
Statistical Science
2014, Vol. 29, No. 1, 91–94
DOI: 10.1214/13-STS460
© Institute of Mathematical Statistics, 2014

Discussion of Big Bayes Stories
and BayesBag
Peter Bühlmann

1. INTRODUCTORY REMARKS

I congratulate all the authors for their insightful
papers with wide-ranging contributions. The articles
demonstrate the power and elegance of the Bayesian
inference paradigm. In particular, it allows to incor-
porate prior knowledge as well as hierarchical model
building in a convincing way. Regarding the latter, the
contribution by Raftery, Alkema and German is a very
fascinating piece, as it addresses a set of problems of
great public interest and presents predictions for the
world populations and other interesting quantities with
uncertainty regions. Their approach is based on a hier-
archical model, taking various characteristics into ac-
count (e.g., fertility projections). It would have been
very difficult to come up with a “better” solution which
would be as clear in terms of interpretation (in contrast
to a “black-box machine”) and which would provide
(model-based) uncertainties for the predictions into the
future.

2. UNCERTAINTY, STABILITY AND BAGGING
THE POSTERIOR

Many of the papers quantify in one or another form
various notions of uncertainties. In the Bayesian frame-
work, this is usually based on the posterior distribution.
An old “debate” is how much the results are sensitive
to the choice of the prior, and I believe that some rea-
sonable sensitivity analysis can lead to much insight.
The sensitivity with respect to “perturbed data” though
is not easily captured by the Bayesian framework.
In the context of prediction, Leo Breiman (Breiman,
1996a, 1996b) has pointed to issues of stability with
respect to perturbations of the data, Bousquet and Elis-
seeff (2002) provide some mathematical connections
to prediction performance while Meinshausen and
Bühlmann (2010) present some theory and method-
ology for controlling the frequentist error of expected
false positives.
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As an example, the (frequentist) Lasso (Tibshirani,
1996) is very unstable for estimating the unknown
parameters in a linear model, in particular, if the cor-
relation among the covariates is high (for two highly
correlated variables where at least one of them has
a substantially large regression coefficient, the Lasso
selects either one or the other in an unstable fash-
ion). Thus, the MAP for a Gaussian linear model with
a Double-Exponential prior for the regression coeffi-
cients is unstable. The posterior distribution is prob-
ably more stable but, presumably, it is still “rather”
sensitive with respect to perturbation of the data: if
the data would look a bit different, the posterior might
be “rather” different. The situation becomes more ex-
posed to stability problems when using spike and slab
priors (Mitchell and Beauchamp, 1988), due to in-
creased sparsity.

We can stabilize the posterior distribution by using a
bootstrap and aggregation scheme, in the spirit of bag-
ging (Breiman, 1996b). In a nutshell, denote by D∗ a
bootstrap- or subsample of the data D. The posterior
of the random parameters θ given the data D has c.d.f.
F(·|D), and we can stabilize this using

FBayesBag(·|D) = E
∗[

F
(·|D∗)]

,

where E
∗ is with respect to the bootstrap- or subsam-

pling scheme. We call it the BayesBag estimator. It can
be approximated by averaging over B posterior compu-
tations for bootstrap- or subsamples, which might be a
rather demanding task (although say B = 10 would al-
ready stabilize to a certain extent). Note that when con-
ditioning on the data, the posterior F(·|D) is a fixed
c.d.f., but when taking the view point that the data
could change, it is useful to consider randomized per-
turbed versions F(·|D∗) which are to be aggregated.

The following simple and rather stable example
shows that such a bagging scheme outputs a larger un-
certainty which is perhaps more appropriate.

LOCATION MODEL WITH CONJUGATE GAUSSIAN

PRIOR. Consider the model

θ ∼N
(
0, τ 2)

,

conditional on θ : X1, . . . ,Xn i.i.d. ∼ N
(
θ, σ 2)

.
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TABLE 1
2.5% and 97.5% quantiles of the posterior F(·|Xn) in (2.1) and

of the BayesBag (bagged posterior) in (2.3). The data was
generated once using a single realized value of θ = 1.31

Sample size (2.5%,97.5%) posterior (2.5%,97.5%) BayesBag

n = 1 (−0.69,2.81) (−1.30,3.41)

n = 10 (0.10,1.32) (−0.16,1.56)

It is well known that the posterior distribution equals

θ |Xn ∼N
( ∑n

i=1 Xi

n + σ 2/τ 2 ,

(
1

τ 2 + n

σ 2

)−1)
.

