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We present a selective review on high-dimensional statistics where the dimensionality
of the unknown parameter in a model can be much larger than the sample size in a
dataset (e.g. the number of people in a study). Particular attention is given to re-
cent developments for quantifying uncertainty in high-dimensional scenarios. Assessing
statistical uncertainties enables to describe some degree of replicability of scientific find-
ings, an ingredient of key importance for many applications. We also show here how
modern high-dimensional statistics offers new perspectives in an important area in ge-
netics: novel ways of analyzing genome-wide association studies, towards inferring more
causal-oriented conclusions.
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1. Introduction

High-dimensional statistics is an emerging area where statistical inference is pur-
sued for models with very many parameters. The wording “very many” is here
always relative to the sample size of a dataset: denoting by d the number of
unknown parameters and by n the sample size of a dataset, “very many” or “high-
dimensional” means that d � n. Such situations arise very often in nowadays
applications. For example in genetics or genomics, thousands or 100-thousands
of variables are measured for only n ≈ 10 − 1000 individuals: many models have
at least one unknown parameter for every measured variable (as e.g. in a linear
model introduced in (2)), and thus we have that d� n. When making statistical
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inference for the d parameters based on n data points, the problem is ill-posed
in general: a key assumption is sparsity which ensures that the inference problem
has a well-posed solution and is (nearly) optimal in terms of accuracy: sparsity
means that many of the d unknown parameters are (nearly) irrelevant, and such an
assumption seems to be well supported by empirical findings in practice. This ar-
ticle will emphasize the importance of high-dimensional statistics for an important
problem in genetics and genomics with so-called genome-wide association studies
(GWAS): there, the number of genetic variables (single nucleotide polymorphisms)
is about 0.5 − 1 · 106 and one or a few outcomes of say a disease status are mea-
sured as well, while the number of individuals in a single study is in the range
of n ≈ 1′000 − 5′000. As of 2011, 1’200 human GWAS over 200 diseases have
been completed (Wikipedia on “Genome-wide association study”), and GWAS is
nowadays a major approach with fair amount of replicability [15] to understand
genetic-disease status associations. We will show in Section 5 that novel high-
dimensional statistics leads to new methodology and tools for GWAS. Of course,
there are other major application areas where high-dimensional statistics plays a
key role: compressed sensing [22],[21],[13],[12] which can be seen as a “noise-free
version” of estimation in high-dimensional statistics has become crucial in modern
signal processing with high impact on imaging and fast MRI [40],[27],[36].

Much has happened in the last 2 decades in high-dimensional statistics with
an almost exponential growth of contributions. We refer to the monographs
[33],[8],[30],[34] which contain many references. This article reviews some of the
important but nowadays rather standard methodology and theory (Section 2), in-
cludes more recent results on uncertainty quantification and statistical confidence
statements (Sections 3 and 4) and then discusses the impact of the methods for
GWAS (Section 5).

2. Data and high-dimensional models

We consider here the standard set-up in statistics. We have observed data z1, . . . zn
(with values in a sub-space of Rq) and these values are assumed to be realiza-
tions of i.i.d. (i.e., independent, identically distributed) random variables (vectors)
Z1, . . . , Zn, each having a probability distribution Pθ0 which is known up to an
unknown parameter θ0 ∈ Rd. That is,

Z1, . . . , Zn i.i.d. ∼ Pθ0 . (1)

The superscript “0” indicates that θ0 is the true underlying parameter, and we
implicitly think that the probability distribution Pθ comes from a certain model.
Of course, if the model is not correct for the observed data, the notion of a true
parameter θ0 does not make sense. We will discuss the issue of model misspecifi-
cation in Section 6. As mentioned already, the scenario is called high-dimensional
if dim(θ) = d is (much) larger than sample size n.

The i.i.d formulation with a known probability distribution up to an unknown
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parameter θ0 in (1) is sometimes too stringent. We relax it for the case of a fixed
design regression model in (2).

2.1. High-dimensional linear model. Consider the following set-up. The data
points zi = (yi, xi) (i = 1, . . . , n) where yi ∈ Y ⊆ R is a univariate response
variable and xi ∈ X ⊆ Rp are p-dimensional covariates. The corresponding random
variables as in (1) are denoted by Zi = (Yi, Xi).

A linear model is relating Y and X as follows:

Yi =

p∑
j=1

β0
jX

(j)
i + εi (i = 1, . . . , n), (2)

where the random noise terms ε1, . . . , εn are i.i.d. with E[εi] = 0, Var(εi) = σ2
ε <

∞ and εi independent of Xi (for all i). The covariates Xi can be random or
deterministic, and the responses Yi are random. We often use the short-hand
notation

Y = Xβ0 + ε,

where Yn×1 = (Y1, . . . , Yn)T , εn×1 = (ε1, . . . , εn)T and Xn×p = [X(1), . . . , X(p)]

with X(j) = (X
(j)
1 , . . . , X

(j)
n )T is the n × 1 vector of the observed jth covariate.

When assuming fixed (deterministic) Xi, the assumption in (1) does not hold: the
Yi’s are independent but they have different distributions depending on the value
of the Xi’s whereas the noise terms are i.i.d. Furthermore, the distribution of the
noise does not need to be known. From a methodological point of view, random
or fixed covariates do not need a different treatment, and for mathematical theory
we can write instead of (1):

Y1, . . . , Yn independent, Yi|Xi ∼ Pθ0|Xi
,

with θ0 = β0 and where Pθ0|Xi
is given by the distribution of the noise with mean

zero which might be known up to unknown parameters (e.g. N (0, σ2) Gaussian
mean zero with unknown variance σ2) or which might be entirely unknown.

2.1.1. Importance of covariates and interpretation of the regression co-
efficients. Like in classical regression one would typically measure the importance
of a single covariate X(j) by the magnitude of the absolute value of the regression
coefficient |β0

j |. This makes only sense after normalization of the covariates to the

same (empirical) variance, e.g., the empirical variance of X(j) is equal to one. We
implicitly assume such a standardization in the sequel of the article. Note that
the importance can be seen as the absolute value of the partial derivative w.r.t.
x(j) of the regression function m(x) =

∑p
j=1 β

0
jx

(j) and it can also be interpreted

as the change in the regression function m(x) when changing x(j) by one unit.
A stochastic interpretation of the regression coefficient with random X is in

terms of partial correlation (which is equal to the conditional correlation in random
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design Gaussian models). Consider the partial correlation Parcor(Y,X(j)|{X(k); k 6=
j}). Then

β0
j = Parcor(Y,X(j)|{X(k); k 6= j})

√
Kj+1,j+1√
K1,1

= −K1,j+1

K1,1
, (3)

where K = Σ(Y,X)−1 and Σ(Y,X) = Cov((Y,X(1), . . . , X(p))) is the (p + 1) ×
(p + 1) covariance matrix of the variables Y,X(1), . . . , X(p). Since the diagonal
elements of K = Σ(Y,X)−1 are non-zero we see that:

β0
j = 0 ⇐⇒ Parcor(Y,X(j)|{X(k); k 6= j}) = 0 ⇐⇒ K1,j+1 = 0.

Thus, by the first equivalence above, the regression coefficient measures the strength
of linear association of X(j) on Y which has not already been explained by all the
other variables {X(k); k 6= j}; and by the second equivalence, whether a regression
coefficient is zero is encoded in the inverse covariance matrix K = Σ(Y,X)−1.

The regression coefficient β0
j is also linked to direct causal effects, a property

which we will exploit in Section 5.1.

2.1.2. Marginal correlations. A simple-minded approach consists of consider-
ing marginal correlations

ρj = Cor(Y,X(j)) (j = 1, . . . , p)

and sort the importance of a covariate X(j) for the response Y according to the
magnitude of the absolute values |ρj |.

In terms of the covariance matrix Σ(Y,X) in formula (3) we have that

ρj = Σ(Y,X)1,j+1/
√

Σ(Y,X)1,1Σ(Y,X)j+1,j+1

and the value of ρj does not depend on how many and which other covariates
{Xk; k 6= j} are in the model; in particular, the marginal correlations are scaled
entries of the covariance matrix Σ(Y,X), in contrast to involving its inverse as for
the regression coefficients, see formula (3).

Marginal correlations ρj may exhibit substantial magnitude due to high cor-
relations among the covariates: for example, if β0

1 is large and β0
2 = 0 but the

correlation between X(1) and X(2) is large, then ρ2 will be large (and ρ1 as well)
despite that β0

2 = 0. Under a restrictive assumption on the covariance matrix of
the covariates, a sparsity condition on β0 and a condition requiring that the non-
zero elements of β0 are sufficiently large, it is shown that capturing all covariates
with the largest marginal correlations will include the set of all non-zero regression
coefficients [25]: the wording “the largest” is depending on a tuning parameter.
Such a marginal correlation screening procedure is simple and its corresponding
empirical counterpart is easy to be estimated from finite data by using standard
empirical correlations between pairs of variables.

