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a b s t r a c t

Random Forests in combination with Stability Selection allow to estimate stable condi-
tional independence graphs with an error control mechanism for false positive selection.
This approach is applicable to graphs containing both continuous and discrete variables at
the same time. Its performance is evaluated in various simulation settings and compared
with alternative approaches. Finally, the approach is applied to two heath-related data sets,
first to study the interconnection of functional health components, personal, and environ-
mental factors and second to identify risk factors which may be associated with adverse
neurodevelopment after open-heart surgery.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In many problems one is not confined to one response and a set of predefined predictors. In turn, the interest is often in
the association structure of a whole set of p variables, i.e. asking whether two variables are independent conditional on the
remaining p − 2 variables. A conditional independence graph (CIG) is a concise representation of such pairwise conditional
independence among many possibly mixed, i.e. continuous and discrete, variables. In CIGs, variables appear as nodes,
whereas the presence (absence) of an edge among two nodes represents their dependence (independence) conditional on
all other variables. Applications include among many others also the study of functional health (Strobl et al., 2009; Kalisch
et al., 2010; Reinhardt et al., 2011).

We largely focus on the high-dimensional case where the number of variables (nodes in the graph) pmay be larger than
sample size n. A popular approach to graphical modeling is based on the Least Absolute Shrinkage and Selection Operator
(LASSO; Tibshirani, 1996); see Meinshausen and Bühlmann (2006) or Friedman et al. (2008) for the Gaussian case and
Ravikumar et al. (2010) for the binary case. However, empirical data often involve both discrete and continuous variables.
Conditional Gaussian distributions were suggested to model such mixed-type data with maximum likelihood inference
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(Lauritzen andWermuth, 1989), but no corresponding high-dimensional method has been suggested yet. Dichotomization,
though always applicable, comes at the cost of lost information (MacCallum et al., 2002).

Tree-basedmethods are easy to use and accurate for dealingwithmixed-type data (Breiman et al., 1984). RandomForests
(Breiman, 2001; Hapfelmeier andUlm, 2013) evaluate an ensemble of trees often resulting in notably improved performance
compared to a single tree (see also Amit and Geman, 1997). Furthermore, permutation importance in Random Forests allows
to rank the relevance of predictors for one specific response. However, Random Forests have also been criticized to perform
possibly biased variable selection. We thus also consider Conditional Forests (Strobl et al., 2007) and conditional variable
importance (Strobl et al., 2008), which have been suggested to overcome this behavior.

In general, the definition of both the conditional andmarginal permutation importance differ for discrete and continuous
responses. Thus, ranking permutation importances across responses of mixed-type is less obvious. However, such ranking is
essential to derive a network of themost relevant dependences. Stability Selection proposed byMeinshausen and Bühlmann
(2010) is one possible framework to rank the edges in the CIG across different types of variables. In addition, it allows to
specify an upper bound on the expected number of false positives, i.e. the falsely selected edges, and thus provides a means
of error control.

We combine Random Forests estimation with appropriate ranking among mixed-type variables and error control from
Stability Selection. We refer to the new method as Graphical Random Forests (GRaFo). Our specific aims are (a) to evaluate
and compare the performance of GRaFowith Stable LASSO (StabLASSO) and Stable Conditional Forests (StabcForests), which
are LASSO- and Conditional Forest-based alternatives, and regular maximum likelihood (ML) estimation across various
simulated settings comprising different distributions, interactions, and nonlinear associations for p = 50, 100, and 200
possibly mixed-type variables while sample size is n = 100 (p = 50, n = 500 for ML), (b) to apply GRaFo to data from the
Swiss Health Survey (SHS) to evaluate the interconnection of functional health components, personal, and environmental
factors, as hypothesized by the World Health Organization’s (WHO) International Classification of Functioning, Disability
and Health (ICF), and (c) to use GRaFo to identify risk factors associated with adverse neurodevelopment in children with
trisomy 21 after open-heart surgery and more generally to assess the plausibility of the suggested associations.

2. Graphical modeling based on regression-type methods

2.1. Conditional independence graphs

LetX = {X1, . . . , Xp} be a set of (possibly) mixed-type random variables. The associated conditional independence graph
ofX is the undirected graphGCIG = (V, E(GCIG)), where the nodes in V correspond to the p variables inX. The edges represent
the pairwise Markov property, i.e. i − j ∉ E(GCIG) if and only if Xj y Xi|X \ {Xj, Xi}. For a rigorous introduction to graphical
models, see, for example, the monographs by Whittaker (1990) or Lauritzen (1996).

We will now show that the pairwise Markov property can, under certain conditions, be inferred from conditional mean
estimation.

Theorem 1. Assume that, for all j = 1, . . . , p, the conditional distribution of Xj given {Xh; h ≠ j} is depending on any realization
{xh; h ≠ j} only through the conditional mean function

mj({xh; h ≠ j}) = E[Xj|{xh; h ≠ j}],

that is:

P[Xj ≤ xj|{xh; h ≠ j}] = Fj(xj|mj({xh; h ≠ j})), (A)

where Fj(·|m) is a cumulative distribution function for all m ∈ R (or m ∈ Rd if Xj is d-dimensional). (Thereby, we assume that
the conditional mean exists). Then

Xj y Xi|{Xh; h ≠ j, i}

if and only if

mj({xh; h ≠ j}) = mj({xh; h ≠ j, i})

does not depend on xi, for all {xh; h ≠ j}.

