
This is page i
Printer: Opaque this

1

Computational Inference

Torsten Hothorn, Marcel Dettling, Peter
Bühlmann

1.1 Introduction

Recent technological developments have opened new perspectives in bio-
medical research and clinical practice, and they also changed the way in
which statistics makes progress. The main challenge is to develop compu-
tational inference tools that can deal with very high dimensional datasets
containing thousands of input variables for a few dozens of experiments
only. Such data structures do emerge for example from the gene expression
microarray technology, and from protein mass spectroscopy analysis.

In this chapter, we focus on tumor prognosis with gene expression data.
Given efficient data analysis tools, information from biotechnology may
represent a promising supplement to tumor prediction based on traditional
clinical factors. Let us assume that we are given previous experience from
a cohort of I patients, which mathematically amounts to a learning sample

L = {(y1, x1), (y2, x2), . . . , (yI , xI)}.

The input variable xi ∈ RJ contains the vector-valued gene expression pro-
file of J genes for the ith patient. The response variable can be binary with
yi ∈ {0, 1} coding for two different populations or classes, as for example
different cancers or tumor subtypes. For notational convenience, multiclass
prediction and the analysis of survival data are to be discussed later in
Sections 1.4 and 1.7

We plan to systematically exploit the information in the learning sample
L for defining a rule that predicts the disease evolvement (the response
variable) from the gene expression profile x. This rule can then be applied
to novel cancer patients for establishing an early and precise prognosis,
which is often crucial for a treatment with little side-effects and good
cure rates. From a mathematical viewpoint, this amounts to learning a
function g : RJ → R which can be applied in order to predict the class

ii Hothorn, Marcel Dettling, Peter Bühlmann

membership of an observation with expression profile x via some fixed
transformation f . For example, g(x|L) = log(p̂(x)/(1 − P̂ (x))), where
p̂(x) = P̂ r[Y = 1|X = x] and f(g) = χ(g > 0) which yields a classifi-
cation rule respecting equal misclassification costs, where χ denotes the
indicator function. In the sequel, such procedures are referred to as clas-
sifiers. Although classification is a well-known methodology in statistics,
finding solutions to problems with many input variables or genes J but
a very limited number of patients I is challenging. A promising approach
that is suitable for high-dimensional prediction problems in bioinformatics
is to use ensemble methods that aggregate many simple classifiers into a
powerful committee.

1.1.1 Ensemble Methods

In contrast to using just a single fit from a particular method, ensemble
techniques aim at improving the predictive ability of a relatively simple
statistical learning technique by constructing linear combinations thereof.
Technically, the ensemble is written as

gE(M)(·|L) =
M∑

m=1

αmgm(·|Lm),

where Lm is a reweighted version of the learning sample L and αm are real
valued weights. Here, gm is a base procedure, which we term the ‘weak
learner’. For example, gm(x) may be a simple estimate log(p̂(x)/(1− p̂(x)))
of the log-odds ratio. The choice of the reweighted sample Lm, the ag-
gregation weights αm, as well as of the weak learner are the art of this
business. Bagging, boosting and random forests are such implementations,
which will be discussed below. Apparently, the final ensemble estimator
depends on the choice of the weak learner. The most prominent choice
in high-dimensional problems are recursive partitioning methods (’classi-
fication and regression trees’), as they incorporate some form of feature
selection and tend to work well when there are more input variables than
there are observations.

We refer to Breiman et al. [1] for a detailed description on recursive
partitioning methods. The rpart package [2] essentially implements the
methodology described by Breiman et al. [1].

1.2 Bagging & Random Forests

Bagging [3] is a rather simple but effective ensemble method. Its name is
an acronym for bootstrap aggegating which suggests the principle idea of
this procedure: Predictions of weak learners fitted to bootstrap samples Lm

of the original learning sample L are aggregated by a majority vote.

1. Computational Inference iii

A bootstrap sample from the original learning sample L is an i.i.d. ran-
dom sample of I observations (y∗i , x∗i), i = 1, . . . , I, where the probability
of selecting observation (y∗i , x∗i) from L is 1/I. A bootstrap sample is thus
a sample from the empirical distribution function of the learning sample.
The algorithm works as follows.

1. Draw M bootstrap samples Lm,m = 1, . . . M , from the original
learning sample L.

2. Fit a weak learner for each of the bootstrap samples gm(·|Lm), and
construct the classifiers f(gm(·|Lm)).

3. Aggregate the classifiers using weights αm = 1/M , yielding the
ensemble

gE(M)(·|L) = M−1
M∑

m=1

f(gm(·|Lm)).

Thus, the ensemble yields the fraction of weak learners predicting class
1. The bagging ensemble votes for class 1 if the majority of the M weak
learners votes for 1; and vice versa. More generally, the ensemble predicts
class 1 when the fraction of weak learners predicting class 1 exceeds some
number ν.

It has been argued that for unstable estimation methods such as decision
trees, bagging reduces the variance while the bias remains approximately
the same [4].

It is rather straightforward to implement the bagging procedure in high-
level languages like S. The basic ingredient is a tree building algorithm used
for fitting trees to bootstrap samples of the learning sample.