One can also perform other variable screening methods: very popular is the
one based on `1-norm regularization, as discussed in Section 2.3.1.
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2.2. Estimation in high-dimensional linear models. Consider for simplicity
the high-dimensional linear model as in (2). If the unknown parameter of interest
has dimensionality dim(β0) = p � n, we need to employ some regularization
for achieving accurate statistical estimation. A very popular choice is regularized
least squares estimation procedures such as the Lasso (Least absolute shrinkage
and selection operator) based on `1-norm regularization [52]:

β̂ = β̂(λ) = argminβ
(
‖Y −Xβ‖22/n+ λ‖β‖1

)
, (4)

where λ > 0 is a tuning parameter for choosing the amount of regularization.
The superscript “ ˆ ” denotes throughout this article an estimator (or its realized
value based on the data). Historically older is Tikhonov or Ridge regularized least
squares:

β̂ = β̂(λ) = argminβ
(
‖Y −Xβ‖22/n+ λ‖β‖22

)
. (5)

Due to the geometry of the `1-norm, the Lasso in (4) leads to a sparse estimator

where some (or many) components equal exactly zero, i.e., β̂j(λ) = 0 for some or
many indices j. The amount of sparsity depends on the choice of the regularization
parameter and the data. This is in contrast to `2-norm regularization in (5) where

all the estimated regression coefficients are different from zero, i.e., β̂j 6= 0 for all
j.

2.3. Statistical properties of the Lasso. As mentioned above, the Lasso in
(4) leads to a sparse estimator. Thus, we would expect that the Lasso performs
well if the unknown underlying parameter β0 is sparse with many entries being
exactly zero. And indeed, sparsity of β0 is a key condition for the developed
theory. Consider the following assumptions.

(A1) Sparsity: Denote by S0 = supp(β0) = {j; β0
j 6= 0} the support of β0,

sometimes also called the active set of the regression parameter β0, with
cardinality s0 = |S0|. We will often assume an upper bound for s0, as
appearing in e.g. the discussion after Proposition 2.2.

Furthermore, there is a general identifiability problem: for p > n, the design
matrix has rank(X) ≤ n < p and the null-space of X is not empty. Thus, if we
want to infer β0 from data we need an additional identifiability assumption:

(A2) Compatibility condition [53]: For some φ0 > 0 and for all β satisfying
‖βSc

0
‖1 ≤ 3‖βS0

‖1 it holds that

‖βS0
‖21 ≤ (βT Σ̂β)s0/φ

2
0,

where Σ̂ = XTX/n and βS , for an index set S ⊆ {1, . . . , p}, has elements
set to zero outside the set S, i.e., (βS)j = 0 (j /∈ S) and (βS)j = βj (j ∈ S).
The value φ0 > 0 is called the compatibility constant.
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The factor 3 in the definition of (A2) is not crucial and Σ̂ can be thought of as
an empirical covariance matrix of the p covariates. Assumption (A2) is sometimes
called `1 restricted eigenvalue condition for Σ̂: note the analogy to the classical
concept of the smallest eigenvalue λ2min(Σ̂) which satisfies for all β:

‖β‖22 ≤ βT Σ̂β/λ2min(Σ̂).

(The additional factor s0 in (A2) occurs due to using the `1- instead of the `2-
norm). Since Σ̂ is singular (due to p > n) we have that λ2min(Σ̂) = 0 and the
bound above is uninformative. That is why one introduces the concept of restricted
eigenvalues where lower-bounding the quadratic form βΣ̂β has only to hold for a
restricted set of β satisfying the cone condition ‖βSc

0
‖1 ≤ 3‖βS0‖1. We will give

in Proposition 4.1 a sufficient condition to ensure that the compatibility condition
holds. We also note that the compatibility condition is weaker than requiring the
celebrated restricted isometry property from compressed sensing [13, cf.] or than
the restricted `2-eigenvalue [1]: a comparison of these conditions has been given
in [55].

Asymptotics. Throughout the paper, all asymptotic statements are for a sce-
nario where both p and n tend to infinity, allowing for p� n. Thereby, the model
e.g. as in (2) changes, and we thus always adopt a “changing model” (sometimes
called “triangular array”) asymptotics.

The following oracle inequality is derived in [8, Th.6.1]:

Theorem 2.1. Consider a linear model as in (2) with fixed design X and consider
the sparsity s0 in (A1) and the compatibility constant φ0 > 0 in (A2). Then, on
the event F = {maxj=1,...,p 2|εTX(j)/n| ≤ λ0} (see Proposition 2.2 below) and
when using the Lasso in (4) with λ ≥ 2λ0 it holds :

‖X(β̂ − β0)‖22/n+ λ‖β̂ − β0‖1 ≤ 4λ2s0/φ
2
0.

Furthermore, the probability for the event F can be lower-bounded for i.i.d.
Gaussian errors [8, Lem.6.2].

Proposition 2.2. Consider a linear model as in (2) with fixed design and Gaus-
sian errors ε ∼ Nn(0, σ2I). Assume that the covariates are scaled such that

Σ̂j,j = 1 for all j, where Σ̂ = XTX/n. Then, for λ0 ≥ 2σ
√

t2+2 log(p)
n , t > 0,

P[F ] ≥ 1− 2 exp(−t2/2).

Proposition 2.2 says that for Gaussian errors, the regularization parameter
should be chosen as λ = 2λ0 �

√
log(p)/n so that P[F ] becomes overwhelmingly

large. With that rate we obtain from Theorem 2.1, assuming φ0 in (A2) is bounded
away from zero:

‖X(β̂ − β0)‖22/n = OP (s0 log(p)/n),

‖β̂ − β0‖1 = OP (s0
√

log(p)/n).
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The first bound establishes near optimality for estimating the regression surface
Xβ0 and for predicting new observations: would we know the set of true relevant
variables S0, the optimal rate is OP (s0/n) and thus, we pay a price of log(p)
by not knowing which of the variables have non-zero regression coefficients. The
second bound establishes a bound for the estimation error for the unknown high-
dimensional parameter β0 in terms of the `1-norm. For this (and the former) to
converge to zero, we need that the sparsity satisfies s0 = o(

√
n/ log(p)). This can

be improved to s0 = o(n/ log(p)) when looking at the estimation error ‖β̂ − β0‖2
and when slightly strengthening assumption (A2) to an `2 restricted eigenvalue
condition [1].

Proposition 2.2 can be generalized in various directions, dealing e.g. with
correlated error terms, and with non-Gaussian errors. Regarding the latter, one
can assume independent errors εi with mean zero and finite second moments, and

bounded covariates maxi=1,...,n;j=1,...,p |X(j)
i | ≤ M < ∞ for some constant M .

Then, the same qualitative statement as in Proposition 2.2 holds [8, Ex.14.3].

We now discuss a scenario where the compatibility assumption (A2) holds.
Consider the following setting:

(A3) The rows of X are arising from i.i.d. sampling from a probability distribu-
tion with covariance matrix Σ. Once they are sampled, they are considered
as fixed so that X is a fixed design matrix as assumed in Theorem 2.1.

The following proposition is given in asymptotic form where p ≥ n→∞ and is a
consequence of the non-asymptotic result in [8, Cor.6.8].

Proposition 2.3. Consider the setting in (A3) with sub-Gaussian random vari-

ables X
(j)
i with bounded sub-Gaussian norms and with smallest eigenvalue for the

covariance matrix λmin(Σ) ≥ L > 0. Assume that s0 = o(
√
n/ log(p)). Then, with

probability (w.r.t. sampling the rows of X) tending to one as p ≥ n → ∞, the
matrix Σ̂ satisfies (A2) with φ20 ≥ L/2.

Proposition 4.1 implies the somewhat “obscure” compatibility condition (A2),
under the assumptions of sparsity in (A1), sufficiently nice distribution and suffi-
ciently nice behavior of the population covariance matrix Σ (which has no relation
to the sample size of observed data) in the setting (A3).

