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a b s t r a c t

We look at the role of statistics in data science. Two statisticians, two views. Besides the
need of developing appropriate concepts, methodology and algorithms, the first onemakes
a case for validation and carefully designed simulation studies, while the second onewrites
that a mathematical underpinning of methods is fundamental. Both views converge to the
same point: there should be more room for publishing negative findings.

© 2018 Elsevier B.V. All rights reserved.

1. A short introduction

‘‘Big Data’’ is perhaps not a well-defined terminology. Wikipedia (https://en.wikipedia.org/wiki/Big_data) states the
following: ‘‘Big data usually includes data sets with sizes beyond the ability of commonly used software tools to capture,
curate, manage, and process data within a tolerable elapsed time’’.

Computation, open software, open data and reproducibility. The computational issue mentioned above is certainly a relevant
one. We publicize open source software development for large scale problems, open data access and corresponding
reproducibility (see Section 2). Much has been written in the last few years about these topics and we want to re-emphasize
their importance without going into more details.

From amore fundamental research perspective, wemention here the interesting framework of ‘‘computational statistical
trade-offs’’ (Chandrasekaran and Jordan, 2013): it seems particularly interesting for addressing the problem of statistical
optimality (optimal statistical information extraction) under computational constraints.

In the following, we will focus on issues and challenges beyond computation, namely: replicability; heterogeneity in
large-scale datasets; causality and its connection to robust prediction; validation and a so-called NCP guidelines, where
‘‘NCP’’ stands for No Cherry Picking; and we close with a reflection in terms of an epilogue.

2. Inferential statistics and replicability

Perhaps the core statistical task in (traditional) statistics is inductive inference from data to models and scientific
conclusions; andwebelieve that this core task is still very relevant in the advent ofmassive datasets. Thereby, the assessment
of uncertainties is crucial and Bayesian or frequentist statistics offer a unique framework with a long history to address this
issue. Ideally, the conclusions and findings are replicable.
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Replicability should not be confused with reproducibility. Reproducibility when defined in a narrow technical sense
means: the same data input leads to the same output and numerical results. For this, one needs open access to data and
software with a clear protocol how one goes from the input to the output; see our comment in Section 1. On the other hand,
replicability means that the findings in a study can be successfully replicated in another study under the same conditions,
not exactly but up to statistical error. The statistical error might be quite large and failure of successful replication might
be sometimes not so surprising: a-priori, it is difficult to judge unless we have an understanding about the statistical
uncertainties!

Amajor challengewith Big Data is to come upwith reasonablemodels, methods and algorithmswhich enable to quantify
the statistical error— and hopefully, some findings fromBigDatawould indeed enable a fair amount of success for replication
in other studies or datasets.

Stability and replicability. Related to replicability is the notion of stability (Yu, 2013). For example, one can consider the
notion of replicability within sub-samples of a large dataset: if a finding from half of the data can be successfully replicated
in the other half, then the finding seems to be more ‘‘promising’’ and ‘‘relevant’’. Stability Selection (Meinshausen and
Bühlmann, 2010) provides a methodology for assessing such ‘‘relevance’’. It uses repeated splitting of a dataset into two
halves and connects the notion of ‘‘stable findings’’ to a type I error rate in terms of the expected number of false positives,
based on a very simple formula (Meinshausen and Bühlmann, 2010, formula (9)). We note that stability turns out to be
beneficial for predictive performance as well (Breiman, 1996).

2.1. Heterogeneity

Stability and replicability usually require some form of homogeneity and independence. In the simplest terms, the first
and the second dataset (or the first and second half of a single dataset) are independent and of the same nature. We believe
that Big Data are often of heterogeneous nature, violating such a homogeneity assumption. In other words, large-scale data,
a terminology which we use in the sequel for data which have both large sample size and dimensionality, is typically not
generated as i.i.d. or stationary samples from a single population distribution and we have good reasons to expect that the
data is heterogeneous, arising from different ‘‘scenarios’’, ‘‘regimes’’ or ‘‘sub-populations’’. Quantifying the statistical error
and the amount of replicability which we can expect under such circumstances are important for drawing generalizing and
scientific conclusions from large-scale data.

Tomake thingsmore precise, consider a regression or classification settingwith univariate response Y and p-dimensional
covariate X . We assume that we have several ‘‘environments’’, ‘‘regimes’’ or ‘‘sub-populations’’ encoded by e ∈ E , i.e., e
encodes an environment and E is the space of environments which are present in the dataset (e and E are either observed
or they are unknown): the dataset then consists of

(Y e, X e), e ∈ E (1)

with the understanding that the dataset is homogeneous within each environment e; here Y e and X e denote the data vector
(ne × 1) or matrix (ne × p), measuring the same variables across all the environments.

