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HIGH-DIMENSIONAL GRAPHS AND VARIABLE SELECTION
WITH THE LASSO

BY NICOLAI MEINSHAUSEN AND PETER BÜHLMANN

ETH Zürich

The pattern of zero entries in the inverse covariance matrix of a multivari-
ate normal distribution corresponds to conditional independence restrictions
between variables. Covariance selection aims at estimating those structural
zeros from data. We show that neighborhood selection with the Lasso is
a computationally attractive alternative to standard covariance selection for
sparse high-dimensional graphs. Neighborhood selection estimates the con-
ditional independence restrictions separately for each node in the graph and
is hence equivalent to variable selection for Gaussian linear models. We show
that the proposed neighborhood selection scheme is consistent for sparse
high-dimensional graphs. Consistency hinges on the choice of the penalty pa-
rameter. The oracle value for optimal prediction does not lead to a consistent
neighborhood estimate. Controlling instead the probability of falsely joining
some distinct connectivity components of the graph, consistent estimation for
sparse graphs is achieved (with exponential rates), even when the number of
variables grows as the number of observations raised to an arbitrary power.

1. Introduction. Consider the p-dimensional multivariate normal distributed
random variable

X = (X1, . . . ,Xp)∼N (µ,!).

This includes Gaussian linear models where, for example, X1 is the response vari-
able and {Xk;2≤ k ≤ p} are the predictor variables. Assuming that the covariance
matrix ! is nonsingular, the conditional independence structure of the distrib-
ution can be conveniently represented by a graphical model G = (",E), where
" = {1, . . . , p} is the set of nodes and E the set of edges in " × ". A pair (a, b)
is contained in the edge set E if and only if Xa is conditionally dependent on Xb,
given all remaining variables X"\{a,b} = {Xk;k ∈ " \ {a, b}}. Every pair of vari-
ables not contained in the edge set is conditionally independent, given all remain-
ing variables, and corresponds to a zero entry in the inverse covariance matrix [12].

Covariance selection was introduced by Dempster [3] and aims at discovering
the conditional independence restrictions (the graph) from a set of i.i.d. observa-
tions. Covariance selection traditionally relies on the discrete optimization of an
objective function [5, 12]. Exhaustive search is computationally infeasible for all
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but very low-dimensional models. Usually, greedy forward or backward search
is employed. In forward search, the initial estimate of the edge set is the empty
set and edges are then added iteratively until a suitable stopping criterion is sat-
isfied. The selection (deletion) of a single edge in this search strategy requires an
MLE fit [15] for O(p2) different models. The procedure is not well suited for
high-dimensional graphs. The existence of the MLE is not guaranteed in general
if the number of observations is smaller than the number of nodes [1]. More dis-
turbingly, the complexity of the procedure renders even greedy search strategies
impractical for modestly sized graphs. In contrast, neighborhood selection with
the Lasso, proposed in the following, relies on optimization of a convex function,
applied consecutively to each node in the graph. The method is computationally
very efficient and is consistent even for the high-dimensional setting, as will be
shown.

Neighborhood selection is a subproblem of covariance selection. The neighbor-
hood nea of a node a ∈ " is the smallest subset of " \ {a} so that, given all vari-
ables Xnea in the neighborhood, Xa is conditionally independent of all remaining
variables. The neighborhood of a node a ∈ " consists of all nodes b ∈ " \ {a} so
that (a, b) ∈ E. Given n i.i.d. observations of X, neighborhood selection aims at
estimating (individually) the neighborhood of any given variable (or node). The
neighborhood selection can be cast as a standard regression problem and can be
solved efficiently with the Lasso [16], as will be shown in this paper.

The consistency of the proposed neighborhood selection will be shown for
sparse high-dimensional graphs, where the number of variables is potentially
growing as any power of the number of observations (high-dimensionality),
whereas the number of neighbors of any variable is growing at most slightly slower
than the number of observations (sparsity).

A number of studies have examined the case of regression with a growing num-
ber of parameters as sample size increases. The closest to our setting is the recent
work of Greenshtein and Ritov [8], who study consistent prediction in a triangular
setup very similar to ours (see also [10]). However, the problem of consistent esti-
mation of the model structure, which is the relevant concept for graphical models,
is very different and not treated in these studies.

We study in Section 2 under which conditions, and at which rate, the neighbor-
hood estimate with the Lasso converges to the true neighborhood. The choice of
the penalty is crucial in the high-dimensional setting. The oracle penalty for opti-
mal prediction turns out to be inconsistent for estimation of the true model. This
solution might include an unbounded number of noise variables in the model. We
motivate a different choice of the penalty such that the probability of falsely con-
necting two or more distinct connectivity components of the graph is controlled at
very low levels. Asymptotically, the probability of estimating the correct neighbor-
hood converges exponentially to 1, even when the number of nodes in the graph is
growing rapidly as any power of the number of observations. As a consequence,
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consistent estimation of the full edge set in a sparse high-dimensional graph is
possible (Section 3).

Encouraging numerical results are provided in Section 4. The proposed estimate
is shown to be both more accurate than the traditional forward selection MLE strat-
egy and computationally much more efficient. The accuracy of the forward selec-
tion MLE fit is in particular poor if the number of nodes in the graph is comparable
to the number of observations. In contrast, neighborhood selection with the Lasso
is shown to be reasonably accurate for estimating graphs with several thousand
nodes, using only a few hundred observations.

2. Neighborhood selection. Instead of assuming a fixed true underlying
model, we adopt a more flexible approach similar to the triangular setup in [8].
Both the number of nodes in the graphs (number of variables), denoted by p(n) =
|"(n)|, and the distribution (the covariance matrix) depend in general on the num-
ber of observations, so that " = "(n) and ! = !(n). The neighborhood nea of
a node a ∈ "(n) is the smallest subset of "(n) \ {a} so that Xa is conditionally
independent of all remaining variables. Denote the closure of node a ∈ "(n) by
cla := nea ∪ {a}. Then

Xa ⊥ {Xk;k ∈ "(n) \ cla}|Xnea .

For details see [12]. The neighborhood depends in general on n as well. However,
this dependence is notationally suppressed in the following.

It is instructive to give a slightly different definition of a neighborhood. For each
node a ∈ "(n), consider optimal prediction of Xa , given all remaining variables.
Let θa ∈Rp(n) be the vector of coefficients for optimal prediction,

θa = arg min
θ : θa=0

E

(

Xa −
∑

k∈"(n)

θkXk

)2

.(1)

As a generalization of (1), which will be of use later, consider optimal prediction
of Xa , given only a subset of variables {Xk;k ∈A}, where A ⊆ "(n) \ {a}. The
optimal prediction is characterized by the vector θa,A,

θa,A = arg min
θ : θk=0,∀k /∈A

E

(

Xa −
∑

k∈"(n)

θkXk

)2

.(2)

The elements of θa are determined by the inverse covariance matrix [12]. For
b ∈ " \ {a} and K(n) = !−1(n), it holds that θa

b =−Kab(n)/Kaa(n). The set of
nonzero coefficients of θa is identical to the set {b ∈ "(n) \ {a} :Kab(n) *= 0} of
nonzero entries in the corresponding row vector of the inverse covariance matrix
and defines precisely the set of neighbors of node a. The best predictor for Xa is
thus a linear function of variables in the set of neighbors of the node a only. The
set of neighbors of a node a ∈ "(n) can hence be written as

nea = {b ∈ "(n) : θa
b *= 0}.
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This set corresponds to the set of effective predictor variables in regression with
response variable Xa and predictor variables {Xk;k ∈ "(n) \ {a}}. Given n inde-
pendent observations of X ∼N (0,!(n)), neighborhood selection tries to estimate
the set of neighbors of a node a ∈ "(n). As the optimal linear prediction of Xa has
nonzero coefficients precisely for variables in the set of neighbors of the node a, it
seems reasonable to try to exploit this relation.

2.1. Neighborhood selection with the Lasso. It is well known that the Lasso,
introduced by Tibshirani [16], and known as Basis Pursuit in the context of wavelet
regression [2], has a parsimonious property [11]. When predicting a variable Xa

with all remaining variables {Xk;k ∈ "(n) \ {a}}, the vanishing Lasso coefficient
estimates identify asymptotically the neighborhood of node a in the graph, as
shown in the following. Let the n × p(n)-dimensional matrix X contain n inde-
pendent observations of X, so that the columns Xa correspond for all a ∈ "(n) to
the vector of n independent observations of Xa . Let 〈·, ·〉 be the usual inner product
on Rn and ‖ · ‖2 the corresponding norm.