2.3.1. Variable screening and selection. Theorem 2.1 is about estimation of
the regression surface Xβ0 (w.r.t. `2-norm) and of the regression parameter vector
β0 with respect to the `1-norm. Since the Lasso is a sparse estimator one would
hope for good variable selection properties: denote by Ŝ = {j; β̂j 6= 0} the support

of the estimated parameter vector β̂. We would hope that

Ŝ = S0 with high probability, (6)

or being at least approximately equal. Such a property of correct variable selec-
tion or support recovery in (6) is often too ambitious in practice. The problem
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is mathematically well understood as there are two sufficient and essentially nec-
essary conditions: the first one concerns that the non-zero coefficients should be
sufficiently large, namely a so-called beta-min condition

min{|β0
j |; β0

j 6= 0} = min
j∈Sc

0

|β0
j | ≥ C(s0, p, n), C(s0, p, n) �

√
s0 log(p)/n, (7)

and the second one is a condition on the design matrix X, a so-called irrepre-
sentable condition which has been given first in [44, 63, 61]. While a beta-min
condition as in (7) is unavoidable, at least requiring a lower bound of the order√

log(p)/n [39, cf.], the second irrepresentable condition on the design is rather
strong. When relaxing such an irrepresentable condition, we loose the exact vari-
able selection property in (6) but still obtain a very useful screening property,
saying that

Ŝ ⊇ S0 with high probability. (8)

The variable screening property holds on the set F in Theorem 2.1, assuming
the compatibility condition (A2) on the design X and a beta-min condition with
C(s0, p, n) > 4λs0/φ

2
0 � s0

√
log(p)/n where for the latter asymptotic relation

we implicitly require that φ20 ≥ L > 0 is bounded away from zero. In fact,
such a result is an immediate consequence of Theorem 2.1 using the bound for
‖β̂ − β0‖1 ≤ 4λs0/φ

2
0. When assuming a slightly stronger restricted eigenvalue

condition on X, a beta-min condition with C(s0, p, n) �
√
s0 log(p)/n is sufficient

for the screening property in (8) [1, cf.].
The variable screening property in (8) is a highly interesting dimension reduc-

tion result: assuming a compatibility condition like (A2), the cardinality of the
set of Lasso-estimated variables is |Ŝ| = |Ŝ(λ)| ≤ min(n, p) for all parameters λ.
Thus, thanks to (8), we have reduced the number of variables to at most min(n, p)
without having dropped an active variable from S0 which is a massive dimension-
ality reduction if p � n (e.g. a reduction from p ≈ 106 to n ≈ O(103) variables
in datasets as discussed in Section 5); that is, the Lasso would keep all variables
from S0 and would discard many noise variables form Sc0.

While correct variable selection (6) with the Lasso necessarily requires strong
conditions, variable screening (8) can be established under weaker assumptions
on the design X (namely a compatibility instead of an irrepresentable condition).
The name Lasso is a shortcut for Least Absolute Shrinkage and Selection Operator
[52], but in view of the mentioned results above, it should rather be translated as
Least Absolute Shrinkage and Screening Operator [3].

Sufficient conditions for (8) have been mentioned above: they might still be
rather strong involving a beta-min assumption. Empirical evidence suggests that
the Lasso and other sparse estimators are often rather “unstable” indicating that
variable screening is a too ambitious goal. To quantify stability and the relevance
of selected variables, stability selection [45] has been proposed, and the technique
in connection with the Lasso is nowadays used in a wide range of applications.
Other methods to quantify uncertainty and reliability are discussed in Section 3.
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2.3.2. Main ideas to prove Theorem 2.1 and Proposition 2.2. The key
step is to separate the stochastic and deterministic part: in the linear model with
fixed design, the only stochastic element is the noise term ε = (ε1, . . . , εn)T which
arises in the event F .

Sketch of the proof for Theorem 2.1. The algebraic manipulations go as
follows. Using the fact the β̂ minimizes the `1-norm regularized squared error we
get

‖Y −Xβ̂‖22/n+ λ‖β̂‖1 ≤ ‖Y −Xβ0‖22/n+ λ‖β0‖1

and from this the so-called Basic Inequality [8, Lem.6.1]:

‖X(β̂ − β0)‖22/n+ λ‖β̂‖1 ≤ 2εTX(β̂ − β0)/n+ λ‖β0‖1.

One the right-hand side, the stochastic part can be easily bounded as follows:

|2εTX(β̂ − β0)/n| ≤ max
j=1,...,p

|2εTX(j)/n|‖β̂ − β0‖1,

and thus on F :

|2εTX(β̂ − β0)/n| ≤ λ0‖β̂ − β0‖1.

It is at this first step where the stochastic part is separated by using the event F .
With some further elementary operations involving the triangle inequality for

the `1-norm we obtain [8, Lem.6.3]: on the event F and for λ ≥ 2λ0,

2‖X(β̂ − β0)‖22/n+ λ‖β̂Sc
0
‖1 ≤ 3λ‖β̂S0

− β0
S0‖1.

We note that ‖X(β̂−β0)‖22/n = (β̂−β0)T Σ̂(β̂−β0). Thanks to the compatibility

condition (A2), we can thus relate ‖β̂S0
− β0

S0‖1 (from the right-hand side) to

‖X(β̂ − β0)‖22/n (from the left-hand side), namely:

‖β̂S0
− β0

S0
‖1 ≤

(
‖X(β̂ − β0)‖22/n

s0
φ20

)1/2

, (9)

by showing that β̂ − β0 satisfies the cone condition on F). Simple algebra then
leads to the statement in Theorem 2.1. The sparsity s0 from assumption (A1) and
the compatibility condition (A2) come only once into play, namely in the bound
in (9).

Sketch of the proof for Proposition 2.2. Due to the Gaussian assumption
Vj = εTX(j)/(σ

√
n) ∼ N (0, 1). Although the Vj ’s are dependent, we can use the

union bound to obtain

P[ max
j=1,...,p

|Vj | > c] ≤ 2p exp(−c2/2).

This then leads to the statement of Proposition 2.2.
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3. Assigning uncertainty

It is often of interest to assign uncertainties for inferring the true underlying regres-
sion coefficients β0

j (j = 1, . . . , p) in the linear model (2). The classical concept

of confidence intervals for single coefficients β0
j or confidence regions for a set

G ⊆ {1, . . . , p} of coefficients {β0
j ; j ∈ G} can capture this. Somewhat easier is

the case with statistical hypothesis testing for single or group hypotheses:

single: H0,j : β0
j = 0 versus HA,j : β0

j 6= 0, (10)

group: H0,G : β0
j = 0 ∀ j ∈ G versus HA,G : β0

j 6= 0 for at least one j ∈ G. (11)

These hypotheses are rather natural and often of major interest, namely for infer-
ring whether a regression coefficient is zero (i.e., the corresponding covariate has
no effect) or not.

A result as in Theorem 2.1 does not quantify uncertainty in a refined way by
considering a properly normalized limiting distribution of β̂ − β0. Such a limiting
distribution for the Lasso is very difficult to derive in the high-dimensional setting:
with a fixed dimension asymptotics where p remains fixed and n→∞, the problem
has been solved with a non-continuous limiting distribution (due to the sparsity
of the estimator) [38]. Owing to this simple case and due to the non-continuity of
the limit one has to accept that an undesirable super-efficiency phenomenon will
arise: the Lasso would show good asymptotic behavior to estimate the regression
parameters whose values equal zero, and it will be rather poor for the non-zero
parameters. This is in analogy to Hodges example of a super-efficient estima-
tor. To circumvent this problem, we will look at a “de-biased” or “de-sparsified”
Lasso estimator in Section 3.1 having a Gaussian (and hence smooth) limiting
distribution.

3.1. The de-sparsified Lasso. The de-sparsified Lasso [56], originally intro-
duced under the name de-biased Lasso [60], is an estimator which exhibits optimal
performance for estimating low-dimensional components of β0, as described in
Theorem 3.1 and (14) or (15). A pragmatic motivation is given by least squares
estimation in the low-dimensional case p < n with rank(X) = p ≤ n:

β̂LS = argminβ‖Y −Xβ‖22/n.

Then, it holds that for the jth component,

β̂LS,j =
ZTLS,jY

ZTLS,jX
(j)

(j = 1, . . . , p),

where ZLS,j is the residual vector of least squares regression ofX(j) versus {X(k); k 6=
j}. If p > n, and thus rank(X) < p, this construction is not possible since ZLS,j

would be the zero-vector. The idea is then to replace the least squares regression
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in the construction of ZLS,j by a Lasso regression:

Zj = X(j) −X−j γ̂j ,
γ̂j = argminγ∈Rp−1(‖X(j) −X−jγ‖22/n+ λX‖γ‖1),

where X−j is the n× (p− 1) sub-matrix of X without its jth column. Analogous
to the least squares representation above, we consider

ZTj Y

ZTj X
(j)

= β0
j +

∑
k 6=j

ZTj X
(k)

ZTj X
(j)
β0
k︸ ︷︷ ︸

bias

+
ZTj ε

ZTj X
(j)︸ ︷︷ ︸

noise

. (12)

Since there is now a bias (in contrast to least squares in p < n settings where
ZTLS,jX

(k) = 0 (k 6= j) due to orthogonality of the projection), we correct this bias

term by plugging in the Lasso estimator β̂:

b̂j =
ZTj Y

ZTj X
(j)
−
∑
k 6=j

ZTj X
(k)

ZTj X
(j)
β̂k (j = 1, . . . , p). (13)

The estimator b̂ = (b̂1, . . . , b̂p)
T is called the de-sparsified Lasso, owing its name

to the fact that b̂j 6= 0 for all j. This estimator involves two tuning parameters,

namely λX in the construction of Zj and λ for the Lasso estimator β̂.
One can derive a result as follows.