R> simple_bagging <- function(x, lsample, M = 100,

+ nu = 0.5) {

+ I <- nrow(lsample)

+ bsample <- rmultinom(M, I, rep(1, I)/I)

+ pred <- rep(0, nrow(x))

+ for (m in 1:M) {

+ weaktree <- rpart(y ~ ., data = lsample,

+ weights = bsample[, m], control = rpart.control(xval = 0,

+ cp = 0.01))

+ prtree <- predict(weaktree, newdata = x,

+ type = "class")

+ pred <- pred + (prtree == levels(lsample$y)[2])

+ }

+ factor(pred/M > nu, levels = levels(lsample$y))

+ }

First, M random index vectors representing M bootstrap samples are
drawn from the multinomial distribution. A classification tree is fitted to

iv Hothorn, Marcel Dettling, Peter Bühlmann

the data using weights = bsample[,m] representing the mth bootstrap
sample. Large trees without applying any form of pruning whatsoever are
grown. The vector pred of length I counting the number of trees predicting
the second class is updated. Finally, the function returns a factor coding
the ensemble predictions obtained from a simple majority vote.

A simple but extremely successful modification to this algorithm is the
random forest approach [5]. The basic idea is to modify the tree grow-
ing algorithm leading to even weaker components of the ensemble. This is
achieved by choosing a small random subset of inputs available for split-
ting at each stage of the recursive partitioning algorithm building the tree.
Thus, the input variables actually used in each of the weak learners are, to
a large extent, determined at random.

1.3 Boosting

Boosting has been introduced to the machine learning literature by Freund
and Schapire [6] and has demonstrated empirical success on a wide variety
of especially high-dimensional prediction problems. The initial notion was
that in each boosting iteration, the cases that were misclassified in the pre-
vious round get their weights increased, whereas the weights are decreased
for cases that were correctly classified. Thus, unlike in bagging and random
forests, both the aggregation weights αm and the reweighted learning sam-
ples Lm depend on the previous function fits g1(·|L1), . . . , gm−1(·|Lm−1).
However, rather than as a sequential data reweighting scheme, boosting can
more fruitfully be seen as a forward stagewise strategy, working by iterative
optimization of an empirical risk function

R(L, p(x), L) =
1
I

I∑
i=1

L(yi, p(xi)), p(x) = Pr[Y = 1|X = x],

from the learning set L via constrained (imposed by the weak learner)
functional gradient descent, where L(·, ·) is a statistically motivated loss
function. If we employ the binomial log-likelihood

L(y, p(x)) = y · log(p(x)) + (1− y) · (1− p(x)),

a continuous surrogate for the 0/1-misclassification loss and a very estab-
lished criterion for binary classification, it has been shown that the resulting
logitboost algorithm [7] yields an approximation to half of the log-odds
ratio. That is,

gE(M)(x|L) =
M∑

m=1

αmgm(x|Lm) ≈ 1
2

log
(

p(x)
1− p(x)

)
.

Hence, logitboost is a linear expansion in terms of of weak learners gm(·|Lm)
on the logit scale, constructed by stagewise optimization of the binomial

1. Computational Inference v

log-likelihood. Estimated conditional class probabilities are obtained by the
simple transformation

p(x) =
1

1 + exp(−2gE(M)(x))
,

which can be used for class prediction, using a threshold that depends
on the misclassification costs. Logitboost has been demonstrated to be a
competitive prediction algorithm for tumor classification with microarray
data [8, 9]. The procedure works as follows.

1. Initialize p(xi) ≡ 1/2, i = 1, . . . , I;m = 1; gE(0)(·|L) ≡ 0.

2. Build the pseudo-response for each observation i

wi = p(xi)(1− p(xi))

ui =
yi − p(xi)

wi
,

setup-up the new learning sample

Lm = {(ui, xi); i = 1, . . . , I}

and fit the weak learner gm(·|Lm) with case weights wi.

3. Update ensemble gE(m)(·|L) = gE(m−1)(·|L) + 1
2gm(·|Lm) and

p(xi) = 1/(1 + exp(−2gE(m)(xi|L)))

4. repeat until m = M .

Predictions are computed with αm = 1/2 and f(z) = χ(exp(1− 2z) > 1
2).

The definition of the weights wi in the logitboost algorithm is such that
each weak learner is forced to focus on observations close to the decision
boundary, i.e., data points where the boosting classifier is in doubt about
the predicted class. The final number of boosting iterations M regulates
the complexity of the prediction model, early stopping is a form of shrink-
age. In the context of microarray data, we recommend a default value of
M = 100, which is a reasonable compromise between computing time, pre-
dictive accuracy and prevention of overfitting. This choice was shown to be
empirically superior to approaches where M was estimated on the training
data via cross validation [8]. Provided that an interface to the weak learning
algorithm is present, an implementation of boosting in high-level languages
like S is straightforward and simply consists of a loop that incorporate all
the updating operations and the weak learner fit.