The Lasso estimate θ̂a,λ of θa is given by

θ̂a,λ = arg min
θ : θa=0

(n−1‖Xa −Xθ‖2
2 + λ‖θ‖1),(3)

where ‖θ‖1 = ∑
b∈"(n) |θb| is the l1-norm of the coefficient vector. Normalization

of all variables to a common empirical variance is recommended for the estima-
tor in (3). The solution to (3) is not necessarily unique. However, if uniqueness
fails, the set of solutions is still convex and all our results about neighborhoods (in
particular Theorems 1 and 2) hold for any solution of (3).

Other regression estimates have been proposed, which are based on the lp-norm,
where p is typically in the range [0,2] (see [7]). A value of p = 2 leads to the
ridge estimate, while p = 0 corresponds to traditional model selection. It is well
known that the estimates have a parsimonious property (with some components
being exactly zero) for p ≤ 1 only, while the optimization problem in (3) is only
convex for p ≥ 1. Hence l1-constrained empirical risk minimization occupies a
unique position, as p = 1 is the only value of p for which variable selection takes
place while the optimization problem is still convex and hence feasible for high-
dimensional problems.

The neighborhood estimate (parameterized by λ) is defined by the nonzero co-
efficient estimates of the l1-penalized regression,

n̂eλa = {b ∈ "(n) : θ̂a,λ
b *= 0}.

Each choice of a penalty parameter λ specifies thus an estimate of the neighbor-
hood nea of node a ∈ "(n) and one is left with the choice of a suitable penalty
parameter. Larger values of the penalty tend to shrink the size of the estimated set,
while more variables are in general included into n̂eλa if the value of λ is dimin-
ished.
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2.2. The prediction-oracle solution. A seemingly useful choice of the penalty
parameter is the (unavailable) prediction-oracle value,

λoracle = arg min
λ

E

(

Xa −
∑

k∈"(n)

θ̂a,λ
k Xk

)2

.

The expectation is understood to be with respect to a new X, which is independent
of the sample on which θ̂a,λ is estimated. The prediction-oracle penalty minimizes
the predictive risk among all Lasso estimates. An estimate of λoracle is obtained by
the cross-validated choice λcv.

For l0-penalized regression it was shown by Shao [14] that the cross-validated
choice of the penalty parameter is consistent for model selection under certain
conditions on the size of the validation set. The prediction-oracle solution does not
lead to consistent model selection for the Lasso, as shown in the following for a
simple example.

PROPOSITION 1. Let the number of variables grow to infinity, p(n) →∞,
for n →∞, with p(n) = o(nγ ) for some γ > 0. Assume that the covariance
matrices !(n) are identical to the identity matrix except for some pair (a, b) ∈
"(n)× "(n), for which !ab(n) = !ba(n) = s, for some 0 < s < 1 and all n ∈ N.
The probability of selecting the wrong neighborhood for node a converges to 1
under the prediction-oracle penalty,

P(n̂eλoracle
a *= nea)→ 1 for n→∞.

A proof is given in the Appendix. It follows from the proof of Proposition 1
that many noise variables are included in the neighborhood estimate with the
prediction-oracle solution. In fact, the probability of including noise variables with
the prediction-oracle solution does not even vanish asymptotically for a fixed num-
ber of variables. If the penalty is chosen larger than the prediction-optimal value,
consistent neighborhood selection is possible with the Lasso, as demonstrated in
the following.

2.3. Assumptions. We make a few assumptions to prove consistency of neigh-
borhood selection with the Lasso. We always assume availability of n independent
observations from X ∼N (0,!).

High-dimensionality. The number of variables is allowed to grow as the num-
ber of observations n raised to an arbitrarily high power.

ASSUMPTION 1. There exists γ > 0, so that

p(n) = O(nγ ) for n→∞.

In particular, it is allowed for the following analysis that the number of variables
is very much larger than the number of observations, p(n)1 n.
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Nonsingularity. We make two regularity assumptions for the covariance ma-
trices.

ASSUMPTION 2. For all a ∈ "(n) and n ∈ N, Var(Xa) = 1. There exists
v2 > 0, so that for all n ∈N and a ∈ "(n),

Var
(
Xa|X"(n)\{a}

)≥ v2.

Common variance can always be achieved by appropriate scaling of the vari-
ables. A scaling to a common (empirical) variance of all variables is desirable,
as the solutions would otherwise depend on the chosen units or dimensions in
which they are represented. The second part of the assumption explicitly excludes
singular or nearly singular covariance matrices. For singular covariance matrices,
edges are not uniquely defined by the distribution and it is hence not surprising
that nearly singular covariance matrices are not suitable for consistent variable
selection. Note, however, that the empirical covariance matrix is a.s. singular if
p(n) > n, which is allowed in our analysis.

Sparsity. The main assumption is the sparsity of the graph. This entails a re-
striction on the size of the neighborhoods of variables.

ASSUMPTION 3. There exists some 0≤ κ < 1 so that

max
a∈"(n)

|nea| = O(nκ) for n→∞.

This assumption limits the maximal possible rate of growth for the size of neigh-
borhoods.

For the next sparsity condition, consider again the definition in (2) of the optimal
coefficient θb,A for prediction of Xb, given variables in the set A⊂ "(n).

ASSUMPTION 4. There exists some ϑ <∞ so that for all neighboring nodes
a, b ∈ "(n) and all n ∈N,

∥∥θa,neb\{a}∥∥
1 ≤ ϑ.

This assumption is, for example, satisfied if Assumption 2 holds and the size
of the overlap of neighborhoods is bounded by an arbitrarily large number from
above for neighboring nodes. That is, if there exists some m <∞ so that for all
n ∈N,

max
a,b∈"(n),b∈nea

|nea ∩ neb|≤m for n→∞,(4)

then Assumption 4 is satisfied. To see this, note that Assumption 2 gives a finite
bound for the l2-norm of θa,neb\{a}, while (4) gives a finite bound for the l0-norm.
Taken together, Assumption 4 is implied.
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Magnitude of partial correlations. The next assumption bounds the magnitude
of partial correlations from below. The partial correlation πab between variables
Xa and Xb is the correlation after having eliminated the linear effects from all
remaining variables {Xk;k ∈ "(n) \ {a, b}}; for details see [12].

ASSUMPTION 5. There exist a constant δ > 0 and some ξ > κ , with κ as in
Assumption 3, so that for every (a, b) ∈E,

|πab|≥ δn−(1−ξ)/2.

It will be shown below that Assumption 5 cannot be relaxed in general. Note
that neighborhood selection for node a ∈ "(n) is equivalent to simultaneously
testing the null hypothesis of zero partial correlation between variable Xa and
all remaining variables Xb, b ∈ "(n) \ {a}. The null hypothesis of zero partial cor-
relation between two variables can be tested by using the corresponding entry in
the normalized inverse empirical covariance matrix. A graph estimate based on
such tests has been proposed by Drton and Perlman [4]. Such a test can only be
applied, however, if the number of variables is smaller than the number of obser-
vations, p(n) ≤ n, as the empirical covariance matrix is singular otherwise. Even
if p(n) = n− c for some constant c > 0, Assumption 5 would have to hold with
ξ = 1 to have a positive power of rejecting false null hypotheses for such an es-
timate; that is, partial correlations would have to be bounded by a positive value
from below.

Neighborhood stability. The last assumption is referred to as neighborhood
stability. Using the definition of θa,A in (2), define for all a, b ∈ "(n),

Sa(b) :=
∑

k∈nea

sign(θ
a,nea
k )θ

b,nea
k .(5)

The assumption of neighborhood stability restricts the magnitude of the quanti-
ties Sa(b) for nonneighboring nodes a, b ∈ "(n).

ASSUMPTION 6. There exists some δ < 1 so that for all a, b ∈ "(n) with
b /∈ nea ,

|Sa(b)| < δ.