Theorem 3.1. Consider a linear model as in (2) with fixed design X and Gaussian
errors ε ∼ Nn(0, σ2I). Then, the de-sparsified Lasso estimator in (13) satisfies

√
n(b̂j − β0

j ) = Wj + ∆j (j = 1, . . . , p),

(W1, . . . ,Wp)
T ∼ Np(0, σ2Ω), Ωj,k =

n−1ZTj Z
(k)

n−1ZTj X
(j)n−1ZTk X

(k)

max
j=1,...,p

|∆j | ≤
√
nλX

minj=1,...,p |n−1ZTj X(j)|
‖β̂ − β0‖1.

The issue is now to show that maxj=1,...,p |∆j | = oP (1) which would then imply
a Gaussian limit or functions thereof, see (17). We know from Theorem 2.1 using
λ �

√
log(p)/n that for sparse settings as formulated in assumption (A1) and

assuming the compatibility condition (A2) we have that

‖β̂ − β0‖1 = OP (s0
√

log(p)/n).

Furthermore, one can argue that minj=1,...,p |n−1ZTj X(j)| ≥ L > 0 is bounded

from below when adopting the setting as in (A3), using λx �
√

log(p)/n and
assuming regularity conditions. This then leads to

max
j=1,...,p

|∆j | = OP (
√
nλXs0

√
log(p)/n) = OP (s0 log(p)/

√
n),
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and the right-hand side converges to zero if s0 = o(
√
n/ log(p)). Summarizing,

assuming (A1) with s0 = o(
√
n/ log(p)), (A2), (A3) and Gaussian errors (and

some additional minor conditions) we obtain

√
n(b̂− β0) = W + ∆, W ∼ Np(0, σ2Ω), max

j=1,...,p
|∆j | = oP (1). (14)

Furthermore, when assuming sparsity of Σ−1 in (A3) one can establish optimality
saying that Ω is asymptotically the smallest covariance matrix among all regular
estimators [60, 56], that is, it reaches the so-called semiparametric information
bound [2, cf.].

We note that the scaled version is sometimes a better representation and pref-
erentially used for simultaneous inference (see later (18)):

√
n(b̂j − β0

j )/
√

Ωj,j =
|ZTj Xj/n|
‖Zj‖2/

√
n

√
n(b̂j − β0

j ) =
|ZTj Xj/n|
‖Zj‖2/

√
n
Wj + ∆̃j ,

where

∆̃j =
|ZTj Xj/n|
‖Zj‖2/

√
n

∆j , max
j=1,...,p

|∆̃j | ≤ λX
1

‖Zj‖2/
√
n
‖β̂ − β0‖1 = oP (1), (15)

assuming the conditions above for the last bound in the second line. In the fol-
lowing, we often use the scaled version.

Formula (14) and (15) establish an asymptotic pivotal property of the de-

sparsified Lasso estimator b̂. It can be directly used to construct confidence inter-
vals or statistical hypothesis tests for single parameters β0

j in the usual fashion,

observing that σ2 can be estimated as

σ̂2 = ‖Y −Xβ̂‖22/n,

or using the factor (n− ŝ)−1 instead of n−1, where ŝ = |supp(β̂)| denotes the num-
ber of non-zero estimated regression coefficients. A two-sided confidence interval
with coverage level 1− α for a single parameter β0

j is

b̂j ± n−1/2Φ−1(1− α/2)σ̂
√

Ωj,j . (16)

3.1.1. Simultaneous inference and multiple testing adjustment. Formula
(15) implies that we can do simultaneous inference with respect to the sup-norm.
That is, for any group G ⊆ {1, . . . , p}, regardless of its cardinality,

max
j∈G
|
√
n(b̂j − β0

j )/
√

Ωj,j | = max
j∈G
|Wj/

√
Ωj,j |+ oP (1). (17)

Simultaneous hypothesis tests. As a concrete example, consider a hypothesis
H0,G for a group G ⊆ {1, . . . , p} as described in (11). Formula (15) then implies:
under H0,G,

max
j∈G
|b̂j/

√
Ωj,j | = max

j∈G
|Wj/

√
Ωj,j |+ oP (1), (18)
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and this can be used to construct a statistical test for H0,G. The distribution of
maxj∈G |Wj/

√
Ωj,j | is difficult to derive analytically but it can be easily simulated

and estimated:

P[max
j∈G
|Wj/

√
Ωj,j | ≤ c] = G(c/σ) = G(c/σ̂) + oP (1)

where G(c) = P[maxj∈G |Vj/
√

Ωj,j | ≤ c] with Vj = Wj/σ is straightforward to
simulate since the covariance structure of {Vj ; j ∈ G} is known. We would expect

good power of the test statistics maxj∈G |b̂j/
√

Ωj,j | if the alternative is sparse with
only a few β0

j 6= 0 for j ∈ G.

Multiple testing adjustment. Formula (18) also allows for multiple testing
adjustment among m tests, with respect to the familywise error rate (FWER)
defined as

FWER = P[at least one false positive among m hypothesis tests].

When performing m hypothesis tests, it is important to adjust for multiplicity. If
each of these m tests is performed at significance level α, it holds that FWER ≤
mα. This is due to the union bound but might be rather conservative in general.
However, if the tests were independent, then FWER = (1 − (1 − α)m) ≈ mα
which essentially achieves the upper bound. We can simply adjust the statistical
tests by dividing the significance level by m or multiplying the corresponding p-
values by m: this is known as the Bonferroni correction. However, for dependent
tests, such a Bonferroni correction is overly conservative. When using the exact
distribution in (18) one obtains much more powerful multiple testing adjustment
for controlling the familywise error rate: this is essentially the Westfall-Young
procedure [58] which has been shown to be optimal in certain settings [47]. Thus,
multiple testing adjustment based on the simultaneous pivot as in (18) leads to
a procedure which controls the familywise error rate and yet it has good power,
particularly for settings with dependent tests and in comparison to a Bonferroni
(or Bonferroni-Holm) multiple testing adjustment.

As we have seen above, simultaneous inference with respect to the sup-norm
is a straightforward implication of Theorem 2.1 and (14). When looking at other
norms such as the `2-norm, i.e.,

‖
√
n(b̂G − β0

G)‖2 =

√∑
j∈G

(
√
n(b̂j − β0

j ))2,

the cardinality |G| plays an important role. (Of course, we may preferentially con-

sider the `2-norm of the scaled version which is
√∑

j∈G(
√
n(b̂j − β0

j )/
√

Ωj,j)2).

The remainder term ∆ in Theorem 2.1 is not controlled for the `2-norm and this
implies that a χ2-approximation for ‖

√
n(b̂G − β0

G)‖22 is only valid for G with car-
dinality |G| sufficiently slowly growing with n, and in particular that |G| = o(n)
is necessary; we refer the reader to [54, Th.5.3].
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3.1.2. Non-Gaussian and heteroscedastic errors. Analogues of Theorem
3.1 and its consequences in (14) and (15) can also be established for non-Gaussian
errors in the model (2). The details are given in [20]. We invoke a Lindeberg
central limit theorem for the noise term in (12)

n−1/2ZTj ε (j = 1, . . . , p) (19)

by assuming 2 + δ (δ > 0) moments for εi. If G ⊆ {1, . . . , p} is a fixed subset we
obtain as an analogue to (14) and (15), with W as specified there:

{
√
n(b̂j − β0

j )/
√

Ωj,j ; j ∈ G} =⇒ {Wj/
√

Ωj,j ; j ∈ G}.

The difficulty is to derive a high-dimensional limiting distribution when |G| is
large. A result for the sup-norm is possible: for essentially any G ⊆ {1, . . . , p},

max
j∈G
|
√
n(b̂j − β0

j )/
√

Ωj,j | =⇒ max
j∈G
|Wj/

√
Ωj,j |, (20)

with Wj as in (14). This builds on work about Gaussian approximations of maxima
of sums of random vectors [18] and requires a slight restriction on the cardinality
of G, namely log(|G|) = o(n1/7) (besides sparsity in (A1) and the compatibility
condition in (A2)). We note that (20) coincides with (17) and hence, simultaneous
inference as discussed in Section 3.1.1 is also possible and guaranteed for non-
Gaussian errors.