An established way to assign uncertainties and the amount of replicability in heterogeneous data is given by meta
analysis (Hedges and Olkin, 1985; Owen, 2009, cf.). A large-scale heterogeneous dataset as in (1) with known (observed)
environments can be divided into smaller homogeneous sub-datasets, and in the language of meta-analysis these sub-
datasets are the different studies from which one pursues an aggregation of significance statements. Meta analysis is a
straightforward concept and computationally attractive since computing for every environment e can be trivially distributed.

Another kind of heterogeneity is mentioned in Secchi (2018) where different variables aremeasured in different datasets
(which can be understood as different ‘‘sub-populations’’).Whatwe discuss belowmight be partially useful for such a setting
as well.

2.2. Heterogeneity, causality and robustness against worst case scenarios

Heterogeneity in large-scale data seems to be an unpleasant obstacle. However, it can be advantageously exploited for
causal inference and robustness against worst case scenarios.

Consider heterogeneous data as in (1). An interesting invariance assumption, related to stability, is as follows: there exists
a subset S ⊆ {1, . . . , p} of covariates such that the conditional distribution

L(Y e
|X e

S ) is invariant across all e ∈ E, (2)

where X e
S denotes the covariates of the subset S in environment e. There might be several such subsets S, and these subsets

of covariates (which satisfy the invariance assumption in (2)) are interesting in their own right since they satisfy a stability
or invariance assumption. That is, stability (and its related replicability) might occur in the form of a conditional distribution
as in (2).

Under some assumptions, the causal variables (for causality, cf. Pearl (2000)) satisfy the invariance assumption in (2);
and vice-versa, the invariance or robustness within a heterogeneous large-scale dataset can be exploited in an algorithm for
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estimating causal variables for the response Y , including a type I error guarantee for guarding against false positive (causal)
findings. For details we refer to Peters et al. (2016).

Causal models have a robustness property due to the so-called autonomy assumption (Aldrich, 1989). In terms of
heterogeneous data as in (1) the following holds. Denote by Scausal ⊆ {1, . . . , p} the indices of the causal variables: the
autonomy assumption says that invariance holds,

L(Y e
|X e

causal) is invariant across all e ∈ F, (3)

where F denotes a large class of possible environments, typically much larger than the environments from E(⊂ F) which
are present in the data. This then implies for e.g. a linear model that

argmin
β

max
e∈F

E|Y e
− X eβ|

2
∋ βcausal, (4)

where βcausal are the causal parameters with support

supp(βcausal) = {j; βcausal;j ̸= 0} = Scausal.

Thus, the causal parameters – under some assumptions – insure against worst case scenarios (fromF). Othermethodologies
are useful to ensure against scenarios which are not exactly present in the data but where the data (the past) still
carries useful information about new unseen data (the future): see for example the framework of maximin estimation
(Meinshausen and Bühlmann, 2015) andmaximin aggregation (Bühlmann andMeinshausen, 2016)which optimizes aworst
case performance as in (4) where F is – roughly speaking – the convex hull of E .

3. Validation and the NCP guidelines

An important task is to validate (machine learning or statistical) algorithms, for example their predictive performance
or their ability to find important or even causal variables. Validation of prediction is certainly easier than assessing the
performance to find important or causal variables. However, already the task of prediction is not trivial at all: standard
cross-validation is inappropriate for heterogeneous data, and assessing the prediction performance for newunseen scenarios
(from F , see (3)) is highly non-trivial.

3.1. Simulations and no cherry picking!

In view of the difficulty for validation, a standard approach for checking the performance of algorithms and methods is
based on synthetic data and running simulations. It is a reasonable first step. However, it is certainly a challenge to construct
realistic simulation models for Big Data. A good example exists in genetics, where PLINK (Purcell et al., 2007) allows to
simulate synthetic data based on a model driven by physical and biological laws.

The NCP guidelines. We propose here the No Cherry Picking (NCP) guidelines for validating algorithms and methods using
synthetic data.

The NCP guidelines

1. The performance of algorithms and methods should be reported for a broad range of simulation models.

2. For algorithms ormethods, especiallywhennewly proposed, their strengths andweaknesses should be reported.

3. The simulationmodels in point 1 should include fairly realistic scenarios as well as extreme ‘‘cornerpoints’’. The
latter are mainly serving to empirically illustrate point 2, describing the range of scenarios where the methods
work or break down.