It is shown in Proposition 3 that this assumption cannot be relaxed.
We give in the following a more intuitive condition which essentially implies

Assumption 6. This will justify the term neighborhood stability. Consider the def-
inition in (1) of the optimal coefficients θa for prediction of Xa . For η > 0, define
θa(η) as the optimal set of coefficients under an additional l1-penalty,

θa(η) := arg min
θ : θa=0

E

(

Xa −
∑

k∈"(n)

θkXk

)2

+ η‖θ‖1.(6)
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The neighborhood nea of node a was defined as the set of nonzero coefficients
of θa , nea = {k ∈ "(n) : θa

k *= 0}. Define the disturbed neighborhood nea(η) as

nea(η) := {k ∈ "(n) : θa
k (η) *= 0}.

It clearly holds that nea = nea(0). The assumption of neighborhood stability is sat-
isfied if there exists some infinitesimally small perturbation η, which may depend
on n, so that the disturbed neighborhood nea(η) is identical to the undisturbed
neighborhood nea(0).

PROPOSITION 2. If there exists some η > 0 so that nea(η) = nea(0), then
|Sa(b)|≤ 1 for all b ∈ "(n) \ nea .

A proof is given in the Appendix.
In light of Proposition 2 it seems that Assumption 6 is a very weak condition.

To give one example, Assumption 6 is automatically satisfied under the much
stronger assumption that the graph does not contain cycles. We give a brief rea-
soning for this. Consider two nonneighboring nodes a and b. If the nodes are in
different connectivity components, there is nothing left to show as Sa(b) = 0. If
they are in the same connectivity component, then there exists one node k ∈ nea

that separates b from nea \ {k}, as there is just one unique path between any two
variables in the same connectivity component if the graph does not contain cy-
cles. Using the global Markov property, the random variable Xb is independent
of Xnea\{k}, given Xk . The random variable E(Xb|Xnea ) is thus a function of Xk

only. As the distribution is Gaussian, E(Xb|Xnea ) = θ
b,nea
k Xk . By Assumption 2,

Var(Xb|Xnea ) = v2 for some v2 > 0. It follows that Var(Xb) = v2 + (θ
b,nea
k )2 = 1

and hence θ
b,nea
k =

√
1− v2 < 1, which implies that Assumption 6 is indeed satis-

fied if the graph does not contain cycles.
We mention that Assumption 6 is likewise satisfied if the inverse covariance

matrices !−1(n) are for each n ∈ N diagonally dominant. A matrix is said to be
diagonally dominant if and only if, for each row, the sum of the absolute values
of the nondiagonal elements is smaller than the absolute value of the diagonal
element. The proof of this is straightforward but tedious and hence is omitted.

2.4. Controlling type I errors. The asymptotic properties of Lasso-type esti-
mates in regression have been studied in detail by Knight and Fu [11] for a fixed
number of variables. Their results say that the penalty parameter λ should decay
for an increasing number of observations at least as fast as n−1/2 to obtain an
n1/2-consistent estimate. It turns out that a slower rate is needed for consistent
model selection in the high-dimensional case where p(n)1 n. However, a rate
n−(1−ε)/2 with any κ < ε < ξ (where κ, ξ are defined as in Assumptions 3 and 5)
is sufficient for consistent neighborhood selection, even when the number of vari-
ables is growing rapidly with the number of observations.
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THEOREM 1. Let Assumptions 1–6 hold. Let the penalty parameter satisfy
λn ∼ dn−(1−ε)/2 with some κ < ε < ξ and d > 0. There exists some c > 0 so that,
for all a ∈ "(n),

P(n̂eλa ⊆ nea) = 1−O(exp(−cnε)) for n→∞.

A proof is given in the Appendix.
Theorem 1 states that the probability of (falsely) including any of the nonneigh-

boring variables of the node a ∈ "(n) into the neighborhood estimate vanishes
exponentially fast, even though the number of nonneighboring variables may grow
very rapidly with the number of observations. It is shown in the following that
Assumption 6 cannot be relaxed.

PROPOSITION 3. If there exists some a, b ∈ "(n) with b /∈ nea and
|Sa(b)| > 1, then, for λ = λn as in Theorem 1,

P(n̂eλa ⊆ nea)→ 0 for n→∞.

A proof is given in the Appendix. Assumption 6 of neighborhood stability is
hence critical for the success of Lasso neighborhood selection.

2.5. Controlling type II errors. So far it has been shown that the probability of
falsely including variables into the neighborhood can be controlled by the Lasso.
The question arises whether the probability of including all neighboring variables
into the neighborhood estimate converges to 1 for n→∞.

THEOREM 2. Let the assumptions of Theorem 1 be satisfied. For λ = λn as in
Theorem 1, for some c > 0

P(nea ⊆ n̂eλa) = 1−O(exp(−cnε)) for n→∞.

A proof is given in the Appendix.
It may be of interest whether Assumption 5 could be relaxed, so that edges are

detected even if the partial correlation is vanishing at a rate n−(1−ξ)/2 for some
ξ < κ . The following proposition says that ξ > ε (and thus ξ > κ as ε > κ) is a
necessary condition if a stronger version of Assumption 4 holds, which is satisfied
for forests and trees, for example.

PROPOSITION 4. Let the assumptions of Theorem 1 hold with ϑ < 1 in As-
sumption 4, except that for a ∈ "(n), let there be some b ∈ "(n) \ {a} with πab *= 0
and |πab| = O(n−(1−ξ)/2) for n→∞ for some ξ < ε. Then

P(b ∈ n̂eλa)→ 0 for n→∞.
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Theorem 2 and Proposition 4 say that edges between nodes for which partial
correlation vanishes at a rate n−(1−ξ)/2 are, with probability converging to 1 for
n→∞, detected if ξ > ε and are undetected if ξ < ε. The results do not cover the
case ξ = ε, which remains a challenging question for further research.

All results so far have treated the distinction between zero and nonzero partial
correlations only. The signs of partial correlations of neighboring nodes can be
estimated consistently under the same assumptions and with the same rates, as can
be seen in the proofs.

3. Covariance selection. It follows from Section 2 that it is possible under
certain conditions to estimate the neighborhood of each node in the graph consis-
tently, for example,

P(n̂eλa = nea)→ 1 for n→∞.

The full graph is given by the set "(n) of nodes and the edge set E = E(n). The
edge set contains those pairs (a, b) ∈ "(n)×"(n) for which the partial correlation
between Xa and Xb is not zero. As the partial correlations are precisely nonzero
for neighbors, the edge set E ⊆ "(n)× "(n) is given by

E = {(a, b) :a ∈ neb ∧ b ∈ nea}.
The first condition, a ∈ neb, implies in fact the second, b ∈ nea , and vice versa, so
that the edge is as well identical to {(a, b) :a ∈ neb ∨ b ∈ nea}. For an estimate of
the edge set of a graph, we can apply neighborhood selection to each node in the
graph. A natural estimate of the edge set is then given by Êλ,∧ ⊆ "(n) × "(n),
where

Êλ,∧ = {(a, b) :a ∈ n̂eλb ∧ b ∈ n̂eλa}.(7)

Note that a ∈ n̂eλb does not necessarily imply b ∈ n̂eλa and vice versa. We can hence
also define a second, less conservative, estimate of the edge set by

Êλ,∨ = {(a, b) :a ∈ n̂eλb ∨ b ∈ n̂eλa}.(8)

The discrepancies between the estimates (7) and (8) are quite small in our expe-
rience. Asymptotically the difference between both estimates vanishes, as seen in
the following corollary. We refer to both edge set estimates collectively with the
generic notation Êλ, as the following result holds for both of them.

COROLLARY 1. Under the conditions of Theorem 2, for some c > 0,

P(Êλ = E) = 1−O(exp(−cnε)) for n→∞.

The claim follows since |"(n)|2 = p(n)2 = O(n2γ ) by Assumption 1 and
neighborhood selection has an exponentially fast convergence rate as described
by Theorem 2. Corollary 1 says that the conditional independence structure of a
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multivariate normal distribution can be estimated consistently by combining the
neighborhood estimates for all variables.