3.2. The bootstrap and heteroscedastic errors. The bootstrap is a simula-
tion technique for approximating the distribution of an estimator or the output of
an algorithm. If we knew the data-generating distribution of the data, we could
derive the distribution of the estimator of interest by simulation. Since we do
not have access to the data generating distribution, one can plug-in some form of
the empirical distribution based on the data, and this is called the bootstrap [23].
Often, this amounts to resampling the data (n times with replacement) and this
in turn is the reason for the name “bootstrap”: it looks paradoxical in analogy
to the story about Barron Münchhausen who tries to escape from sinking into
the swamp by pulling himself out using his own bootstraps. Unfortunately, the
simple bootstrap idea is not always consistent: essentially, the bootstrap leads to
a consistent (asymptotically correct) approximation if the corresponding limiting
distribution of the estimator is Gaussian [28, 29]. Thus, applying the bootstrap
directly to the Lasso or another sparse estimator would lead to inconsistent results;
or under strong (unrealistic assumptions) it is shown to lead to a valid asymptotic
approximation [16] but exhibiting poor performance due to the super-efficiency
phenomenon mentioned already in Section 3, see [19].

Bootstrapping the de-sparsified estimator is a natural method for estimating
the limiting distribution in (14), (15), (17) or (18). From a practical point of
view, this means to use a computational algorithm only without the need to rely
on some analytic form for the maximum of many dependent (limiting) Gaussian
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variables: the method is not only convenient and easy to use, but it often also
leads to better results than using Gaussian approximations since (i) a linearization
with the remainder term ∆ in Theorem 3.1 is circumvented and (ii) a Gaussian
approximation for (19) might be too crude for finite sample size in presence of
strongly non-Gaussian errors. Furthermore, much in the spirit of multiple testing
adjustment mentioned in Section 3.1.1, the bootstrap provides a powerful way
for simultaneous inference where the dependence structure of

√
n(b̂j − β0

j )/
√

Ωj,j
across j is automatically taken into account.

The bootstrap technique can also cope well with heteroscedastic errors, i.e.,
ε1, . . . , εn in (2) are independent but with different variances Var(εi) = σ2

i 6=
constant. This extension to a more general structure of the error terms is important
for many practical applications.

Overall, bootstrapping the de-sparsified estimator leads to a reliable and au-
tomatic procedure for possibly simultaneous inference of β0 in the model (2), and
its advantages are particularly visible for non-Gaussian or heteroscedastic errors.
We refer the reader for more details to [20].

3.3. Other approaches. Other methods have been proposed for statistical in-
ference in high-dimensional settings. Related to the de-sparsified Lasso is a method
from [35], exhibiting some optimality without requiring sparsity of Σ−1 in (A3).
Earlier work in [4] proposes a projection with `2-norm regularization instead of us-
ing the projection onto Zj as in (13): empirical results suggest that this method is
conservative but often more reliable for controlling the probability of false positives
[19].

An earlier idea is based on sample splitting [57] which has been improved to
multi sample splitting in [48]. The approach is based on a two-stage approach: in
a first stage, variable screening is performed with e.g. the Lasso, see Section 2.3.1,
and statistical inference is then done in a second stage with the selected variables
only. The latter step is low-dimensional by requiring that the number of selected
variables in the first stage is smaller than sample size (which automatically holds
for the Lasso). To avoid overoptimistic p-values and confidence intervals one should
not perform the statistical inference using the same data-points which have been
used for screening the important variables: sample splitting or a more sophisti-
cated multi sample splitting technique avoid such a pitfall. From a computational
view-point, the (multi) sample splitting method is very attractive since the statis-
tical inference task has to be computed for a low-dimensional problem only while
the screening in stage two can be computed rather efficiently. This advantage is
important for applications like genome-wide association studies where the num-
ber of covariates is in the order of O(106), see Section 5. The developed theory
for (multi) sample splitting techniques essentially requires that all relevant vari-
ables from S0 are selected in the first stage: this property necessitates a beta-min
assumption as in (7), in contrast to e.g. the de-sparsified Lasso.



16 Peter Bühlmann

4. Hierarchical inference

The methodology presented in Section 3 is the building block for powerful statis-
tical inference in presence of strongly correlated covariates as is often the case in
very high-dimensional problems. When testing the effects of single covariates and
considering the hypotheses H0,j in (10), it happens rather frequently that none or
only very few statistically significant variables are found, see for example [5] for
applications in biology. This is mainly due to near non-identifiability of a single
covariate since its effect can be essentially explained by a few others (due to high
correlation or near linear dependence), see also Section 2.1.1. In contrast, a group
G of covariates is often easier to be detected as significant with respect to the
null-hypothesis H0,G in (11).

Testing of such groups can be done in a hierarchical manner enabling compu-
tationally and statistically efficient multiple testing adjustment. A hierarchy is
given in terms of a tree-structure, often but not necessarily a binary tree. The
nodes in the tree correspond to groups of variables: a child G′ (by going from
top to bottom in the hierarchical order of the tree) of a node or group G has the
property that G′ ⊂ G, and the children of a node or group G build a partition of
G. Usually, the top node contains all the variables {1, . . . , p} and the p nodes at
the very bottom of the tree correspond to single variables, i.e., {1}, {2}, . . . , {p},
see Figure 1.

Together with the identifiability issue mentioned at the beginning of the section,
we aim to construct a tree such that highly correlated variables are in the same
groups: this can be achieved by a standard hierarchical clustering algorithm [32,
cf.], for example using average linkage and the dissimilarity matrix given by 1 −
(empirical correlation)2. Other clustering algorithms can be used, for example
based on canonical correlation [7], or one can rely on any pre-specified hierarchical
tree structure.

The key idea is to pursue testing of the groups in a sequential fashion, starting
with the top node and then successively moving down the hierarchy until a group
doesn’t exhibit a significant effect. Figure 2 illustrates this point, showing that
we might proceed rather deep in the hierarchy at some parts of the tree whereas
at other parts the testing procedure stops due to a group which is not found to
exhibit a significant effect. We need some multiple testing adjustment of the p-
values: interestingly, due to the hierarchical nature, it is not overly severe at the
upper parts of the hierarchy as we will describe next.

Denote the nodes in the tree by G and the corresponding group null-hypotheses
by H0,G (which do not necessarily have to be of the form as in (11)). Denote by
d(G) the level of the tree of the node (or group) G and by n(G) the number of
nodes at level d(G): for example, when G = {1, . . . , p} corresponds to the top node
in a cluster tree containing all variables, we have that d(G) = 1 and n(G) = 1.
We only correct for multiplicity in a depth-wise manner in the tree:

PG;adjusted = PG · p/|G|, (21)

see Figure 1 for an illustration why this is a depth-wise Bonferroni correction if
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the groups are balanced. More generally one can use

PG;adjusted = PG · c(G),
∑
G′∈P

1

c(G′)
= 1, (22)

where P denotes any partition of {1, . . . , p} with sets from the hierarchical tree.
The proposal in (21) is a special case of this rule with c(G) = p/|G|. If the tree
has the same number of offspring (e.g. a binary tree with two offspring throughout
the entire tree) we could also use the unweighted version,

depth-wise Bonferroni correction: PG;adjusted = PG · n(G).

The sequential nature with stopping can be formulated in terms of p-values by
adding a hierarchical constraint:

PG;hierarchically−adjusted = max
G′⊃G

PG′,adjusted, (23)

implying that once we stop rejecting a node, we cannot reject further down in the
tree hierarchy and thus, we can simply stop the procedure when a node is not
found as being significant. The following then holds.

Px1

Px2

  Px4

   Px8   Px8

 Px4          

Px2                       

{1,2,3,4,5,6,7,8}

{1,3,6,7} {2,4,5,8}

{1,3} {6,7} {2,4} {5,8}

{1} {3} {7} {2} {4} {5} {8}{6}

Figure 1. Hierarchical grouping of 8 variables where different groups are denoted by {. . .}.
The capital letter “P” is a generic notation for the raw p-value corresponding to a group
hypothesis H0,G of a group G, which is then adjusted as in (21). Since the hierarchy
has the same number of offspring throughout the tree, the adjustment is the depth-wise
Bonferroni correction which amounts to multiply the p-values in every depth of the tree
by the number of nodes in the corresponding depth; no multiplicity adjustment at the
top node, then multiplication by the factor 2 (depth 2), 4 (depth 3), and 8 (depth 4).
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Proposition 4.1. Consider an arbitrary hierarchy of hypotheses tests in terms
of a tree structure. Consider the procedure described above with depth-wise ad-
justment as in (21) or (22) and with hierarchy constraint as in (23). Then, the
familywise error rate (FWER) is controlled: that is, for 0 < α < 1, when re-
jecting a hypothesis H0,G if and only if PG;hierarchically−adjusted ≤ α, we have that
FWER = P[at least one false rejection] ≤ α.