4. If possible, some mathematical intuition should be given to back up the empirical findings (see also below).

A precise mathematical description (see point 4. of the NCP guidelines) to understand the regime of problems where a
new method works well is usually difficult since the corresponding conditions would then be sufficient and necessary. An
examplewhere this is possible is the irrepresentable condition for the Lasso for variable selection in high-dimensional linear
models (Zou, 2006; Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Bühlmann and van de Geer, 2011). Whenever a
precise mathematical characterization is not (or only partially) possible, one can resort to simulation studies. To understand
the potential and limitations of a (new)method or algorithm, one should provide empirical results where themethodworks
well and where it fails (repeating point 2. in the NCP guidelines). Obviously, some empirical understanding of the range of
problems for success and failure is highly informative (points 2 and 3 in the NCP guidelines).
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Referees, associate editors and editors should encourage authors to provide such transparent and more informative
empirical results: editors might even insist to report on problems where the methods fail. Such a transparent, honest
and informative way of reporting should be (more) adopted within the culture of statistics: we, the community in
statistics, should be among the first to improve on this simple but important point! In some cases, the importance or
quality of a contribution, which is the main criterion for editorial decisions, can be improved by following the NCP
guidelines.

4. Reflection: an epilogue

We have lots of data these days, many numbers (zeros and ones) stored in our computers. We have much more data
than in the old days, when measurements of the orbit of a single planet took weeks. Then in the 18th century Gauss
invented the least squares method. As soon as there are data, there comes along a statistical method. Because data are
there to be analyzed. Think of your data sitting in your computer. If you do not get them out of there what is the sense of it
all?

There are several things one might aim at. For example, if the aim is to know whether a person is creditworthy, one runs
an algorithm on his or her data, and out comes an answer. The main point is that the answer should typically be correct.
One might not be so much interested in how the algorithm works. One even might be not interested in the psychology of
behavior and why a person with certain characteristics is not creditworthy.

A relatively recent term is learning theory. The difference with classical statistics is I believe that it is less model based,
but rather algorithm based. Learning theory is perhaps also more directly focusing on some parameter of interest and does
not model the nuisance parameters. We run the learning algorithm, and out comes an answer. We now see that the robot
can walk and the doll can recognize our emotions. We are surrounded by very smart computers. The computer has learned,
maybe in a supervised setting, maybe unsupervised or reinforced. But we, what have we learned?

Some algorithms are based on models and explicitly on statistical methods, others less so. I would in either case call
algorithms the statistical skeleton. Where is the rest of the body? It used to be clear what a particular method for analyzing
data did. The least squaresmethod for examplewas and iswell understood. Today’s algorithms are complex and often hardly
understood. Many are not understood by most of us, and some are not understood by any of us.

When trying to develop more insight the statistician is facing several questions. The first question concerns generaliz-
ability and replicability. If one imagines running the algorithm again, now on a new dataset, would the outcome be similar?
The second question is how to find out what similarity actually means, how to access accuracy, to quantify uncertainty. The
third task is verify whether this uncertainty is something we can measure.

These are generally hard questions. One can try to tackle them by testing the algorithms on pseudo random artificial
data. But how to generate these data? From what models? Another way is to develop mathematical theory, based on
abstract models which are more general and flexible than those used in simulation studies. Developing the math can take
some time. The very popular Lasso for instance was introduced by Robert Tibshirani in 1994 (and published two years
later Tibshirani, 1996) and still, more than 20 years later, mathematical statistical journals publish many papers on the
Lasso. The mathematical understanding of algorithms is hard work and yet the practical consequences are less visible.
Replicability is typically amust, and here statistics acts primarily as rough quality test. If the algorithm does not pass the test
it will be abandoned. The statistician is only noticed (and then sometimes held responsible) as soon as the test is passed but
replicability is actually not there in new real data studies. Also the uncertainty can be mathematically well understood with
little practical consequence because this uncertainty is not something you can directly see from data. One needs another
algorithm to access uncertainty, and this algorithm has its own uncertainty. The task of the statistician is to quantify how far
we can go. The modern adaptive algorithms are often such that the better they are (generate outcomes close to the target),
the harder it is to estimate their uncertainty. For the ‘‘best’’ algorithm it can be simply impossible to know its accuracy. To
quote Marc Hoffmann and Oleg Lepski: ‘‘You know adaptive estimators converge very fast if the function is very smooth (or
has a prescribed complexity) but you can tell nothing about the estimated function itself’’ (Hoffmann and Lepski, 2002). The
statistical theory serves as guard against cheating with data: you cannot beat the uncertainty principle.

The scientific motivation for analyzing data is to increase knowledge. Think for example at finding out which gene is
associated with a particular phenotype. A classical statistical uncertainty measure is the p-value. If it is small one has found
something. Then the result is called significant and published in scientific journals. Lately, some panic is going on as it
turned out that many findings are not replicable. The statistical uncertainty measure seems not to be reliable! The p-value is
cheating! However, there is no reason for surprise as there is no outlet for publishing insignificant results (at least in domains
where statistical significance is required). Maybe editors should invite authors to write about their journey along the path
of insignificant results that led to the significant one. There is moreover also no reason for panic. False positives are part
of the process of gaining knowledge and insight. The significant findings are to subjected to further studies and sense has
to be made out of it. Thus statistics plays its role in understanding algorithms, the value of their outcomes and consequent
decisions for new research directions.
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