Note that there are in total 2(p2−p)/2 distinct graphs for a p-dimensional vari-
able. However, for each of the p nodes there are only 2p−1 distinct potential neigh-
borhoods. By breaking the graph selection problem into a consecutive series of
neighborhood selection problems, the complexity of the search is thus reduced sub-
stantially at the price of potential inconsistencies between neighborhood estimates.
Graph estimates that apply this strategy for complexity reduction are sometimes
called dependency networks [9]. The complexity of the proposed neighborhood
selection for one node with the Lasso is reduced further to O(np min{n,p}),
as the Lars procedure of Efron, Hastie, Johnstone and Tibshirani [6] requires
O(min{n,p}) steps, each of complexity O(np). For high-dimensional problems
as in Theorems 1 and 2, where the number of variables grows as p(n) ∼ cnγ

for some c > 0 and γ > 1, this is equivalent to O(p2+2/γ ) computations for the
whole graph. The complexity of the proposed method thus scales approximately
quadratic with the number of nodes for large values of γ .

Before providing some numerical results, we discuss in the following the choice
of the penalty parameter.

Finite-sample results and significance. It was shown above that consistent
neighborhood and covariance selection is possible with the Lasso in a high-
dimensional setting. However, the asymptotic considerations give little advice on
how to choose a specific penalty parameter for a given problem. Ideally, one would
like to guarantee that pairs of variables which are not contained in the edge set enter
the estimate of the edge set only with very low (prespecified) probability. Unfor-
tunately, it seems very difficult to obtain such a result as the probability of falsely
including a pair of variables into the estimate of the edge set depends on the exact
covariance matrix, which is in general unknown. It is possible, however, to con-
strain the probability of (falsely) connecting two distinct connectivity components
of the true graph. The connectivity component Ca ⊆ "(n) of a node a ∈ "(n) is the
set of nodes which are connected to node a by a chain of edges. The neighborhood
nea is clearly part of the connectivity component Ca .

Let Ĉλ
a be the connectivity component of a in the estimated graph (", Êλ). For

any level 0 < α < 1, consider the choice of the penalty

λ(α) = 2σ̂a√
n
/̃−1

(
α

2p(n)2

)
,(9)

where /̃ = 1−/ [/ is the c.d.f. of N (0,1)] and σ̂ 2
a = n−1〈Xa,Xa〉. The proba-

bility of falsely joining two distinct connectivity components with the estimate of
the edge set is bounded by the level α under the choice λ = λ(α) of the penalty
parameter, as shown in the following theorem.
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THEOREM 3. Let Assumptions 1–6 be satisfied. Using the penalty parame-
ter λ(α), we have for all n ∈N that

P
(∃a ∈ "(n) : Ĉλ

a ! Ca
)≤ α.

A proof is given in the Appendix. This implies that if the edge set is empty
(E = ∅), it is estimated by an empty set with high probability,

P(Êλ = ∅)≥ 1− α.

Theorem 3 is a finite-sample result. The previous asymptotic results in Theo-
rems 1 and 2 hold if the level α vanishes exponentially to zero for an increasing
number of observations, leading to consistent edge set estimation.

4. Numerical examples. We use both the Lasso estimate from Section 3 and
forward selection MLE [5, 12] to estimate sparse graphs. We found it difficult
to compare numerically neighborhood selection with forward selection MLE for
more than 30 nodes in the graph. The high computational complexity of the for-
ward selection MLE made the computations for such relatively low-dimensional
problems very costly already. The Lasso scheme in contrast handled with ease
graphs with more than 1000 nodes, using the recent algorithm developed in [6].
Where comparison was feasible, the performance of the neighborhood selection
scheme was better. The difference was particularly pronounced if the ratio of ob-
servations to variables was low, as can be seen in Table 1, which will be described
in more detail below.

First we give an account of the generation of the underlying graphs which we
are trying to estimate. A realization of an underlying (random) graph is given in
the left panel of Figure 1. The nodes of the graph are associated with spatial lo-
cation and the location of each node is distributed identically and uniformly in
the two-dimensional square [0,1]2. Every pair of nodes is included initially in the
edge set with probability ϕ(d/

√
p ), where d is the Euclidean distance between the

TABLE 1
The average number of correctly identified edges as a function of the number k of falsely included

edges for n = 40 observations and p = 10,20,30 nodes for forward selection
MLE (FS), Êλ,∨, Êλ,∧ and random guessing

p = 10 p = 20 p = 30

k 0 5 10 0 5 10 0 5 10

Random 0.2 1.9 3.7 0.1 0.7 1.4 0.1 0.5 0.9
FS 7.6 14.1 17.1 8.9 16.6 21.6 0.6 1.8 3.2
Êλ,∨ 8.2 15.0 17.6 9.3 18.5 23.9 11.4 21.4 26.3
Êλ,∧ 8.5 14.7 17.6 9.5 19.1 34.0 14.1 21.4 27.4
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FIG. 1. A realization of a graph is shown on the left, generated as described in the text. The graph
consists of 1000 nodes and 1747 edges out of 449,500 distinct pairs of variables. The estimated edge
set, using estimate (7) at level α = 0.05 [see (9)], is shown in the middle. There are two erroneously
included edges, marked by an arrow, while 1109 edges are correctly detected. For estimate (8) and
an adjusted level as described in the text, the result is shown on the right. Again two edges are
erroneously included. Not a single pair of disjoint connectivity components of the true graph has
been ( falsely) joined by either estimate.

pair of variables and ϕ is the density of the standard normal distribution. The max-
imum number of edges connecting to each node is limited to four to achieve the
desired sparsity of the graph. Edges which connect to nodes which do not satisfy
this constraint are removed randomly until the constraint is satisfied for all edges.
Initially all variables have identical conditional variance and the partial correlation
between neighbors is set to 0.245 (absolute values less than 0.25 guarantee posi-
tive definiteness of the inverse covariance matrix); that is, !−1

aa = 1 for all nodes
a ∈ ", !−1

ab = 0.245 if there is an edge connecting a and b and !−1
ab = 0 other-

wise. The diagonal elements of the corresponding covariance matrix are in general
larger than 1. To achieve constant variance, all variables are finally rescaled so that
the diagonal elements of ! are all unity. Using the Cholesky transformation of
the covariance matrix, n independent samples are drawn from the corresponding
Gaussian distribution.

The average number of edges which are correctly included into the estimate
of the edge set is shown in Table 1 as a function of the number of edges which
are falsely included. The accuracy of the forward selection MLE is comparable
to the proposed Lasso neighborhood selection if the number of nodes is much
smaller than the number of observations. The accuracy of the forward selection
MLE breaks down, however, if the number of nodes is approximately equal to the
number of observations. Forward selection MLE is only marginally better than
random guessing in this case. Computation of the forward selection MLE (using
MIM, [5]) on the same desktop took up to several hundred times longer than the
Lasso neighborhood selection for the full graph. For more than 30 nodes, the dif-
ferences are even more pronounced.

The Lasso neighborhood selection can be applied to hundred- or thousand-
dimensional graphs, a realistic size, for example, biological networks. A graph
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with 1000 nodes (following the same model as described above) and its esti-
mates (7) and (8), using 600 observations, are shown in Figure 1. A level α = 0.05
is used for the estimate Êλ,∨. For better comparison, the level α was adjusted to
α = 0.064 for the estimate Êλ,∧, so that both estimates lead to the same number
of included edges. There are two erroneous edge inclusions, while 1109 out of all
1747 edges have been correctly identified by either estimate. Of these 1109 edges,
907 are common to both estimates while 202 are just present in either (7) or (8).

To examine if results are critically dependent on the assumption of Gaussian-
ity, long-tailed noise is added to the observations. Instead of n i.i.d. observations
of X ∼ N (0,!), n i.i.d. observations of X + 0.1Z are made, where the compo-
nents of Z are independent and follow a t2-distribution. For 10 simulations (with
each 500 observations), the proportion of false rejections among all rejections in-
creases only slightly from 0.8% (without long-tailed noise) to 1.4% (with long
tailed-noise) for Êλ,∨ and from 4.8% to 5.2% for Êλ,∧. Our limited numerical
experience suggests that the properties of the graph estimator do not seem to be
critically affected by deviations from Gaussianity.