1.4 Multiclass Problems

Since there are often no genes that accurately discriminate multiple classes,
we recommend to split K-class problems into multiple binary ones. In

vi Hothorn, Marcel Dettling, Peter Bühlmann

the context of microarray data, we have collected some empirical evi-
dence that this is more accurate than simultaneous multiclass approaches
[8]. The simplest solution is the one-against-all approach, which works
by defining the response in the kth problem as y(k) = 1 if y = k, and
y(k) = 0 else. Then, we are running boosting K times on the modified data
L(k) = {(y(k)

1 , x1), . . . , (y
(k)
I , xI)}. The estimated conditional class proba-

bilities are normalized and can in turn be used for maximum likelihood
classification via

p̂(k)(x) =
P̂ rL(k)(y(k) = 1|x)

K−1∑
k=0

P̂ rL(k)(y(k) = 1|x)

ŷ(x) = argmax
k∈{0,...,K−1}

p̂(k)(x)

.

Depending on the data, other schemes than one-against-all may be more
accurate for splitting polytomous into multiple binary problems.

Note that no additional procedures are necessary in order to deal
with multiclass responses for bagging trees or random forests: Estimated
conditional class probabilities arise directly from the ensemble of trees.

1.5 Evaluation

The choice of an appropriate classifier for a prediction problem at hand is
by no means obvious. Two problems can be separated: The method selec-
tion and the error rate estimation tasks. The first task is concerned with
choosing the best method available from a, possible huge, set of statistical
procedures capable to deal with the problem. For the second one, we try to
come up with a realistic assessment of the prediction error of the selected
procedure. This information is extremely important when we need to take
the decision whether it is worth or even ethical to apply a certain classifier
in realistic setups.

The prediction error is measured by a scalar loss function L(y, ŷ) as-
sessing the goodness of the prediction ŷ for some response y. When the
response is a categorical variable with classes {0, . . . ,K − 1}, the mis-
classification error L(y, ŷ) = χ(y 6= ŷ) is an often used loss function.
However, this choice is not necessarily the one we are interested in. When
we are faced with a two class problem aiming at predicting whether a
person suffers a rare but dangerous disease or not the loss of missing an
affected person is much higher compared to the loss induced by a false pos-
itive detection. For such problems, the misclassification loss is of the form
L(y, ŷ) = c1χ(y = 0, ŷ = 1) + c2χ(y = 1, ŷ = 0) for some misclassification
costs c1, c2. We may be also interested in measuring the accuracy of the

1. Computational Inference vii

estimated probability p̂(x): Then, the negative log-likelihood can serve as
a useful loss function.

A major problem is that the learning sample used for model fitting can
not be used for the estimation of the prediction error of that model. Such
an estimate would be optimistically biased because the same observations
were used for model building and evaluation. Resampling methods like
the bootstrap or cross-validation have been studied extensively, a practical
introduction can be found in [10]. Here, we will use the notion of out-of-bag
estimation [11]. When a bootstrap sample of the original learning sample L
is drawn some observations are left out due to sampling with replacement.
Those observations can be used as independent sample for the assessment
of the prediction error. We can draw random samples from the distribution
of the prediction error as follows.

1. Draw B bootstrap samples Lb, b = 1, . . . B, from the original learning
sample L.

2. Fit a model to each bootstrap sample Lb, i.e. g(·|Lb) and assess the
error pb by the loss averaged over the predictions of the observations
in the out-of-bootstrap sample

pb = |L \ Lb|−1
∑

(y,x)∈L\Lb

L(f(g(x|Lb))), y), b = 1, . . . , B.

The B error rates can now be visualized, for example by means of box-
plots or can be described via estimates of certain parameters such as mean
or variance, say. When multiple candidates models are under consideration,
we obtain a sample of B error rates for each of them: Those distributions
can be compared in order to identify the best or a set of the best algorithms.
The null-hypothesis of equality of the bootstrap-distributions of the predic-
tion error of several algorithms can be tested, for example by means of the
Friedman test. It should be noted that a rejection of this hypothesis should
not be generalized to the population from which the data was drawn, since
the inference is conditional on the given learning sample. All what we can
conclude is whether a finite number B of bootstrap replicates is sufficient
for detecting performance differences in the exact bootstrap distributions,
with B = ∞ (or from the typically infeasible exact multinomial distribution
induced by the bootstrap), of different algorithms. Theoretical justification
and illustration of this approach can be found elsewhere [12].

1.6 Applications: Tumor Prediction

1.6.1 Acute Lymphoblastic Leukemia

In this first example, we apply ensemble methods to construct a model
that regresses the stage of acute lymphoblastic leukemia (ALL) on the

viii Hothorn, Marcel Dettling, Peter Bühlmann

microarray expression levels. We are primarily interested in two questions.
At the one hand, we would like to investigate if there is any information
about the stage of the disease covered by the microarray expression levels,
i.e., a test of the null-hypothesis that the stage of the disease is independent
of the expression levels measured. If we are able to reject this global null-
hypothesis, we want to build a model that allows us to predict the stage
of the disease of a patient based on the microarray expression levels only.
Data from patients suffering from both T- and B-cell leukemia are available
from the study of Chiaretti et al. [13], and we restrict ourselves to patients
with B-cell leukemia. reference to chapter?

The package ALL offers a data object ALL, an object of class exprSet,
which contains the data of patients suffering from both T- and B-cell
leukemia.

R> pkgload <- require(Biobase, quietly = TRUE)

Welcome to Bioconductor
Vignettes contain introductory material. To view,
simply type: openVignette()
For details on reading vignettes, see
the openVignette help page.