Proof. Consider first a slightly different setting of hierarchical testing of m null-
hypotheses H1 ≺ H2 ≺ Hm, where “Hi ≺ Hj” denotes that Hi is tested first
before Hj . (These hypotheses correspond to the m different depths of the tree
considered in Proposition 4.1). The hierarchical testing rule stops considering
further tests if some hypothesis cannot be rejected: that is, if Hj is not rejected
by the test (i.e., the corresponding Pj > α for some significance level α), all
subsequent Hj+1 ≺ Hj+2 ≺ . . . ≺ Hm will not be considered further (i.e., will not
be rejected).

Consider any constellation of the m hypotheses being true or false, e.g. for
m = 5,

H1 = F,H2 = F,H3 = F,H4 = T,H5 = F,H6 = T.

A false positive decision can only arise when falsely rejecting the first true hy-
pothesis. This holds because: (i) obviously, we only get a false positive rejection
if a hypothesis is true; (ii) if the test does not reject the first true hypothesis, the
procedure will stop (due to the hierarchical constraint) and would not produce a
false positive. In the example above, this means that we only need to control the
probability of falsely rejecting H4. In general, denote by

j∗ = argminj{Hj = T and Hi = F for all i = 1, . . . , j − 1},

with the meaning that j∗ = 1 if H1 = T and j∗ = m + 1 if all Hi = F for
i = 1, . . . ,m. Thus, by the argument above, the familywise error rate can be
bounded as follows: if j∗ ≤ m,

FWER = P[at least one false rejection]

= P[Hi correctly rejected for i = 1, . . . j∗ − 1 and Hj∗ falsely rejected]

≤ P[Hj∗ falsely rejected] ≤ α,

and FWER = 0 if j∗ = m + 1. Here, the decision to reject is given by the rule
that the corresponding p-value is smaller or equal to the significance level α. We
see explicitly that due to the hierarchical constraint there is no need for multiple
testing adjustment.

For the hierarchical procedure with a tree, we can proceed analogously. We
consider the first (group) hypotheses which are true when moving downwards
along the different branches of the tree, and denote them by Hj∗1

, . . . ,Hj∗r
. The

familywise error rate can then be bounded as follows: if r ≥ 1 saying that there is
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at least one true hypothesis,

FWER = P[at least one false rejection]

≤ P[∪rk=1{Hj∗k
falsely rejected] ≤

r∑
k=1

P[Hj∗k
falsely rejected] ≤ α,

where the last inequality holds due to (21) or (22), saying that the adjustment
factors for the significance levels for any partition with sets from the hierarchical
tree sum up to one. Note that the FWER = 0 if all hypotheses are false. 2

The procedure described above and justified in Proposition 4.1 shares a few
features to be pointed out. First, it relies on the premise that large groups should
be easier to detect and found to be significant, due to the fact that the identifia-
bility is much better posed. We address this issue at the end of this section. In
fact, the method has indeed built in the hierarchical constraint (23) that once we
cannot reject H0,G for some group G, we do not consider any other sub-groups
of G which arise as descendants further down in the tree hierarchy. Due to the
sequential nature of the testing procedure, multiple testing adjustment for con-
trolling the familywise error rate is rather mild (for upper parts in the tree) as
we only correct for multiplicity at each depth of the tree, i.e., the root node does
not need any adjustment, and if it were found to be significant, the next children
nodes only need a correction according to the number of nodes at depth 2 of the
tree, and so on; see Figure 1.

Further refinements with respect to hierarchical multiple testing adjustment
are possible, as described in [42]. But the essential gain in computational and
statistical power is in terms of the sequential and hierarchical nature of the pro-
cedure as illustrated in Figures 1 and 2. In particular, the method automatically
adapts to the resolution level: if the regression parameter of a single variable is
very large in absolute value, the procedure might detect such a single variable as
being significant; if the signal is not so strong or if there is substantial correlation
(or near linear dependence) within a large group of variables, the method might
only identify such a large group as being significant; Figure 2 illustrates this point.
Naturally, finding a large group to be significant (coarse resolution) is much less
informative than detecting a small group or even a single variable.

The power of the hierarchical method is mainly hinging on the assumption
that null-hypotheses further up in the tree are easier to reject, that is the p-values
are typically getting larger when moving downwards the tree. In low-dimensional
regression problems this is typically true when using partial F-tests for testing
H0,G : β0

j = 0 ∀j ∈ G. In the high-dimensional case and when using a test-
statistics as in (18) for the groups G based on the de-sparsified Lasso, then testing
the top node with G = {1, . . . , p} amounts to be equivalent to familywise error
rate adjusted testing of single variables: thus, in this case, testing the top node in
the tree is not easier than testing all individual components (the bottom nodes in
the tree). In the high-dimensional setting, the hierarchical method has been advo-
cated when testing the group null-hypotheses H0,G with a different method than
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hierarchical method with Bonferroni multiplicity adjustment
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hierarchical method with inheritance procedure
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Figure 2. Simulated example with p = 500 and n = 100. The numbers in black (bold)
denote the active variables with β0

j 6= 0 (and corresponding H0,j being false). Top panel:
hierarchical procedure with weighted Bonferroni adjustment as described in (21). Bottom
panel: A refined procedure (including so-called inheritance) which detects in addition the
single variable 10. For details see [42], and the figure is also taken from [42].

the de-sparsified Lasso and the corresponding maximum test-statistics, namely a
multi-sample splitting technique introduced in [48] and extended for hierarchical
testing in [41, 42]. The drawback of such a method is that the currently available
theoretical justification requires that essentially all the non-zero regression coeffi-
cients are sufficiently large (whereas the de-sparsified Lasso does not require such
a gap condition), see also Section 3.3.

5. Genome-wide association studies

A major problem in genetics is the association between genetic markers and the
status of a disease. As of 2011, 1’200 human Genome-Wide Association Studies
(GWAS) over 200 diseases have been completed (Wikipedia on “Genome-wide
association study”), and GWAS are among the most important approaches for
further understanding of genetic influences to disease status. In each study, the
sample size is usually around 1′000−5′000 whereas the number of genetic markers
in terms of single nucleotide polymorphisms (SNPs) is in the order of 106.

We consider a linear logistic regression model. The disease status is denoted
by Y ∈ {0, 1} (where Y = 1 denotes “diseased”, and Y = 0 “healthy”) and the
genetic SNP j by X(j) (j = 1, . . . , p ≈ 106) with X(j) ∈ {0, 1, 2} corresponding to
the number of minor alleles at genomic position j. The linear logistic regression
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model is as follows:

Y1, . . . Yn independent,

P[Yi = 1|Xi] = π(Xi), log

(
π(Xi)

1− π(Xi)

)
=

p∑
j=1

β0
jX

(j)
i . (24)

Thereby, the discrete structure of the variables X
(j)
i ∈ {0, 1, 2} is not given some

special attention (and instead is modeled with a scale as if the variables were con-
tinuous; alternatively, one could treat these variables as ordinal). We see that the
logistic transform log(π(Xi)/(1−π(Xi))) is linear in the parameter β0, analogously
to a linear model in (2) which we would use if the “disease status” or so-called
phenotype would be measured with a continuous variable, as in the application
outlined just before Section 5.1. Of main interest are significance statements for
testing null-hypotheses H0,G as in (11) or H0,j as in (10). That is, if a group
G is significant, it means that there is at least one SNP j in the group G whose
corresponding regression coefficient β0

j would be significant: we would then call
SNP j a significant and even to a certain extent causal (see Section 5.1) SNP for
the disease status Y .

We summarize here some results from [11] where some data from the Wellcome
Trust Case Control Consortium (WTCCC) is analyzed [51], see also https://www.

wtccc.org.uk/. Seven major diseases are studied, for each of them measuring a
binary disease status and genome-wide SNPs. After missing data handling, the
number of controls (having healthy disease status Y = 0) is 2934 whereas the
number of cases (with disease status Y = 1) is about 1’700-1’800, depending on
the disease; the number of SNPs is approximately 380’000. We use the hierarchi-
cal inference procedure described in Section 4 to infer significance statements for
testing H0,G in (11) in the logistic model (24).