APPENDIX: PROOFS

A.1. Notation and useful lemmas. As a generalization of (3), the Lasso esti-
mate θ̂a,A,λ of θa,A, defined in (2), is given by

θ̂a,A,λ = arg min
θ : θk=0∀k /∈A

(n−1‖Xa −Xθ‖2
2 + λ‖θ‖1).(A.1)

The notation θ̂a,λ is thus just a shorthand notation for θ̂a,"(n)\{a},λ.

LEMMA A.1. Given θ ∈ Rp(n), let G(θ) be a p(n)-dimensional vector with
elements

Gb(θ) =−2n−1〈Xa −Xθ,Xb〉.
A vector θ̂ with θ̂k = 0,∀ k ∈ "(n) \ A is a solution to (A.1) iff for all b ∈ A,
Gb(θ̂) =− sign(θ̂b)λ in case θ̂b *= 0 and |Gb(θ̂)|≤ λ in case θ̂b = 0. Moreover, if
the solution is not unique and |Gb(θ̂)| < λ for some solution θ̂ , then θ̂b = 0 for all
solutions of (A.1).

PROOF. Denote the subdifferential of

n−1‖Xa −Xθ‖2
2 + λ‖θ‖1

with respect to θ by D(θ). The vector θ̂ is a solution to (A.1) iff there exists an
element d ∈D(θ̂) so that db = 0, ∀b ∈A. D(θ) is given by {G(θ) + λe, e ∈ S},
where S ⊂ Rp(n) is given by S := {e ∈ Rp(n) : eb = sign(θb) if θb *= 0 and eb ∈
[−1,1] if θb = 0}. The first part of the claim follows. The second part follows
from the proof of Theorem 3.1. in [13]. !
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LEMMA A.2. Let θ̂a,nea,λ be defined for every a ∈ "(n) as in (A.1). Under
the assumptions of Theorem 1, for some c > 0, for all a ∈ "(n),

P
(
sign(θ̂

a,nea,λ
b ) = sign(θa

b ),∀b ∈ nea
) = 1−O(exp(−cnε)) for n→∞.

For the sign-function, it is understood that sign(0) = 0. The lemma says, in
other words, that if one could restrict the Lasso estimate to have zero coefficients
for all nodes which are not in the neighborhood of node a, then the signs of the
partial correlations in the neighborhood of node a are estimated consistently under
the given assumptions.

PROOF. Using Bonferroni’s inequality, and |nea| = o(n) for n→∞, it suf-
fices to show that there exists some c > 0 so that for every a, b ∈ "(n) with
b ∈ nea ,

P
(
sign(θ̂

a,nea,λ
b ) = sign(θa

b )
) = 1−O(exp(−cnε)) for n→∞.

Consider the definition of θ̂a,nea,λ in (A.1),

θ̂a,nea,λ = arg min
θ : θk=0∀k /∈nea

(n−1‖Xa −Xθ‖2
2 + λ‖θ‖1).(A.2)

Assume now that component b of this estimate is fixed at a constant value β .
Denote this new estimate by θ̃a,b,λ(β),

θ̃a,b,λ(β) = arg min
θ∈2a,b(β)

(n−1‖Xa −Xθ‖2
2 + λ‖θ‖1),(A.3)

where

2a,b(β) := {
θ ∈Rp(n) : θb = β; θk = 0,∀ k /∈ nea

}
.

There always exists a value β (namely β = θ̂
a,nea,λ
b ) so that θ̃a,b,λ(β) is iden-

tical to θ̂a,nea,λ. Thus, if sign(θ̂
a,nea,λ
b ) *= sign(θa

b ), there would exist some β

with sign(β) sign(θa
b ) ≤ 0 so that θ̃a,b,λ(β) would be a solution to (A.2). Using

sign(θa
b ) *= 0 for all b ∈ nea , it is thus sufficient to show that for every β with

sign(β) sign(θa
b ) < 0, θ̃a,b,λ(β) cannot be a solution to (A.2) with high probabil-

ity.
We focus in the following on the case where θa

b > 0 for notational simplic-
ity. The case θa

b < 0 follows analogously. If θa
b > 0, it follows by Lemma A.1

that θ̃a,b,λ(β) with θ̃a,b,λ
b (β) = β ≤ 0 can be a solution to (A.2) only if

Gb(θ̃
a,b,λ(β))≥−λ. Hence it suffices to show that for some c > 0 and all b ∈ nea

with θa
b > 0, for n→∞,

P

(
sup
β≤0

{Gb(θ̃
a,b,λ(β))} <−λ

)
= 1−O(exp(−cnε)).(A.4)
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Let in the following Rλ
a(β) be the n-dimensional vector of residuals,

Rλ
a(β) := Xa −Xθ̃a,b,λ(β).(A.5)

We can write Xb as

Xb =
∑

k∈nea\{b}
θ

b,nea\{b}
k Xk + Wb,(A.6)

where Wb is independent of {Xk;k ∈ nea \ {b}}. By straightforward calculation,
using (A.6),

Gb(θ̃
a,b,λ(β)) =−2n−1〈Rλ

a(β),Wb〉 −
∑

k∈nea\{b}
θ

b,nea\{b}
k

(
2n−1〈Rλ

a(β),Xk〉
)
.

By Lemma A.1, for all k ∈ nea \ {b}, |Gk(θ̃
a,b,λ(β))| = |2n−1〈Rλ

a(β),Xk〉| ≤ λ.
This together with the equation above yields

Gb(θ̃
a,b,λ(β))≤−2n−1〈Rλ

a(β),Wb〉+ λ
∥∥θb,nea\{b}∥∥

1.(A.7)

Using Assumption 4, there exists some ϑ <∞, so that ‖θb,nea\{b}‖1 ≤ ϑ. For prov-
ing (A.4) it is therefore sufficient to show that there exists for every g > 0 some
c > 0 so that for all b ∈ nea with θa

b > 0, for n→∞,

P

(
inf
β≤0

{2n−1〈Rλ
a(β),Wb〉} > gλ

)
= 1−O(exp(−cnε)).(A.8)

With a little abuse of notation, let W ‖ ⊆Rn be the at most (|nea|−1)-dimensional
space which is spanned by the vectors {Xk, k ∈ nea \{b}} and let W⊥ be the orthog-
onal complement of W ‖ in Rn. Split the n-dimensional vector Wb of observations
of Wb into the sum of two vectors

Wb = W⊥
b + W‖

b,(A.9)

where W‖
b is contained in the space W ‖ ⊆ Rn, while the remaining part W⊥

b is
chosen orthogonal to this space (in the orthogonal complement W⊥ of W ‖). The
inner product in (A.8) can be written as

2n−1〈Rλ
a(β),Wb〉= 2n−1〈Rλ

a(β),W⊥
b 〉+ 2n−1〈Rλ

a(β),W‖
b〉.(A.10)

By Lemma A.3 (see below), there exists for every g > 0 some c > 0 so that, for
n→∞,

P

(
inf
β≤0

{2n−1〈Rλ
a(β),W‖

b〉/(1 + |β|)} >−gλ

)
= 1−O(exp(−cnε)).

To show (A.8), it is sufficient to prove that there exists for every g > 0 some c > 0
so that, for n→∞,

P

(
inf
β≤0

{2n−1〈Rλ
a(β),W⊥

b 〉 − g(1 + |β|)λ} > gλ

)
= 1−O(exp(−cnε)).(A.11)
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For some random variable Va , independent of Xnea , we have

Xa =
∑

k∈nea

θa
k Xk + Va.

Note that Va and Wb are independent normally distributed random variables with
variances σ 2

a and σ 2
b , respectively. By Assumption 2, 0 < v2 ≤ σ 2

b ,σ 2
a ≤ 1. Note

furthermore that Wb and Xnea\{b} are independent. Using θa = θa,nea and (A.6),

Xa =
∑

k∈nea\{b}

(
θa
k + θa

b θ
b,nea\{b}
k

)
Xk + θa

b Wb + Va.(A.12)

Using (A.12), the definition of the residuals in (A.5) and the orthogonality property
of W⊥

b ,

2n−1〈Rλ
a(β),W⊥

b 〉= 2n−1(θa
b − β)〈W⊥

b ,W⊥
b 〉+ 2n−1〈Va,W⊥

b 〉,
≥ 2n−1(θa

b − β)〈W⊥
b ,W⊥

b 〉 − |2n−1〈Va,W⊥
b 〉|.

