑ)(ω) = −B(ω)
for all ω ∈ Ω0 and ϑ ∈ R, it suffices to prove

z+(ϑ̄) ∧ z−(ϑ̄) ≥ z+(ϑ) ∧ z−(ϑ), for all ϑ ∈ R. (3.1)

Let us consider the case ϑ̄ < ϑ. The case ϑ̄ > ϑ works analogously. Since ϑ̄ is a
balanced strategy and ϑ̄ < ϑ, ϑ /∈ Θ− and thus z+(ϑ) ≥ z−(ϑ). Therefore, (3.1)
simplifies to z+(ϑ̄)∧ z−(ϑ̄) ≥ z−(ϑ), and since z−(·) is decreasing, it is enough to show
that

z+(ϑ̄) ≥ z−(ϑ) . (3.2)

Given any 0 < ε < ϑ− ϑ̄, we have ϑ̄ + ε /∈ Θ−, and therefore

z+(ϑ̄ + ε) ≥ z−(ϑ̄ + ε) ≥ z−(ϑ) .

Thus, (3.2) follows by letting ε go to 0 because z+(·) is right-continuous. ¤

Example 3.4 Assume Ω = {0, 1, 2, . . . }, F consists of all subsets of Ω and P is given
by P [n] = 2−(n+1), n ≥ 0. Let ∆S(0) = −1, ∆S(n) = 1, for n ≥ 1, and B(n) = n for
all n ≥ 0. Then, c∗(B) = ∞, and Θba = {∞}.

Example 3.5 Assume Ω = {ω−1, ω0, ω1}, F consists of all subsets of Ω and P gives
positive mass to each element in Ω. Let ∆S = (−1, 0, 1) and B = (0, 1, 0). Then
c∗(B) = 1, Θ∗ = [−1, 1] and Θba = {0}.
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For a utility function U : R→ R that satisfies (U1)-(U3) we set rU(x) := −U ′′(x)/U ′(x) >
0, and denote by ϑB,U,v the maximizer of E [U(v + Z(ϑ))].

Lemma 3.6 Assume (M) and fix v ∈ R. Then for each ϑ+ ∈ Θ+ there exists a
constant γ+ > 0, such that for every function U that satisfies (U1)-(U3),

ϑB,U,v − ϑ+ ≤ γ+

rU,v
+

, where rU,v
+ = inf{rU(x) : x ≤ z+(ϑ+) + v} ,

and for each ϑ− ∈ Θ− there exists a constant γ− > 0, such that for every function U
that satisfies (U1)-(U3),

ϑ− − ϑB,U,v ≤ γ−
rU,v
−

, where rU,v
− = inf{rU(x) : x ≤ z−(ϑ−) + v} .

Proof. The first claim is obviously true if ϑB,U,v−ϑ+ ≤ 0. So let us assume ϑB,U,v−ϑ+ >
0. Since ϑ+ ∈ Θ+, there exists a measurable set Ω̃− ⊂ Ω− and an ε > 0 such that

P
[
Ω̃−

]
> 0, 1Ω̃− [z+(ϑ+)− Z(ϑ+)] ≥ 0, and 1Ω̃− [∆S + ε] ≤ 0. Hence,

1Ω̃−

(
z+(ϑ+)− Z(ϑB,U,v)

) ≥ 1Ω̃−

(
Z(ϑ+)− Z(ϑB,U,v)

)

≥ 1Ω̃−ε(ϑB,U,v − ϑ+) .

Note that Z(ϑB,U,v)(ω) ≥ Z(ϑ+)(ω) ≥ z+(ϑ+) for all ω ∈ Ω+ and U ′ is decreasing.
Thus by (1.2), ϑB,U,v satisfies

0 = E
[
U ′(v + Z(ϑB,U,v))∆S

]

≤
∫

Ω+

U ′(v + z+(ϑ+))∆SdP +

∫

Ω̃−
U ′(v + Z(ϑB,U,v))∆SdP

= U ′(v + z+(ϑ+))

[∫

Ω+

∆SdP +

∫

Ω̃−

U ′(v + Z(ϑB,U,v))

U ′(v + z+(ϑ+))
∆SdP

]

Note further that U ′ > 0 and U ′(a)/U ′(b) = exp
(∫ b

a
rU(x)dx

)
for all a < b. Therefore,

∫

Ω+

∆SdP ≥
∫

Ω̃−

U ′(v + Z(ϑB,U,v))

U ′(v + z+(ϑ+))
(−∆S)dP

≥ ε

∫

Ω̃−
exp

(∫ v+z+(ϑ+)

v+Z(ϑB,U,v)

rU(x)dx

)
dP

≥ εP
[
Ω̃−

]
exp

(
ε(ϑB,U,v − ϑ+)rU,v

+

)
.