R> pkgload <- require(ALL, quietly = TRUE)

R> data(ALL)

We are provided with expression levels of 12625 genes for 128 patients.
For the analysis here, we restrict the data to patients suffering B-cell
leukemia, with 5 subclasses, and to expression levels of genes with coefficient
of variation between 0.08 and 0.18.

R> cvv <- apply(exprs(ALL), 1, function(x) sd(x)/mean(x))

R> ok <- cvv > 0.08 & cvv < 0.18

R> BStagelev <- paste("B", c("", 1:4), sep = "")

R> BALL <- ALL[ok, ALL$BT %in% BStagelev]

R> pData(phenoData(BALL))$BStage <- factor(BALL$BT,

+ levels = BStagelev)

The class distribution of the stages of the disease (BALL$BStage) can be
inspected via

R> table(BALL$BStage)

B B1 B2 B3 B4
5 19 36 23 12

and is depicted by means of a barplot in Figure 1.1.
Although we selected 3841 genes showing a reasonable variation among

the patients, some mild form of univariate variable selection will help to
circumvent computational difficulties. Here, we measure the association

1. Computational Inference ix

R> barplot(table(BALL$BStage))

B B1 B2 B3 B4

0
5

10
15

20
25

30
35

Figure 1.1. Class distribution of the stages of B-cell leukemia.

between the expression levels of each gene and the stage of the disease, our
response variable, by means of a linear statistic based on the raw expression
levels and a matrix of dummy-codings for the response. The statistics are
standardized by their conditional expectation and variance [14] and the 100
genes associated with the largest standardized statistics are selected.

R> response <- BALL$BStage

R> I <- ncol(exprs(BALL))

R> expressions <- exprs(BALL)

R> Iindx <- 1:I

R> ymat <- model.matrix(~response - 1)

R> var_selection <- function(indx, p = 100) {

+ y <- ymat[indx, , drop = FALSE]

+ x <- expressions[, indx, drop = FALSE]

+ n <- nrow(y)

+ linstat <- x %*% y

+ Ey <- matrix(colMeans(y), nrow = 1)

+ Vy <- matrix(rowMeans((t(y) - as.vector(Ey))^2),

+ nrow = 1)

+ rSx <- matrix(rowSums(x), ncol = 1)

+ rSx2 <- matrix(rowSums(x^2), ncol = 1)

+ E <- rSx %*% Ey

+ V <- n/(n - 1) * kronecker(Vy, rSx2)

x Hothorn, Marcel Dettling, Peter Bühlmann

+ V <- V - 1/(n - 1) * kronecker(Vy, rSx^2)

+ stats <- abs(linstat - E)/sqrt(V)

+ stats <- do.call("pmax", as.data.frame(stats))

+ return(which(stats > sort(stats)[length(stats) -

+ p]))

+ }

R> selected <- var_selection(Iindx)

The function var selection takes an index vector of observations between
1 and I and returns a vector of length p indicating which genes have been
selected. Now, we are able to fit a random forest model to the data utilizing
the package MLInterfaces which provides an unified interface to machine
learning procedures including the randomForest package [15]. Here, we use
the data of all observations except the Ith one as learning sample and
obtain information from the model on the Ith observation.

R> pkgload <- require(MLInterfaces, quietly = TRUE)

R> rf <- randomForestB(BALL[selected,], "BStage",

+ Iindx[-1], sampsize = I - 1)

R> print(rf)

MLOutput instance, method= randomForest
Call:
randomForestB(exprObj = BALL[selected,], classifLab = "BStage",

trainInd = Iindx[-1], sampsize = I - 1)
predicted class distribution:
B2
1

The framework for the evaluation of classifiers sketched in Section 1.5 can
be implemented as follows. We loop over B bootstrap samples, perform a
variable selection for the current bootstrap sample and fit four models to the
selected genes of this bootstrap sample. First, a random forest model where
only mtry = 3 genes are evaluated in each node of the classification trees,
bagging (which corresponds to random forest without random sampling
of genes) and logitboost with M = 100 boosting iterations. In addition,
the performance of a model that does not take any information about the
expression levels into account is investigated. To be more specific, for each
bootstrap sample we guess the class with maximal prior probability for
all observations. The misclassification errors computed for each model and
bootstrap sample are stored into a dataframe performance.

R> set.seed(290875)

R> B <- 100

R> if (!file.exists("ALLperformance.Rda")) {

+ performance <- as.data.frame(matrix(0, nrow = B,

+ ncol = 4))

1. Computational Inference xi

+ colnames(performance) <- c("RF", "Bagg", "LBoost",

+ "Guess")

+ for (b in 1:B) {

+ bsample <- sample(Iindx, I, replace = TRUE)

+ selected <- var_selection(bsample)

+ rf3 <- randomForestB(BALL[selected,],

+ "BStage", bsample, mtry = 3, sampsize = I)

+ predicted3 <- factor(rf3@predLabels, levels = levels(response))

+ performance[b, 1] <- mean(response[-bsample] !=

+ predicted3)

+ rfBagg <- randomForestB(BALL[selected,

+], "BStage", bsample, mtry = length(selected),

+ sampsize = I)