(A.13)

The second term, |2n−1〈Va,W⊥
b 〉|, is stochastically smaller than |2n−1〈Va,Wb〉|

(this can be derived by conditioning on {Xk;k ∈ nea}). Due to independence of Va

and Wb, E(VaWb) = 0. Using Bernstein’s inequality (Lemma 2.2.11 in [17]), and
λ∼ dn−(1−ε)/2 with ε > 0, there exists for every g > 0 some c > 0 so that

P(|2n−1〈Va,W⊥
b 〉|≥ gλ)≤ P(|2n−1〈Va,Wb〉|≥ gλ)

= O(exp(−cnε)).
(A.14)

Instead of (A.11), it is sufficient by (A.13) and (A.14) to show that there exists for
every g > 0 a c > 0 so that, for n→∞,

P

(
inf
β≤0

{2n−1(θa
b − β)〈W⊥

b ,W⊥
b 〉 − g(1 + |β|)λ} > 2gλ

)

= 1−O(exp(−cnε)).

(A.15)

Note that σ−2
b 〈W⊥

b ,W⊥
b 〉 follows a χ2

n−|nea | distribution. As |nea| = o(n) and
σ 2

b ≥ v2 (by Assumption 2), it follows that there exists some k > 0 so that for
n≥ n0 with some n0(k) ∈N, and any c > 0,

P(2n−1〈W⊥
b ,W⊥

b 〉> k) = 1−O(exp(−cnε)).

To show (A.15), it hence suffices to prove that for every k, 4 > 0 there exists some
n0(k, 4) ∈N so that, for all n≥ n0,

inf
β≤0

{(θa
b − β)k− 4(1 + |β|)λ} > 0.(A.16)

By Assumption 5, |πab| is of order at least n−(1−ξ)/2. Using

πab = θa
b /

(
Var

(
Xa|X"(n)\{a}

)
Var

(
Xb|X"(n)\{b}

))1/2
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and Assumption 2, this implies that there exists some q > 0 so that θa
b ≥

qn−(1−ξ)/2. As λ ∼ dn−(1−ε)/2 and, by the assumptions in Theorem 1, ξ > ε,
it follows that for every k, 4 > 0 and large enough values of n,

θa
b k − 4λ > 0.

It remains to show that for any k, 4 > 0 there exists some n0(k, 4) so that for all
n≥ n0,

inf
β≤0

{−βk − 4|β|λ}≥ 0.

This follows as λ→ 0 for n→∞, which completes the proof. !

LEMMA A.3. Assume the conditions of Theorem 1 hold. Let Rλ
a(β) be defined

as in (A.5) and W‖
b as in (A.9). For any g > 0 there exists c > 0 so that for all

a, b ∈ "(n), for n→∞,

P

(
sup
β∈R

|2n−1〈Rλ
a(β),W‖

b〉|/(1 + |β|) < gλ

)
= 1−O(exp(−cnε)).

PROOF. By Schwarz’s inequality,

|2n−1〈Rλ
a(β),W‖

b〉|/(1 + |β|)≤ 2n−1/2‖W‖
b‖2

n−1/2‖Rλ
a(β)‖2

1 + |β| .(A.17)

The sum of squares of the residuals is increasing with increasing value of λ. Thus,
‖Rλ

a(β)‖2
2 ≤ ‖R∞a (β)‖2

2. By definition of Rλ
a in (A.5), and using (A.3),

‖R∞a (β)‖2
2 = ‖Xa − βXb‖2

2,

and hence

‖Rλ
a(β)‖2

2 ≤ (1 + |β|)2 max{‖Xa‖2
2,‖Xb‖2

2}.
Therefore, for any q > 0,

P

(
sup
β∈R

n−1/2‖Rλ
a(β)‖2

1 + |β| > q

)
≤ P(n−1/2 max{‖Xa‖2,‖Xb‖2} > q).

Note that both ‖Xa‖2
2 and ‖Xb‖2

2 are χ2
n -distributed. Thus there exist q > 1 and

c > 0 so that

P

(
sup
β∈R

n−1/2‖Rλ
a(β)‖2

1 + |β| > q

)
= O(exp(−cnε)) for n→∞.(A.18)

It remains to show that for every g > 0 there exists some c > 0 so that

P(n−1/2‖W‖
b‖2 > gλ) = O(exp(−cnε)) for n→∞.(A.19)
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The expression σ−2
b 〈W‖

b,W‖
b〉 is χ2

|nea |−1-distributed. As σb ≤ 1 and |nea| =
O(nκ), it follows that n−1/2‖W‖

b‖2 is for some t > 0 stochastically smaller than

tn−(1−κ)/2(Z/nκ)1/2,

where Z is χ2
nκ -distributed. Thus, for every g > 0,

P(n−1/2‖W‖
b‖2 > gλ)≤ P

(
(Z/nκ) > (g/t)2n(1−κ)λ2)

.

As λ−1 = O(n(1−ε)/2), it follows that n1−κλ2 ≥ hnε−κ for some h > 0 and suffi-
ciently large n. By the properties of the χ2 distribution and ε > κ , by assumption
in Theorem 1, claim (A.19) follows. This completes the proof. !

PROOF OF PROPOSITION 1. All diagonal elements of the covariance matri-
ces !(n) are equal to 1, while all off-diagonal elements vanish for all pairs ex-
cept for a, b ∈ "(n), where !ab(n) = s with 0 < s < 1. Assume w.l.o.g. that a
corresponds to the first and b to the second variable. The best vector of coeffi-
cients θa for linear prediction of Xa is given by θa = (0,−Kab/Kaa,0,0, . . .) =
(0, s,0,0, . . .), where K = !−1(n). A necessary condition for n̂eλa = nea is that
θ̂a,λ = (0, τ,0,0, . . .) is the oracle Lasso solution for some τ *= 0. In the follow-
ing, we show first that

P
(∃λ, τ ≥ s : θ̂a,λ = (0, τ,0,0, . . .)

)→ 0, n→∞.(A.20)

The proof is then completed by showing in addition that (0, τ,0,0, . . .) cannot be
the oracle Lasso solution as long as τ < s.

We begin by showing (A.20). If θ̂ = (0, τ,0,0, . . .) is a Lasso solution for some
value of the penalty, it follows that, using Lemma A.1 and positivity of τ ,

〈X1 − τX2,X2〉 ≥ |〈X1 − τX2,Xk〉| ∀ k ∈ "(n), k > 2.(A.21)

Under the given assumptions, X2,X3, . . . can be understood to be indepen-
dently and identically distributed, while X1 = sX2 + W1, with W1 independent
of (X2,X3, . . .). Substituting X1 = sX2 + W1 in (A.21) yields for all k ∈ "(n)
with k > 2,

〈W1,X2〉 − (τ − s)〈X2,X2〉 ≥ |〈W1,Xk〉 − (τ − s)〈X2,Xk〉|.
Let U2,U3, . . . ,Up(n) be the random variables defined by Uk = 〈W1,Xk〉. Note
that the random variables Uk , k = 2, . . . , p(n), are exchangeable. Let furthermore

D = 〈X2,X2〉 − max
k∈"(n),k>2

|〈X2,Xk〉|.

The inequality above implies then

U2 > max
k∈"(n),k>2

Uk + (τ − s)D.
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To show the claim, it thus suffices to show that

P

(
U2 > max

k∈"(n),k>2
Uk + (τ − s)D

)
→ 0 for n→∞.(A.22)

Using τ − s > 0,

P

(
U2 > max

k∈"(n),k>2
Uk + (τ − s)D

)
≤ P

(
U2 > max

k∈"(n),k>2
Uk

)
+ P(D < 0).

Using the assumption that s < 1, it follows by p(n) = o(nγ ) for some γ > 0 and a
Bernstein-type inequality that

P(D < 0)→ 0 for n→∞.