The tree hierarchy is constructed as follows. The top node comprises all the
≈ 380’000 SNPs, the next level at depth 2 is partitioned into groups of SNPs
corresponding to the 22 chromosomes. Then, further groups or nodes down in the
tree hierarchy are constructed from hierarchical clustering with average linkage
and based on the dissimilarity measure between two SNP variables X(j) and X(k)

as 1 − ρ̂2jk with ρ̂jk equal to the empirical correlation between X(j) and X(k).
Although hierarchical clustering is computationally rather demanding, one can
trivially distribute the computation according to the 22 chromosomes (i.e., 22
groups which are pre-specified from the biological context).

For the statistical inference and corresponding p-values of groups we use the
hierarchical method described in Section 4 with a depth-wise weighted Bonferroni
adjustment described in (21); the statistical tests are based on a multi-sample
splitting approach and likelihood ratio testing (in analogy to the partial F-test in
linear models). The details are described in [11].

We structure the obtained results according to “small” and large detected
groups of SNPs, as illustrated in Tables 1 and 2. In the former case, for some
diseases, we are able to detect some single SNPs. This is a spectacular finding:
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to appreciate, there are 16 single SNP markers which have a significant effect
on Y even when adjusting for the effects of all ≈ 380′000 (many thousands!)
other SNPs. We mainly see these findings for diseases which are “known” to be
more genetically driven. In contrast, there are diseases where we cannot identify

disease group of SNPs chromosome p-value
CAD rs1333049 9 1.7 · 10−3

CD rs10210302 2 4.6 · 10−5

CD rs2076756 16 1.3 · 10−3

CD rs10761659 10 1.5 · 10−2

CD rs10883371 10 2.4 · 10−2

CD rs2542151 18 1.5 · 10−2

CD cardinality = 5 1 4.5 · 10−2

CD cardinality = 9 5 2.7 · 10−3

RA rs6679677 1 5.9 · 10−11

RA rs9272346 6 1.4 · 10−6

T1D rs6679677 1 3.6 · 10−11

T1D rs2523691 6 6.0 · 10−5

T1D rs9272723 6 2.2 · 10−4

T1D rs17696736 12 6.5 · 10−4

T1D rs9272346 6 2.4 · 10−3

T1D rs11171739 12 1.3 · 10−2

T1D rs17388568 4 2.7 · 10−2

T1D rs12924729 16 3.4 · 10−2

T2D cardinality = 4 16 4.7 · 10−2

T2D cardinality = 10 10 1.7 · 10−5

Table 1. Significance of small groups of SNPs. Left column: CAD = coronary artery
disease, CD = Crohn’s disease; RA = rheumatoid arthritis, T1D = type 1 diabetes, T2D
= type 2 diabetes. Second column: single SNPs are given in terms of an ID, larger groups
of SNPs in terms of the cardinality of the group. Right column: P-values are ordered
within a disease. Results are taken from [11].

small groups pf SNPs, namely for Bipolar disease and hypertension (out of the
7 diseases considered here). The results for large groups of significant SNPs for
Bipolar disease are summarized in Table 2. We cannot identify a smaller region
in the genome which would exhibit a significant association: however, we are able
to identify chromosomes which show a significant effect.

The validation of the findings, part of them being summarized in Tables 1
and 2 is not straightforward. One can consider “consensus” with other results
in the literature and with follow up studies which have been performed by the
WTCCC consortium: we refer for more details to [11]. From a statistical modeling
perspective, however, we have a formally valid way to interpret the results as
discussed in Section 5.1.



High-dimensional statistics 23

cardinality of group chromosome p-value
6695 1 0.027

12134 1 0.047
14451 2 0.016
7338 2 0.036
1649 3 0.021

24832 4 0.008
14040 5 0.030
24193 6 0.041
20643 7 0.013
21594 8 0.027
11929 9 0.009
22517 10 0.021
15269 12 0.038
4389 14 0.048

11055 15 0.032
10382 16 0.047

Table 2. Significance of large groups of SNPs for Bipolar disease. Ordered by chromosome
number and p-values within chromosomes. Results are taken from [11].

Continuous response: GWAS for Arabidopsis Thaliana. The hierarchi-
cal inference method described in Section 4 has also been applied to GWAS for
the model plant Arabidopsis Thaliana. In contrast to humans, one can perform
validation experiments. We summarize here the results from [37]. The response
variable (or phenotype) Y is measuring the root meristem zone-length (root size)
of the plant, the covariates correspond to p = 241′051 SNPs and the sample size is
n = 201. We consider a linear model as in (2) and perform hierarchical inference as
described in Section 4. The hierarchy is inferred from hierarchical clustering of the
SNPs with dissimilarity given by 1−(empirical correlation)2. Four new significant
small groups of SNPs are found, besides nearly all “previously known” associa-
tions: these 4 groups are within and neighboring to the so-called PEPR2 gene. A
validation experiment is then performed by growing wild-type (non-manipulated)
plants and mutant plants with “loss-of-function” of the PEPR2 gene. This exper-
iment exhibited a significant difference with respect to root meristem (root size),
providing evidence that the method has indeed identified a relevant group of SNPs.
The details are given in [37].

5.1. A causal interpretation. Causal inference deals with “directional associ-
ations”: instead of just observing that two random variables X and Y are depen-
dent, causal inference would allow to quantify to what extent say X is a cause for
Y . Causal inference is intrinsically related to analyzing the effect of an interven-
tion, and it typically tries to predict such an intervention effect from observational
data, without performing a randomized intervention experiment. We refer the
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reader for an extensive treatment of the topic to the book by Pearl [49].

The intention here is to only make a brief connection to structural equation
and graphical models which will then allow for some causal interpretation when
keeping some caution in mind that some additional assumptions are needed. As
in our setting discussed in the previous sections, we consider p + 1 random vari-
ables X(1), . . . , X(p), X(p+1) = Y (and the data is interpreted as being n i.i.d.
realizations thereof). We represent the random variables as nodes in a graph, and
we assume a directed acyclic graph (DAG) D which encodes the causal influence
diagram among these p + 1 random variables. We denote by paj the parents of
node j in the DAG D. A corresponding structural equation model is specified as
follows:

the conditional distributions L(X(j)|X(paj)) (j = 1, . . . , p+ 1)

are of a certain form or model class,

X(j)|X(paj) (j = 1, . . . , p+ 1) are jointly conditionally independent. (25)

The joint distribution then obeys the Markov property with respect to the DAG
D [49, cf.]. The following result holds.

Proposition 5.1. Assume that the variables X(1), . . . , X(p), X(p+1) = Y satisfy a
structural equation model in (25) with underlying DAG D. We also assume that
the structural equation of Y is according to a linear or logistic regression model:

linear: Y =
∑
j∈paY

BY,jX
(j) + ε(Y ), ε(Y ) independent of X(paY ),

logistic: P[Y = 1|X] = π(X), log(π(X)/(1− π(X))) =
∑
j∈paY

BY,jX
(j).

Consider the linear or logistic regression coefficients β0 in the regression of Y
versus all X(1), . . . , X(p) and assume that it is identifiable from the distribution.
Then, if β0

j 6= 0, it holds that X(j) ∈ paY and there is a directed edge X(j) → Y

(i.e., a direct causal effect from X(j) to Y ).

Proof. The slightly non-trivial part is to show that when running a regression
of Y versus all X(1), . . . , X(p), we actually obtain the coefficients BY,j from the
structural equation for Y , i.e., β0

j = BY,j . The argument is as follows. The DAG D
induces an ordering among the variables such that paj ⊆ {j − 1, . . . , 1}, assuming
for notational simplicity that the variables have already been ordered (according
to such an order). Since Y is childless we can choose an ordering where Y is the
last element. The conditional distribution then satisfies thanks to the Markov
property:

L(Y |X(p), . . . , X(1)) = L(Y |X(paY )).

This completes the proof. 2
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Causal interpretation. As a consequence, under the assumptions in Proposi-
tion 5.1, the inference techniques for regression lead to a causal interpretation.
The main assumptions for such a substantially more sharpened interpretation are:
(i) the underlying true model is a structural equation model with a DAG struc-
ture and a linear or logistic form for the structural equation of Y ; (ii) there are no
hidden confounder variables between Y and some of the X(j)’s; (iii) the response
variable Y is childless. The last assumption (iii) is rather plausible for GWAS since
one believes that the genetic factors are the causes for the disease and ruling out
that the disease would cause a certain constellation of genetic factors. The sec-
ond assumption (ii) is rather strong and perhaps the main additional assumption:
however, in view of measuring thousands of genetic markers, the premise of having
measured all the relevant factors is somewhat less unrealistic; the first assumption
(i) about the acyclicity of the causal influence diagram is not important as long as
there is no feedback from the response Y to the X variables (which is plausible for
GWAS), while the requirement for a linear or logistic form might be problematic
in view of possible interactions among the X-variables and/or nonlinear regression
functions. The latter is a misspecification and of the same nature as when hav-
ing misspecified the functional form in a regression model, a topic which we will
discuss in Section 6.