+ predictedBagg <- factor(rfBagg@predLabels,

+ levels = levels(response))

+ performance[b, 2] <- mean(response[-bsample] !=

+ predictedBagg)

+ lb <- logitboostB(BALL[selected,], "BStage",

+ bsample, 100)

+ predictedlb <- factor(lb@predLabels, levels = levels(response))

+ performance[b, 3] <- mean(response[-bsample] !=

+ predictedlb)

+ performance[b, 4] <- mean(response[-bsample] !=

+ levels(response)[which.max(tabulate(response[bsample]))])

+ }

+ save(performance, file = "ALLperformance.Rda")

+ } else {

+ load("ALLperformance.Rda")

+ }

The distributions of the misclassification errors of all four models can be
analyzed by the appropriate procedures for paired observations. The global
null-hypothesis of equality of all three models can be tested using

R> friedman.test(as.matrix(performance))

Friedman rank sum test

data: as.matrix(performance)
Friedman chi-squared = 183.6596, df = 3, p-value <
2.2e-16

which leads to a rejection indicating that there are global differences be-
tween the performances of the four candidate models. This result allows us
to conclude that there is a relationship between expression levels and the
stage of B-cell leukemia. A parallel coordinate plot and boxplots help us to
investigate where the differences come from (Figure 1.2).

xii Hothorn, Marcel Dettling, Peter Bühlmann

R> layout(matrix(c(1, 2), ncol = 2))

R> matplot(1:ncol(performance), t(performance), type = "l",

+ col = 1, lty = 1, xlab = "", ylab = "Misclassification error",

+ axes = FALSE)

R> axis(1, at = 1:ncol(performance), labels = colnames(performance))

R> axis(2)

R> box()

R> boxplot(performance)

M
is

cl
as

si
fic

at
io

n
er

ro
r

RF Bagg LBoost Guess

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

●
●

●

●

●

●

RF Bagg LBoost Guess

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Figure 1.2. Parallel coordinates plot and boxplots of the misclassification errors of
random forest (RF), bagging (Bagg), logitboost (LBoost) and guessing (Guess)
for 100 bootstrap samples for the ALL data.

The figures lead to the impression that the three ensemble methods perform
better than guessing without using information about gene expression pro-
files. Random forest and bagging seem to perform equally good, the amount
of the difference can be inspected by confidence intervals, for example via

R> t.test(performance$RF, performance$Bagg, paired = TRUE,

+ conf.int = TRUE)

Paired t-test

data: performance$RF and performance$Bagg
t = -0.4623, df = 99, p-value = 0.6449
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.01627441 0.01012377

1. Computational Inference xiii

sample estimates:
mean of the differences

-0.00307532

We emphasize again, see end of Section 1.5, that the Friedman test and
the graphical illustrations indicate whether there are differences among the
theoretical bootstrap distributions (with B = ∞), although we compute
with B = 100 only.

1.6.2 Renal Cell Cancer

In this second application, we focus on the relationship between gene ex-
pression levels and response variables describing either clinical subtypes of
renal cell cancer or, most interesting in a clinical setting, the survival time
of the patients. The package kidpack offers data of a study by Sültmann et
al. [16] explained in detail in Chapter XXX . The analysis is very similar Chapter ref?
to the steps described for the ALL data in Section 1.6.1.

First, we load the package kidpack which offers the raw data in form of
an exprSet.

R> set.seed(290875)

R> pkgload <- require(kidpack, quietly = TRUE)

R> data(eset)

R> pData(phenoData(eset))$type <- as.factor(eset$type)

The class distribution of clear cell renal cancer ccRCC, papillary renal cell
cancer pRCC and chromophobe renal cell cancer chRCC is depicted in Figure
1.3. Again, a standardized linear statistic for each gene is applied to perform
variable selection:

R> response <- eset$type

R> expressions <- exprs(eset)

R> I <- ncol(exprs(eset))

R> Iindx <- 1:I

R> ymat <- model.matrix(~response - 1)

R> var_selection <- function(indx, p = 100) {

+ y <- ymat[indx, , drop = FALSE]

+ x <- expressions[, indx, drop = FALSE]

+ n <- nrow(y)

+ linstat <- x %*% y

+ Ey <- matrix(colMeans(y), nrow = 1)

+ Vy <- matrix(rowMeans((t(y) - as.vector(Ey))^2),

+ nrow = 1)

+ rSx <- matrix(rowSums(x), ncol = 1)

+ rSx2 <- matrix(rowSums(x^2), ncol = 1)

+ E <- rSx %*% Ey

+ V <- n/(n - 1) * kronecker(Vy, rSx2)

xiv Hothorn, Marcel Dettling, Peter Bühlmann

R> barplot(table(pData(phenoData(eset))$type))

ccRCC chRCC pRCC

0
10

20
30

40
50

Figure 1.3. Class distribution of the renal cell cancer data

+ V <- V - 1/(n - 1) * kronecker(Vy, rSx^2)

+ stats <- abs(linstat - E)/sqrt(V)

+ stats <- do.call("pmax", as.data.frame(stats))

+ return(which(stats > sort(stats)[length(stats) -

+ p]))

+ }

R> selected <- var_selection(Iindx)

and a random forest model for the Ith patient can be fitted to 100 selected
genes using