This shows that

ϑB,U,v − ϑ+ ≤ 1

ε
log




∫
Ω+

∆SdP

εP
[
Ω̃−

]

 1

rU,v
+

,

which proves the first claim. The second claim can be shown analogously. ¤
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Theorem 3.7 Assume (M) and let (Uα)α>0 be a family of utility functions satisfying
(U1)-(U3) with corresponding risk aversions (rα)α>0. Let ϑα be the optimal strategy for
the utility maximization problem

sup
ϑ

E [Uα(v + Z(ϑ))]

and assume that
r∗α := sup

x∈R
rα(x) →∞ as α →∞ .

Then the following hold:
a) If Θ+ and Θ− are of the form

Θ− = (−∞, ϑ−] and Θ+ = [ϑ+,∞) for ϑ−, ϑ+ ∈ R , (3.3)

then there exists a constant γ > 0 such that for all α > 0,

dist(ϑα, Θba) ≤ γ

r∗α
.

b) If Θba ∩ R 6= ∅, then
lim

α→∞
dist(ϑα, Θba) = 0 .

c) If Θba = {∞}, then ϑα →∞ as α →∞.
If Θba = {−∞}, then ϑα → −∞ as α →∞.

Proof. If (3.3) holds, then Θba = [ϑ−, ϑ+], and a) follows directly from Lemma 3.6. To
prove b) we let ε > 0. If Θba = R, there is nothing to prove. If sup(Θba) < ∞, then
sup(Θba) + ε/2 ∈ Θ+. Hence, it follows from Lemma 3.6 that there exists a constant
γ+ > 0 such that ϑα − (sup(Θba) + ε/2) ≤ γ+/r∗α, which shows that there exists an
α+ > 0 such that ϑα− sup(Θba) ≤ ε for all α ≥ α+. Analogously, it can be shown that
there exists an α− > 0 such that inf(Θba)− ϑα ≤ ε, for all α ≥ α−. This proves b). c)
can be proved like b). ¤

Remark 3.8 We now are in a position to shed some more light on the structure of the
example in Section 2. If only the states ω1 and ω−1 are taken into account, the unique
balanced strategy is −1/2. For ω1, ω−1, ω2 it is 1/2, for ω1, ω−1, ω2, ω−2 again −1/2
and so on. Now, it is possible to choose the probabilities and the sequences {αk}k≥1

and {βk}k≥1 in such a way that every strategy ϑB,αk is so close to −1/2 that it is below

−1/3 and every strategy ϑB,βk is so close to 1/2 that it is above 1/3.

Recall that in a one-period model on a finite probability space (Ω,F , P ) that sat-
isfies (M) there exists a unique real number ϑ̄ such that z+(ϑ̄) = z−(ϑ̄), Θ+ = [ϑ̄,∞),
Θ− = (−∞, ϑ̄] and Θba =

{
ϑ̄
}
. Hence, it follows from Theorem 3.7.a that there exists

a constant γ > 0, such that for all α > 0,
∣∣ϑα − ϑ̄

∣∣ ≤ γ/r∗α. The following proposition
shows that for a general probability space convergence of the optimal strategies to the
set of balanced strategies can be arbitrarily slow. In particular, it is not possible to
obtain the result of Theorem 3.7.a under the assumptions of Theorem 3.7.b
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Proposition 3.9 Let (xk)k≥1 be a decreasing sequence of real numbers with limk→∞ xk =
0. Then there exist bounded random variables ∆S and B such that (M) holds, Θba =
{0}, and for all k ≥ 1, the optimal strategy ϑB,k corresponding to the utility function
Vk(x) = − exp(−kx), satisfies ϑB,k > xk.

Proof. Let Ω = {1, 2, . . . }. Let F consist of all subsets of Ω and define P by

P [n] = 2−n , n ≥ 1 .

Set
∆S(1) := 1 and ∆S(n) := −1 , n ≥ 2 .

To define B we first construct a strictly increasing sequence of natural numbers as
follows:

n0 := 1

nk := inf

{
m ∈ N : m ≥ (1 + nk−1) ∨

(
2 +

2kxk

log 2

)}
, k ≥ 1

Now, we define B by B(1) = 1 + 2x1 and

B(n) := B(1)− 1

k
− 2xk , if nk−1 < n ≤ nk .

Note that {B(n)}n≥2 is an increasing sequence of positive real numbers with limn→∞ B(n) =

B(1). It can easily be checked that Θba = {0} and that for all k ≥ 1, the function
Vk(x) = − exp(−kx) satisfies (U1)-(U3). By (1.2), for all k ≥ 1, the k-optimal strategy
ϑB,k satisfies ∑

n≥1

2−n exp
{−k

[
ϑB,k∆S(n)−B(n)

]}
∆S(n) = 0 .

Hence,

exp
(−2kϑB,k

)
=

∑
n≥2

21−n exp {k[B(n)−B(1)]}

=

nk∑
n=2

21−n exp {k[B(n)−B(1)]}+
∑

n≥nk+1

21−n exp {k[B(n)−B(1)]}

< exp {−1− 2kxk}+ 21−nk ≤ exp {−1− 2kxk}+
1

2
exp {−2kxk}

< exp (−2kxk) ,

which shows that ϑB,k > xk. ¤
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