One should always be careful when adopting a causal interpretation. However,
and this is a main point, the regression model taking all the variables into account
is much more appropriate than a marginal approach where the response Y is
marginally regressed or correlated to one SNP variable at a time. This has been
the standard approach over many years in GWAS, including extensions with mixed
models and adjusting for a few other covariates [62]. The approach based on
modern high-dimensional statistics presented in Sections 2, 3 and 4 comes much
closer to a causal interpretation as described in Proposition 5.1. And that is among
the main reasons why we believe that such kind of approaches should lead to more
reliable results for GWAS in comparison to the older marginal techniques.

6. Misspecification of the linear model

The results in the previous sections for statistical confidence or testing of linear
model parameters rely on the correctness of a linear model as in (2). If the model
is not correct, we have to distinguish more carefully between random and fixed
design matrix X (and the latter case may also arise when conditioning on X). A
detailed treatment is given in [9].

6.1. Random design. Consider a nonlinear model with random design:

Y = f0(X) + ε, (26)

where ε is independent of the p×1 random vector X with E[ε] = 0. For simplicity,
we also assume that Y and X are centered, i.e., E[f0(X)] = E[X(j)] = 0 for all j.
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The observed data is assumed as n i.i.d. realizations of (Y,X). The best projected
parameter in a linear model w.r.t. L2-norm is

β∗ = argminβE[|f0(X)−XTβ|2],

and it is unique if Σ = E[XTX] = Cov(X) is positive definite. Thus, when
fitting a (high-dimensional) linear model to data being i.i.d. realizations from the
nonlinear model (26), we will estimate the projected parameter β∗. The inference
machinery for obtaining p-values and confidence intervals is also valid under the
following modification and assumption.

First, due to random design, the variance of say the de-sparsified estimator in
(13) is

v2j = Var((ZTj X
(j)/n)

√
nb̂j) � Var(n−1/2ZTj ε) = n−1

n∑
i=1

Var(Zj;iεi),

where Zj;i denotes the ith component of Zj . The quantity above can be estimated
by the empirical analogue

v̂2j = n−1
n∑
i=1

(Zj;iε̂i − Zj ε̂)2, (27)

where u = n−1
∑n
i=1 ui denotes the arithmetic mean of the entries of an n × 1

vector u. One can then show under similar conditions as for (15) that

(ZTj X
(j)/n)

√
n(b̂j − β0

j )

v̂j
=⇒ N (0, 1).

The difference is that for random design under model-misspecification, we have
to use a different estimator for the variance (rather than σ̂2‖Zj‖22/n in the fixed
design case as appearing in e.g. (16)), namely the one in (27) which is equivalent
to the “sandwich estimator” from White [59].

The other issue concerns the assumption of sparsity for β∗. In general, β∗

might be much less sparse or even dense even if β0 is sparse. When assuming a
block-structure for the covariance matrix Σ, some bounds for the sparsity of β∗

can be obtained, see [9]; another bound on the sparsity is implied by Proposition
6.1 below. Thus, the de-sparsified Lasso with the variance formula in (27) can be
justified.

Finally, the question is whether there is any relation between β∗ and β0. Denote
by S(f0) the support of f0, i.e., the indices of the variables X(1), . . . , X(p) which
are having an influence in f0; and by S∗ = supp(β∗) = {j; β8

j 6= 0}. The following
result is given in [9].

Proposition 6.1. Assume that X ∼ Np(0,Σ). Then,

S∗ ⊆ S(f0).
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The proposition says that if e.g. the de-sparsified Lasso finds a significant
variable in the misspecified linear model with Gaussian design, then it must be a
true active variable in S(f0), and the error control against false positive statements
is controlled with the de-sparsified Lasso procedure.

Conditioning on X. It is worthwhile to consider the argument of conditioning.
If the model would be correctly specified with f0(X) = XTβ0, we would have

Y = XTβ0 + ε.

When conditioning on X, since E[ε|X] = E[ε] = 0, we would have a fixed design
linear model with mean zero error term. And having a procedure which constructs
confidence intervals for fixed design then also works for random design (since
confidence statements hold for every fixed realization of X). On the other hand,
if the model is misspecified with f0(X) 6= XTβ∗ we get the representation

Y = XTβ∗ + (f0(X)−XTβ∗ + ε)︸ ︷︷ ︸
=:η

.

We have for the error term that E[η] = 0 but when conditioning on X we obtain
that E[η|X] = f0(X) − XTβ∗ 6= 0. Thus, this explains that for the misspecified
random design case, the inference for the projected parameter β∗ should be done
and interpreted as unconditional while the conditional inference for β∗ is not valid.

Another viewpoint when conditioning on X or when having a fixed design case
will be treated next.

6.2. Fixed design. Consider a nonlinear model as in (26) but with fixed design
corresponding to n observations. We can then always represent the n × 1 vector
of the nonlinear function at the data points as

f0 = (f0(X1), . . . , f0(Xn))T = Xβ0,

for many solutions β0, and implicitly assuming that rank(X) = n. For example,
compressed sensing is solving the convex optimization problem

β0
comprsens = argminβ‖β‖1 such that Xβ = f0.

Under an restricted isometry property for the design X it is known that β0
comprsens

equals the `0-sparsest representation [13, cf.] (and such results can also be ob-
tained assuming the weaker compatibility condition as in (A2)). Thus, high-
dimensionality is a “kind of a blessing” since we can represent any nonlinear
additive error model as

Y = Xβ0 + ε,

and model-misspecification with respect to nonlinearity is not an issue. The only
question is whether there are solutions β0 which are sufficiently sparse, fulfilling
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our required `0-sparsity assumption in (A1); we do not discuss here the issue of
using other bases (other design matricesX) and dictionary learning. Regarding the
latter `0-sparsity, the theory for the de-sparsified Lasso can actually be extended
to require weak sparsity only w.r.t ‖β0‖q with 0 ≤ q < 1 which allows for a greater
generality of sparsity and somewhat weakens the `0-assumption in (A1) [54].

The inference machinery from Section 3 is to be interpreted as follows: a
confidence interval for the jth variable covers with high probability β0

j for all

sufficiently sparse solutions β0; but we have to “bet” that there is at least one
representation with a sufficiently sparse β0. The latter assumption or “bet” can
actually be investigated with a statistical goodness of fit test for deciding whether
a linear model representation with a sparse β0 fits the data adequately [50].

7. Software

Open source software for high-dimensional statistics is available as R- and Biocon-

ductor-packages.
Fitting `1-regularized generalized regression models is efficiently implemented

in the glmnet R-package [26].
Statistical significance testing and confidence intervals are implemented in the

hdi R-package [43], and some corresponding background and comparative overview
is given in [19]. Hierarchical inference, especially in the context of GWAS is
available from the hierGWAS Bioconductor-package [10].

8. Conclusions

High-dimensional statistics deals with estimation and quantifying uncertainty in
models where the dimension of the unknown parameter is much larger than the
sample size. A key assumption is sparsity, for mathematically deriving near opti-
mality in various forms as well as for accuracy in practice.

In this article, we give a review of some of the important concepts and results
and illustrate their potential for applications to genome-wide association studies,
one of the most active research fields in genetics. For simplicity, our exposition
of theory and most of the methodology is given for linear models as in (2): ex-
tensions to case of generalized linear or nonparametric models are treated in e.g.
[8, 54]. The recently developed theory and machinery for quantifying uncertainty
in terms of confidence intervals and hierarchical multiple statistical hypotheses
testing (Sections 3 and 4) is opening the door for many applications where as-
signing of statistical uncertainty has a long tradition to quantify replicability and
scientific relevance of findings, notably in medical research. Our application to
genome-wide association studies (Section 5) illustrates that the new techniques
offer something which has not been possible before: namely to obtain statistical
p-values of regression coefficients or groups in a multiple linear model with O(106)
variables, and thus enabling a much more causal-oriented interpretation. In fact,
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as illustrated here, we obtain interesting results for studies from the Wellcome
Trust Case Control Consortium.

We have not considered here the setting of large-scale or “Big” data [24, cf.].
Recent developments in this field include scalability of algorithms and computatio-
nal–statistical trade-offs [14, 17], or addressing the issue of heterogeneity [46, 6, 31].
Some of the mathematical techniques and methodology from high-dimensional
statistics remain as important key elements in this new field.
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useful comments.
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[4] P. Bühlmann. Statistical significance in high-dimensional linear models.
Bernoulli, 19:1212–1242, 2013.
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[45] N. Meinshausen and P. Bühlmann. Stability Selection (with discussion). Jour-
nal of the Royal Statistical Society, Series B, 72:417–473, 2010.
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