R> rf <- randomForestB(eset[selected,], "type",

+ Iindx[-1], sampsize = I - 1)

R> rf

MLOutput instance, method= randomForest
Call:
randomForestB(exprObj = eset[selected,], classifLab = "type",

trainInd = Iindx[-1], sampsize = I - 1)
predicted class distribution:
ccRCC

1

1. Computational Inference xv

The misclassification error for the four models (random forest, bagging, log-
itboost and guessing) applied to bootstrap samples of the data is computed
along the following lines:

R> B <- 100

R> if (!file.exists("kidpackperformance.Rda")) {

+ performance <- as.data.frame(matrix(0, nrow = B,

+ ncol = 4))

+ colnames(performance) <- c("RF", "Bagg", "LBoost",

+ "Guess")

+ for (b in 1:B) {

+ bsample <- sample(Iindx, I, replace = TRUE)

+ selected <- var_selection(bsample)

+ rf3 <- randomForestB(eset[selected,],

+ "type", bsample, mtry = 3, sampsize = I)

+ predicted3 <- factor(rf3@predLabels, levels = levels(response))

+ performance[b, 1] <- mean(response[-bsample] !=

+ predicted3)

+ rfBagg <- randomForestB(eset[selected,

+], "type", bsample, mtry = length(selected),

+ sampsize = I)

+ predictedBagg <- factor(rfBagg@predLabels,

+ levels = levels(response))

+ performance[b, 2] <- mean(response[-bsample] !=

+ predictedBagg)

+ lb <- logitboostB(eset[selected,], "type",

+ bsample, 100)

+ predictedlb <- factor(lb@predLabels, levels = levels(response))

+ performance[b, 3] <- mean(response[-bsample] !=

+ predictedlb)

+ performance[b, 4] <- mean(response[-bsample] !=

+ levels(response)[which.max(tabulate(response[bsample]))])

+ }

+ save(performance, file = "kidpackperformance.Rda")

+ } else {

+ load("kidpackperformance.Rda")

+ }

Again, the global null-hypothesis of equality of the performance of the
candidate models can be rejected

R> friedman.test(as.matrix(performance))

Friedman rank sum test

data: as.matrix(performance)

xvi Hothorn, Marcel Dettling, Peter Bühlmann

M
is

cl
as

si
fic

at
io

n
er

ro
r

RF Bagg LBoost Guess

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

● ●●

●

●

●

RF Bagg LBoost Guess
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Figure 1.4. Parallel coordinates plot and boxplots of the misclassification errors of
random forest (RF), bagging (Bagg), logitboost (LBoost) and guessing (Guess)
for 100 bootstrap samples for the renal cell cancer data.

Friedman chi-squared = 217.7669, df = 3, p-value <
2.2e-16

which, in the light of Figure 1.4, can be explained by the superior perfor-
mance of the ensemble methods compared to the model where we guess the
prediction from the prior distribution of the classes itself. Random forests
seem to perform a little bit better compared to bagging and show a per-
formance similar to logitboost, as the confidence interval for the difference
indicate:

R> t.test(performance$RF, performance$Bagg, paired = TRUE,

+ conf.int = TRUE)

Paired t-test

data: performance$RF and performance$Bagg
t = -5.3201, df = 99, p-value = 6.455e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.03182856 -0.01453612
sample estimates:
mean of the differences

-0.02318234

1. Computational Inference xvii

R> t.test(performance$RF, performance$LBoost, paired = TRUE,

+ conf.int = TRUE)

Paired t-test

data: performance$RF and performance$LBoost
t = -0.7676, df = 99, p-value = 0.4445
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.012479551 0.005517086
sample estimates:
mean of the differences

-0.003481233

The same comment as at the end of Section 1.6.1 applies here as well.

1.7 Applications: Survival Analysis

Mainly in clinical studies, the disease free survival time or overall survival
time is of major interest. For each observation, we are provided with the
time for which each patient was under risk and whether a target event
(recurrence, death) occurred or if the observation was stopped for other
reasons (for example a lethal accident). More formally, the response variable
is now bivariate with yi ∈ R+×{0, 1}. We are interested in an assessment of
the survival time to be expected for a patient with expression levels x, i.e.,
an assessment of the conditional probability that this patient will survive
time t given the patients gene expression levels.

Basically, the ingredients of the bagging algorithm for the two-class prob-
lem can be applied to those problems as well. However, it is a challenge to
aggregate the predictions of the multiple trees in order to come up with a
ensemble prediction. A simple average of the predicted survival time did not
prove to be of much use [17]. As an alternative, Hothorn et al. [18] suggested
to aggregate observations instead of predictions directly and compute one
single prediction based on aggregated observations. For each of the M sur-
vival trees fitted to bootstrap samples Lm,m = 1, . . . ,M , we extract the
observations from the bootstrap sample which are element of the same ter-
minal node the predictor value x of interest. Those observations, of course
containing many tied values, are collected over all M bootstrap rounds,
and then one single Kaplan-Meier curve is computed which serves as the
ensemble’s prediction.