Furthermore, as U2, . . . ,Up(n) are exchangeable,

P

(
U2 > max

k∈"(n),k>2
Uk

)
= (

p(n)− 1
)−1 → 0 for n→∞,

which shows that (A.22) holds. The claim (A.20) follows.
It hence suffices to show that (0, τ,0,0, . . .) with τ < s cannot be the ora-

cle Lasso solution. Let τmax be the maximal value of τ so that (0, τ,0, . . .) is a
Lasso solution for some value λ > 0. By the previous assumption, τmax < s. For
τ < τmax, the vector (0, τ,0, . . .) cannot be the oracle Lasso solution. We show in
the following that (0, τmax,0, . . .) cannot be an oracle Lasso solution either. Sup-
pose that (0, τmax,0,0, . . .) is the Lasso solution θ̂a,λ for some λ = λ̃ > 0. As τmax
is the maximal value such that (0, τ,0, . . .) is a Lasso solution, there exists some
k ∈ "(n) > 2, such that

|n−1〈X1 − τmaxX2,X2〉| = |n−1〈X1 − τmaxX2,Xk〉|,
and the value of both components G2 and Gk of the gradient is equal to λ̃. By
appropriately reordering the variables we can assume that k = 3. Furthermore, it
holds a.s. that

max
k∈"(n),k>3

|〈X1 − τmax X2,Xk〉| < λ̃.

Hence, for sufficiently small δλ ≥ 0, a Lasso solution for the penalty λ̃ − δλ is
given by

(0, τmax + δθ2, δθ3,0, . . .).

Let Hn be the empirical covariance matrix of (X2,X3). Assume w.l.o.g. that
n−1〈X1 − τmaxX2,Xk〉 > 0 and n−1〈X2,X2〉 = n−1〈X3,X3〉 = 1. Following, for
example, Efron et al. ([6], page 417), the components (δθ2, δθ3) are then given by
H−1

n (1,1)T , from which it follows that δθ2 = δθ3, which we abbreviate by δθ in
the following (one can accommodate a negative sign for n−1〈X1− τmaxX2,Xk〉 by
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reversing the sign of δθ3). Denote by Lδ the squared error loss for this solution.
Then, for sufficiently small δθ ,

Lδ −L0 = E
(
X1 − (τmax + δθ)X2 + δθX3

)2 −E(X1 − τmaxX2)
2

= (
s − (τmax + δθ)

)2 + δθ2 − (s − τmax )2

=−2(s − τmax)δθ + 2δθ2.

It holds that Lδθ − L0 < 0 for any 0 < δθ < 1/2(s − τmax), which shows that
(0, τ,0, . . .) cannot be the oracle solution for τ < s. Together with (A.20), this
completes the proof. !

PROOF OF PROPOSITION 2. The subdifferential of the argument in (6),

E

(

Xa −
∑

m∈"(n)

θa
mXm

)2

+ η‖θa‖1,

with respect to θa
k , k ∈ "(n) \ {a}, is given by

−2E

((

Xa −
∑

m∈"(n)

θa
mXm

)

Xk

)

+ ηek,

where ek ∈ [−1,1] if θa
k = 0, and ek = sign(θa

k ) if θa
k *= 0. Using the fact that

nea(η) = nea , it follows as in Lemma A.1 that for all k ∈ nea ,

2E

((

Xa −
∑

m∈"(n)

θa
m(η)Xm

)

Xk

)

= η sign(θa
k )(A.23)

and, for b /∈ nea ,
∣∣∣∣∣2E

((

Xa −
∑

m∈"(n)

θa
m(η)Xm

)

Xb

)∣∣∣∣∣≤ η.(A.24)

A variable Xb with b /∈ nea can be written as

Xb =
∑

k∈nea

θ
b,nea
k Xk + Wb,

where Wb is independent of {Xk;k ∈ cla}. Using this in (A.24) yields
∣∣∣∣∣2

∑

k∈nea

θ
b,nea
k E

((

Xa −
∑

m∈"(n)

θa
m(η)Xm

)

Xk

)∣∣∣∣∣≤ η.

Using (A.23) and θa = θa,nea , it follows that
∣∣∣∣∣

∑

k∈nea

θ
b,nea
k sign(θ

a,nea
k )

∣∣∣∣∣≤ 1,
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which completes the proof. !

PROOF OF THEOREM 1. The event n̂eλa ! nea is equivalent to the event that
there exists some node b ∈ "(n) \ cla in the set of nonneighbors of node a such
that the estimated coefficient θ̂a,λ

b is not zero. Thus

P(n̂eλa ⊆ nea) = 1− P
(∃b ∈ "(n) \ cla : θ̂a,λ

b *= 0
)
.(A.25)

Consider the Lasso estimate θ̂a,nea,λ, which is by (A.1) constrained to have
nonzero components only in the neighborhood of node a ∈ "(n). Using |nea| =
O(nκ) with some κ < 1, we can assume w.l.o.g. that |nea|≤ n. This in turn implies
(see, e.g., [13]) that θ̂a,nea,λ is a.s. a unique solution to (A.1) with A = nea . Let E
be the event

max
k∈"(n)\cla

|Gk(θ̂
a,nea,λ)| < λ.

Conditional on the event E , it follows from the first part of Lemma A.1 that θ̂a,nea,λ

is not only a solution of (A.1), with A = nea , but as well a solution of (3), where
A = "(n) \ {a}. As θ̂

a,nea,λ
b = 0 for all b ∈ "(n) \ cla , it follows from the second

part of Lemma A.1 that θ̂a,λ
b = 0, ∀b ∈ "(n) \ cla . Hence

P
(∃b ∈ "(n) \ cla : θ̂a,λ

b *= 0
) ≤ 1− P(E)

= P

(
max

k∈"(n)\cla
|Gk(θ̂

a,nea,λ)|≥ λ

)
,

where

Gb(θ̂
a,nea,λ) =−2n−1〈Xa −Xθ̂a,nea,λ,Xb〉.(A.26)

Using Bonferroni’s inequality and p(n) = O(nγ ) for any γ > 0, it suffices to show
that there exists a constant c > 0 so that for all b ∈ "(n) \ cla ,

P
(|Gb(θ̂

a,nea,λ)|≥ λ
) = O(exp(−cnε)).(A.27)

One can write for any b ∈ "(n) \ cla ,

Xb =
∑

m∈nea

θb,nea
m Xm + Vb,(A.28)

where Vb ∼ N (0,σ 2
b ) for some σ 2

b ≤ 1 and Vb is independent of {Xm;m ∈ cla}.
Hence

Gb(θ̂
a,nea,λ) =−2n−1

∑

m∈nea

θb,nea
m 〈Xa −Xθ̂a,nea,λ,Xm〉

− 2n−1〈Xa −Xθ̂a,nea,λ,Vb〉.
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By Lemma A.2, there exists some c > 0 so that with probability 1 −
O(exp(−cnε)),

sign(θ̂
a,nea,λ
k ) = sign(θ

a,nea
k ) ∀ k ∈ nea.(A.29)

In this case by Lemma A.1

2n−1
∑

m∈nea

θb,nea
m 〈Xa −Xθ̂a,nea,λ,Xm〉=

(
∑

m∈nea

sign(θa,nea
m )θb,nea

m

)

λ.

If (A.29) holds, the gradient is given by

Gb(θ̂
a,nea,λ) =−

(
∑

m∈nea

sign(θa,nea
m )θb,nea

m

)

λ

− 2n−1〈Xa −Xθ̂a,nea,λ,Vb〉.
(A.30)

Using Assumption 6 and Proposition 2, there exists some δ < 1 so that
∣∣∣∣∣

∑

m∈nea

sign(θa,nea
m )θb,nea

m

∣∣∣∣∣≤ δ.

The absolute value of the coefficient Gb of the gradient in (A.26) is hence bounded
with probability 1−O(exp(−cnε)) by

|Gb(θ̂
a,nea,λ)|≤ δλ+ |2n−1〈Xa −Xθ̂a,nea,λ,Vb〉|.(A.31)

Conditional on Xcla = {Xk; k ∈ cla}, the random variable

〈Xa −Xθ̂
a,nea,λ
k ,Vb〉

is normally distributed with mean zero and variance σ 2
b ‖Xa −Xθ̂a,nea,λ‖2

2. On the
one hand, σ 2

b ≤ 1. On the other hand, by definition of θ̂a,nea,λ,

‖Xa −Xθ̂a,nea,λ‖2 ≤ ‖Xa‖2.