Denote by F(·;Xn) the c.d.f. of the posterior distribu-
tion, that is,

F(u;Xn) = �

(
u,mean = nXn

n + σ 2/τ 2 ,

(2.1)

var =
(

1

τ 2 + n

σ 2

)−1)
,

where �(u,mean = m,var = s2) = �((u − m)/s) and
�(·) denotes the c.d.f. of N (0,1). We can either use
the nonparametric bootstrap, with resampling the data
with replacement, or a parametric bootstrap (assuming
here that σ 2 is known):

X∗
1, . . . ,X∗

n i.i.d.N
(
θ̂ , σ 2)

, θ̂ = Xn.(2.2)

With the parametric bootstrap in (2.2), we can easily
calculate the BayesBag estimator:

E
∗[

F
(
u;X∗

n

)]

=
∫

�

(
u − r√

(1/τ 2 + n/σ 2)−1

)

(2.3)

· ϕ
(
r,mean = nXn

n + σ 2/τ 2 ,

var = nσ 2

(n + σ 2/τ 2)2

)
dr,

where ϕ(r,mean = m,var = s2) = s−1ϕ((r − m)/s)

and ϕ(·) denotes the p.d.f. of N (0,1). We consider
the posterior credible region by computing the 2.5%
and 97.5% quantiles of F(·;Xn) and we compare
these quantiles with the corresponding ones from the
BayesBag E

∗[F(·;X∗
n)] above in (2.3). We only con-

sider here the case with σ 2 = 1 and τ 2 = 4, and the re-
sults are given in Table 1. Of course, we can also look
at the variability of the posterior via the bootstrapped

c.d.f.’s F(·|X∗
n), instead of considering the bootstrap

mean (BayesBag) only. Figure 1 illustrates that vari-
ability can be rather high, but the situation obviously
improves as sample size increases.

It is worth pointing out that, in general, one could use
a parametric bootstrap when using θ̂ as the MAP of the
posterior distribution, and such a scheme could be used
in models with complex hierarchical and dependence
structures.

The frequentist approach usually does not address
stability issues either and, in addition, assigning p-
values and confidence intervals in complex scenar-
ios is a nontrivial problem. Recent progress has been
achieved for high-dimensional sparse models (Minnier,
Tian and Cai, 2011; Zhang and Zhang, 2014; Bogdan
et al., 2013; Bühlmann, 2013; van de Geer et al.,
2014, cf.); regarding the issue of constructing “sta-
ble p-values,” an approach based on subsampling and
appropriate aggregation of p-values is described in
Meinshausen, Meier and Bühlmann (2009). Yet, much
more work in frequentist inference would be needed to

FIG. 1. 1000 bootstrapped cumulative distribution functions
F(u|X∗

n) of θ |X∗
n. The BayesBag (i.e., mean) E∗[F(u|X∗

n)] in (2.3)
(thick red line) and the cumulative distribution function F(u|Xn) of
the classical posterior of θ |Xn in (2.1) (blue line). Left panel for
n = 1 and right panel for n = 10, and note the different scales for
the x-axis. The data is as in Table 1.
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cope with, for example, high-dimensional hierarchical
models in non-i.i.d. settings such as space–time pro-
cesses or clustered data, or, as another example, the
population dynamic model in the beautiful paper by
Kuikka, Vanhatalo, Pulkkinen, Mäntyniemi and Coran-
der in this issue.

3. NETWORKS AND GRAPHICAL MODELS

The paper by Johnson, Abal, Ahern an Hamilton
presents an interesting application by using Bayesian
inference for a Bayesian network (as is well known, the
term “Bayesian network” does not require Bayesian in-
ference at all—and it is somewhat confusing). The ar-
rows in the directed acyclic graph often indicate causal
relations (Pearl, 2000; Spirtes, Glymour and Scheines,
2000) and, as such, the model allows for causal con-
clusions. Great care is needed, of course, when the
DAG is misspecified or estimated from observational
data since causal conclusions are depending in a very
“sensitive way” on the underlying DAG. A lot of work
exists regarding identifiability of the DAG from ob-
servational data (Pearl, 2000; Spirtes, Glymour and
Scheines, 2000; Shpitser and Pearl, 2008; Hoyer et al.,
2009; Peters and Bühlmann, 2014, cf.), and, obviously,
there are ill-posed situations such as with a bivariate
Gaussian distribution where one cannot identify the
causal direction between two variables. In the Bayesian
framework, the problem of identifiability does not ex-
ist in a “direct sense”: but I believe it must come in
through another channel, presumably by a high sensi-
tivity with respect to prior specifications. Due to se-
vere identifiability problems, causal inference based
on observational data is ill-posed or depends on non-
testable assumptions. However, one can nevertheless
(under some assumptions) derive lower bounds on ab-
solute values of causal effects (Maathuis, Kalisch and
Bühlmann, 2009). As lower bounds, they are conserva-
tive and a Bayesian average bound would be interest-
ing.

In view of nontestable assumptions, causal models
should be validated with randomized experiments. Of-
ten though, this cannot be done due to limited resources
or ethical reasons. The field of molecular biology
with simple organisms is an interesting application
where causal model validation is feasible thanks to
gene knock-out or other manipulation methods. We
pursued this in the past, for estimated causal struc-
tures and models based on frequentist approaches, for
the organisms yeast (Maathuis et al., 2010) and ara-
bidopsis thaliana (Stekhoven et al., 2012). These two

papers indicate that it is indeed possible to predict
to a certain extent lower bounds of causal strength
and relations based on observational (and very high-
dimensional) data. Such a conclusion can only be made
post-hoc, after validation—and validation has nothing
to do whether a Bayesian or any other inference ma-
chine has been used.
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