R> pkgload <- require(survival, quietly = TRUE)

R> pkgload <- require(ipred, quietly = TRUE)

R> pkgload <- require(exactRankTests, quietly = TRUE)

R> remove <- is.na(pData(phenoData(eset))$survival.time)

xviii Hothorn, Marcel Dettling, Peter Bühlmann

R> seset <- eset[, !remove]

R> response <- Surv(seset$survival.time, seset$died)

R> response[response[, 1] == 0] <- 1

R> expressions <- exprs(seset)

R> exprDF <- as.data.frame(t(expressions))

R> I <- nrow(exprDF)

R> Iindx <- 1:I

The survival time of patients with renal cell cancer is now treated as the
response variable of interest. First, we remove all observations where the
survival time is missing (14 observations) from the data set and redefine
zero survival times (one observation).

The response variable is now an object of class Surv. A slightly differ-
ent test statistic needs to be used for the variable selection. Here, we use
logrank scores as implemented in the cscores method from package exac-
tRankTests and the expression values for each gene and apply a test statistic
measuring the correlation between each gene and the logrank scores which
is standardized by the conditional expectation and variance. Because of
the small number of patients with information on the survival time being
available, we only select 25 genes at a time.

R> var_selection <- function(indx, p = 25) {

+ y <- matrix(cscores(response[indx]), ncol = 1)

+ x <- expressions[, indx, drop = FALSE]

+ n <- nrow(y)

+ linstat <- x %*% y

+ Ey <- matrix(colMeans(y), nrow = 1)

+ Vy <- matrix(rowMeans((t(y) - as.vector(Ey))^2),

+ nrow = 1)

+ rSx <- matrix(rowSums(x), ncol = 1)

+ rSx2 <- matrix(rowSums(x^2), ncol = 1)

+ E <- rSx %*% Ey

+ V <- n/(n - 1) * kronecker(Vy, rSx2)

+ V <- V - 1/(n - 1) * kronecker(Vy, rSx^2)

+ stats <- abs(linstat - E)/sqrt(V)

+ stats <- do.call("pmax", as.data.frame(stats))

+ return(which(stats > sort(stats)[length(stats) -

+ p]))

+ }

R> selected <- var_selection(Iindx)

The ensemble of survial trees is fitted to the data using the bagging method
(package ipred [19]). The predictions for each observation in the learning
sample are computed based on trees whose corresponding bootstrap sam-
ples did not contain the specific observation (out-of-bootstrap prediction)
and are therefore not affected by overfitting problems. In addition, we com-

1. Computational Inference xix

pute a simple Kaplan-Meier curve for the survival times via survfit. The
‘model fit’ of both procedures may be assessed by means of the Brier score
for censored data [20] implemented in the function sbrier.

R> bagg <- bagging(response ~ ., data = exprDF[,

+ selected], ntrees = 100)

R> prKM <- predict(bagg)

R> sbrier(response, prKM)

integrated Brier score
0.1284143

attr(,"time")
[1] 1 65

R> sbrier(response, survfit(response))

integrated Brier score
0.2069643

attr(,"time")
[1] 1 65

This result seems to indicate that the survival ensemble fits the data better
than a model without knowledge of the gene expression data and hence
that there is information about the survival time covered by the expres-
sion levels. The predicted survival curves for each patient and the simple
Kaplan-Meier estimate of all survival times are depicted in Figure 1.5 show-
ing a reasonale differentiation between the patients. If this finding is reliable
needs to be addressed by a benchmark comparison with a model that pre-
dicts the survival time without knowledge of the gene expression values,
i.e., a simple Kaplan-Meier estimate.

R> set.seed(290875)

R> B <- 100

R> if (!file.exists("Survperformance.Rda")) {

+ performance <- as.data.frame(matrix(0, nrow = B,

+ ncol = 2))

+ colnames(performance) <- c("Bagging", "Kaplan-Meier")

+ for (b in 1:B) {

+ bsample <- sample(Iindx, I, replace = TRUE)

+ selected <- var_selection(bsample)

+ bagg <- bagging(response ~ ., data = exprDF[,

+ selected], subset = bsample, ntrees = 100)

+ pr <- predict(bagg, newdata = exprDF[-bsample,

+])

+ KM <- survfit(response[bsample])

+ performance[b, 1] <- sbrier(response[-bsample],

+ pr)

+ performance[b, 2] <- sbrier(response[-bsample],

xx Hothorn, Marcel Dettling, Peter Bühlmann

R> plot(survfit(response), lwd = 4, conf.int = FALSE,

+ xlab = "Survival time in month", ylab = "Probability")

R> KMlines <- lapply(prKM, lines, lty = 2)

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Survival time in month

P
ro

ba
bi

lit
y

Figure 1.5. Out-of-bootstrap predicted survival curves for each patient (dashed
lines) and overall Kaplan-Meier curve (thick solid line).

+ KM)

+ }

+ save(performance, file = "Survperformance.Rda")

+ } else {

+ load("Survperformance.Rda")

+ }

The visualizations of the Brier scores in Figure 1.6 indicate differences
with respect to the variability but not with respect to the mean Brier
score and hence we cannot conclude that the survival time of a patient
can adequately modeled based on information derived from gene expres-
sion profiling. Note that this benchmark experiment is based on a learning
sample of 60 patients, 42 of which are censored. This implies that, on aver-
age, only 38 unique patients are included in one bootstrap learning sample,
which explains the large variability.