Thus

|2n−1〈Xa −Xθ̂a,nea,λ,Vb〉|
is stochastically smaller than or equal to |2n−1〈Xa,Vb〉|. Using (A.31), it remains
to be shown that for some c > 0 and δ < 1,

P
(|2n−1〈Xa,Vb〉|≥ (1− δ)λ

) = O(exp(−cnε)).

As Vb and Xa are independent, E(XaVb) = 0. Using the Gaussianity and bounded
variance of both Xa and Vb, there exists some g <∞ so that E(exp(|XaVb|))≤ g.
Hence, using Bernstein’s inequality and the boundedness of λ, for some c > 0, for
all b ∈ nea , P(|2n−1〈Xa,Vb〉| ≥ (1− δ)λ) = O(exp(−cnλ2)). The claim (A.27)
follows, which completes the proof. !
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PROOF OF PROPOSITION 3. Following a similar argument as in Theorem 1
up to (A.27), it is sufficient to show that for every a, b with b ∈ "(n) \ cla and
|Sa(b)| > 1,

P
(|Gb(θ̂

a,nea,λ)| > λ
)→ 1 for n→∞.(A.32)

Using (A.30) in the proof of Theorem 1, one can conclude that for some δ > 1,
with probability converging to 1 for n→∞,

|Gb(θ̂
a,nea,λ)|≥ δλ− |2n−1〈Xa −Xθ̂a,nea,λ,Vb〉|.(A.33)

Using the identical argument as in the proof of Theorem 1 below (A.31), for the
second term, for any g > 0,

P(|2n−1〈Xa −Xθ̂a,nea,λ,Vb〉| > gλ)→ 0 for n→∞,

which together with δ > 1 in (A.33) shows that (A.32) holds. This completes the
proof. !

PROOF OF THEOREM 2. First, P(nea ⊆ n̂eλa) = 1− P(∃b ∈ nea : θ̂a,λ
b = 0).

Let E be again the event

max
k∈"(n)\cla

|Gk(θ̂
a,nea,λ)| < λ.(A.34)

Conditional on E , we can conclude as in the proof of Theorem 1 that θ̂a,nea,λ

and θ̂a,λ are unique solutions to (A.1) and (3), respectively, and θ̂a,nea,λ = θ̂a,λ.
Thus

P(∃b ∈ nea : θ̂a,λ
b = 0)≤ P(∃b ∈ nea : θ̂a,nea,λ

b = 0) + P(E c).

It follows from the proof of Theorem 1 that there exists some c > 0 so that
P(E c) = O(exp(−cnε)). Using Bonferroni’s inequality, it hence remains to show
that there exists some c > 0 so that for all b ∈ nea ,

P(θ̂
a,nea,λ
b = 0) = O(exp(−cnε)).(A.35)

This follows from Lemma A.2, which completes the proof. !

PROOF OF PROPOSITION 4. The proof of Proposition 4 is to a large extent
analogous to the proofs of Theorems 1 and 2. Let E be again the event (A.34).
Conditional on the event E , we can conclude as before that θ̂a,nea,λ and θ̂a,λ are
unique solutions to (A.1) and (3), respectively, and θ̂a,nea,λ = θ̂a,λ. Thus, for any
b ∈ nea ,

P(b /∈ n̂eλa) = P(θ̂a,λ
b = 0)≥ P(θ̂

a,nea,λ
b = 0|E)P (E).

Since P(E)→ 1 for n→∞ by Theorem 1,

P(θ̂
a,nea,λ
b = 0|E)P (E)→ P(θ̂

a,nea,λ
b = 0) for n→∞.



1460 N. MEINSHAUSEN AND P. BÜHLMANN

It thus suffices to show that for all b ∈ nea with |πab| = O(n−(1−ξ)/2) and ξ < ε,

P(θ̂
a,nea,λ
b = 0)→ 1 for n→∞.

This holds if

P
(∣∣Gb

(
θ̂a,nea\{b},λ)∣∣ < λ

)→ 1 for n→∞,(A.36)

as |Gb(θ̂
a,nea\{b},λ)| < λ implies that θ̂a,nea\{b},λ = θ̂a,nea,λ and hence θ̂

a,nea,λ
b = 0.

Using (A.7),
∣∣Gb

(
θ̂a,nea\{b},λ)∣∣≤ |2n−1〈Rλ

a(0),Wb〉| + λ
∥∥θb,nea\{b}∥∥

1.

By assumption ‖θb,nea\{b}‖1 < 1. It is thus sufficient to show that for any g > 0,

P
(|2n−1〈Rλ

a(0),Wb〉| < gλ
)→ 1 for n→∞.(A.37)

Analogously to (A.10), we can write

|2n−1〈Rλ
a(0),Wb〉|≤ |2n−1〈Rλ

a(0),W⊥
b 〉| + |2n−1〈Rλ

a(0),W‖
b〉|.(A.38)

Using Lemma A.3, it follows for the last term on the right-hand side that for every
g > 0,

P
(|2n−1〈Rλ

a(0),W‖
b〉| < gλ

)→ 1 for n→∞.

Using (A.13) and (A.14), it hence remains to show that for every g > 0,

P(|2n−1θ
a,nea
b 〈W⊥

b ,W⊥
b 〉| < gλ)→ 1 for n→∞.(A.39)

We have already noted above that the term σ−2
b 〈W⊥

b ,W⊥
b 〉 follows a χ2

n−|nea | dis-
tribution and is hence stochastically smaller than a χ2

n -distributed random vari-
able. By Assumption 2, σ 2

b ≤ 1. Furthermore, using Assumption 2 and |πab| =
O(n−(1−ξ)/2), |θa,nea

b | = O(n−(1−ξ)/2). Hence, with λ ∼ dn−(1−ε)/2, it follows
that for some constant k > 0, λ/|θa,nea

b | ≥ kn(ε−ξ)/2. Thus, for some constant
c > 0,

P(|2n−1θ
a,nea
b 〈W⊥

b ,W⊥
b 〉| < gλ)≥ P

(
Z/n < cn(ε−ξ)/2)

,(A.40)

where Z follows a χ2
n distribution. By the properties of the χ2 distribution and the

assumption ξ < ε, the right-hand side in (A.40) converges to 1 for n→∞, from
which (A.39) and hence the claim follow. !

PROOF OF THEOREM 3. A necessary condition for Ĉλ
a ! Ca is that there

exists an edge in Êλ joining two nodes in two different connectivity components.
Hence

P
(∃a ∈ "(n) : Ĉλ

a ! Ca
)≤ p(n) max

a∈"(n)
P

(∃b ∈ "(n) \ Ca :b ∈ n̂eλa
)
.
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Using the same arguments as in the proof of Theorem 1,

P
(∃b ∈ "(n) \ Ca :b ∈ n̂eλa

)≤ P

(
max

b∈"(n)\Ca

|Gb(θ̂
a,Ca,λ)|≥ λ

)
,

where θ̂a,Ca,λ, according to (A.1), has nonzero components only for variables in
the connectivity component Ca of node a. Hence it is sufficient to show that

p(n)2 max
a∈"(n),b∈"(n)\Ca

P
(|Gb(θ̂

a,Ca,λ)|≥ λ
)≤ α.(A.41)

The gradient is given by Gb(θ̂
a,Ca,λ) =−2n−1〈Xa−Xθ̂a,Ca,λ,Xb〉. For all k ∈ Ca

the variables Xb and Xk are independent as they are in different connectivity com-
ponents. Hence, conditional on XCa = {Xk;k ∈ Ca},

Gb(θ̂
a,Ca,λ)∼N (0,R2/n),

where R2 = 4n−1‖Xa − Xθ̂a,Ca,λ‖2
2, which is smaller than or equal to σ̂ 2

a =
4n−1‖Xa‖2

2 by definition of θ̂a,Ca,λ. Hence for all a ∈ "(n) and b ∈ "(n) \ Ca ,

P
(|Gb(θ̂

a,Ca,λ)|≥ λ|XCa

)≤ 2/̃
(√

nλ/(2σ̂a)
)
,

where /̃ = 1 − /. It follows for the λ proposed in (9) that P(|Gb(θ̂
a,Ca,λ)| ≥

λ|XCa) ≤ αp(n)−2, and therefore P(|Gb(θ̂
a,Ca,λ)| ≥ λ) ≤ αp(n)−2. Thus (A.41)

follows, which completes the proof. !
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