The same comment as at the end of Section 1.6.1 applies here as well.

1. Computational Inference xxi

B
rie

r
sc

or
es

Bagging Kaplan−Meier

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

●

Bagging Kaplan−Meier
0.

10
0.

15
0.

20
0.

25
0.

30
0.

35

Figure 1.6. Parallel coordinates plot and boxplots of the Brier scores of 100
bootstrap samples for renal cell cancer survival.

1.8 Conclusions

Modeling the relationship between a clinically interesting response vari-
able, such as tumor subtype of survival time, and gene expression levels of
thousands of genes for only a small number of patients is a challenge to
statistical methodology. The analyses in this chapter give an overview on
ensemble methods for modeling high-dimensional gene expression data and
illustrate both advantages and shortcomings. For typical sample sizes in the
order of 100 patients, ensemble methods seem appropriate for constructing
models for the prediction of tumor subtypes of renal cell cancer or stages
of B-cell leukemia. It should be noted though that ensemble methods as
used here are not more than black-box prediction methods. Modeling cen-
sored time-to-event data in such a high-dimensional setting is even more
difficult, especially when a substantial number of patients are censored. Fi-
nally, we would like to mention that much research is currently conducted
in the field of ensemble methods in both statistics and machine learning
and one can expect further methodological developments and new software
packages offering more functionality in the near future.

xxii Hothorn, Marcel Dettling, Peter Bühlmann

References

[1] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.: Classification
and regression trees.California, Wadsworth, 1984.

[2] Therneau, T. M. and Atkinson, E. J.An introduction to recursive partition-
ing using the rpart routine.Technical Report 61, Section of Biostatistics,
Mayo Clinic, Rochester, 1997.

[3] Breiman, L.: Bagging predictors.Machine Learning.24(2): 123–140, 1996.

[4] Bühlmann, P. and Yu, B.: Analyzing bagging.The Annals of Statistics.30(4):
927–961, 2002.

[5] Breiman, L.: Random forests.Machine Learning.45(1): 5–32, 2001.

[6] Freund, Y. and Schapire, R. E.: Experiments with a new boosting
algorithm.In Saitta, L. (Ed.): Machine Learning: Proceedings of the Thir-
teenth International Conference.San Francisco, Morgan Kaufmann, 1996, pp
148–156.

[7] Friedman, J., Hastie, T., and Tibshirani, R.: Additive logistic regression:
A statistical view of boosting.The Annals of Statistics.28(2): 337–407,
2000.with Discussion.

[8] Dettling, M. and Bühlmann, P.: Boosting for tumor classification with gene
expression data.Bioinformatics.19(9): 1061–1069, 2003.

[9] Dettling, M. and Bühlmann, P.: Finding predictive gene groups from
microarray data.Journal of Multivariate Analysis.90(1): 106–131, 2004.

[10] Hastie, T., Tibshirani, R., and Friedman, J. H.: The Elements of Statistical
Learning : Data Mining, Inference, and Prediction.Springer Verlag, 2001.

[11] Breiman, L.Out-of-bag estimation.Technical report, Statistics Department,
University of California Berkeley, Berkeley CA 94708, 1996.

[12] Hothorn, T., Leisch, F., Zeileis, A., and Hornik, K.The design and analysis
of benchmark experiments.Technical Report 82, SFB Adaptive Informations
Systems and Management in Economics and Management Science, 2004.

[13] Chiaretti, S., Li, X., Gentleman, R., Vitale, A., Vignetti, M., Mandelli, F.,
Ritz, J., and Foa, R.: Gene expression profile of adult T-cell acute lympho-
cytic leukemia identifies distinct subsets of patients with different response
to therapy and survival.Blood.103(7): 2771–2778, 2004.

[14] Strasser, H. and Weber, C.: On the asymptotic theory of permutation
statistics.Mathematical Methods of Statistics.8: 220–250, 1999.

[15] Liaw, A. and Wiener, M.: Classification and regression by randomForest.R
News.2(3): 18–22, December 2002.

[16] Sültmann, H., von Heydebreck, A., Huber, W., Kuner, R., Buneß, A.,
Vogt, M., Gunawan, B., Vingron, M., Füześı, L., and Poustka, A.:
Gene expression in kidney cancer is associated with novel tumor sub-
types, cytogenetic abnormalities and metastasis formation.Clinical Cancer
Research.2004.accepted.

[17] Dannegger, F.: Tree stability diagnostics and some remedies for instabil-
ity.Statistics in Medicine.19(4): 475–491, 2000.

1. Computational Inference xxiii

[18] Hothorn, T., Lausen, B., Benner, A., and Radespiel-Tröger, M.: Bagging
survival trees.Statistics in Medicine.23(1): 77–91, 2004.

[19] Peters, A., Hothorn, T., and Lausen, B.: ipred: Improved predictors.R
News.2(2): 33–36, June 2002.ISSN 1609-3631.

[20] Graf, E., Schmoor, C., Sauerbrei, W., and Schumacher, M.: Assessment and
comparison of prognostic classification schemes for survival data.Statistics
in Medicine.18(17-18): 2529–2545, November 1999.