A proof is given in Section 8. Assumption (A) trivially holds for a Bernoulli random variable Xj:

P[Xj = 1|{xh; h ≠ j}] = E[Xj|{xh; h ≠ j}] = mj({xh; h ≠ j}).

Analogously, for a multinomial random variable Xj with C levels, the probability that Xj takes the level r ∈ {1, . . . , C} can
be expressed via a Bernoulli variable X (r)

j with

P[X (r)
j = 1|{xh; h ≠ j}] = E[X (r)

j |{xh; h ≠ j}] = mj({xh; h ≠ j}).
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Hence, (A) holds. Moreover, if (X1, . . . , Xp) ∼ Np(0, 6), then (A) holds as well (see for example Lauritzen, 1996). However,
for the Conditional Gaussian distribution (or CG distribution, see e.g. Lauritzen, 1996), we need to require for (A) that
the variance is fixed and is not depending on the variables we condition on. For example, let X1 ∼ B(1, π) be Bernoulli
distributed and let

X2|X1 ∼


N (µ1, σ

2
1 ), if X1 = 1

N (µ2, σ
2
2 ), if X1 = 0

, where σ 2
1 ≠ σ 2

2 .

Then the distribution of X2|X1 is not a function of the conditional mean alone.
Theorem 1motivates our approach to infer conditional dependences, or edges in the CIG, via variable selection for many

nonlinear regressions, i.e. determining whether a variable Xi is relevant in E[Xj|X \ {Xj}] (regression of Xj versus all other
variables).

2.2. Ranking edges

In order to determine which edges should be included in the graphical model, the edges suggested by the individual
regressions need to be ranked such that a smaller rank indicates a better candidate for inclusion. For instance, if all variables
are continuous, the size of the standardized regression coefficients from ordinary least squares is an obvious global ranking
criterion. Analogously, in a situation where all variables are binary (and identically coded), coefficients from linear logistic
regression lead to a global ranking. Note that each edge i − j is associated with two coefficients (Xj regressed on Xi and all
other variables and vice versa for Xi on Xj). To be conservative, we rank each edge i− j relative to the smaller one of the two
(absolute-valued) ranking coefficients.

If variables aremixed-type, a global ranking criterion is difficult to find. For example, continuous and categorical response
variables are not directly comparable. Instead, local rankings for each regression are performed separately (where ‘‘local’’
means that we can rank the importance of predictors for every individual regression). Analogous to global ranking, each
edge i − j is associated with two possible ranks and the worse among them is used.

When using Random Forests for performing the individual nonlinear regressions, the ranking scheme is obtained
from Random Forests’ variable importance measure. For Conditional Forests, both the conditional and marginal variable
importances can be used. When using the LASSO for individual linear or logistic regressions, the ranking scheme is obtained
from the value of the penalty parameter λ for which an estimated regression coefficient first becomes non-zero (i.e. the
value of the penalty parameter when a variable enters in a coefficient path plot). For ML, p-values of the F-test pose a
ranking criterion if variables are of mixed type.

We then have to decide on the number of edges to select, i.e. the tuning parameter. Say it is given as q = 11. Then, for
both global and local rankings, we select the 11 best-ranked edges across all p individual regressions. If this is impossible
due to tied ranks (e.g. because the 11th and 12th best edges have a tied rank of 11.5), we neglect these (here: two) tied edges
and select only the remainder of (here: 10) edges not in violation of the tuning parameter.

We next outline how Stability Selection can be used to guide the choice of q.

2.3. Aggregating edge ranks with Stability Selection

Stability Selection (Meinshausen and Bühlmann, 2010) allows the specification of an upper bound on the expected num-
berE[V ] of false positives. It is based on subsampling (Politis et al., 1999; Bühlmann and Yu, 2002) random subsetsX(1), . . . ,
X(nsub) of the original sample X1, . . . ,Xn, where each X(k) contains ⌊n/2⌋ sample points.

Let E(ĜCIG(X(k))) denote the edges from a thresholded ranking based on X(k), k = 1, . . . , nsub. Stability Selection suggests
to construct E(ĜCIG(X)), the set of all edges in the estimated CIG of X, from all edges that were ‘‘sufficiently stable’’ across
the nsub subsets. More concretely, we choose only edges i − jwhich fulfill

1
nsub

nsub
k=1

I
{i−j∈E(ĜCIG(X(k)))} ≥ πthr, (1)

where πthr imposes a threshold on the minimum relative frequency of edges across the nsub subsets to be included in
E(ĜCIG(X)) and I is the indicator function.

In their Theorem 1, Meinshausen and Bühlmann (2010) relate E[V ] to the maximum number of selected edges q per
subset, the number of possible edges p · (p − 1)/2 in E(ĜCIG(X)), and the threshold πthr from formula (1) (requiring
πthr ∈

 1
2 , 1


):

E[V ] ≤
q2

(2πthr − 1) · p · (p − 1)/2
. (2)

The expected number of false positivesE[V ], which is a type I errormeasure, needs to be specified a priori. The parameters
πthr and q are tuning parameters that depend on each other. More precisely, to obtain a stable graph estimate for a given
E[V ], the threshold πthr has to be large if the number of selected edges q is large and vice versa. Consequently (and as also



B. Fellinghauer et al. / Computational Statistics and Data Analysis 64 (2013) 132–152 135

argued byMeinshausen and Bühlmann, 2010) the actual values of πthr and q are of minor importance for a given E[V ] as the
graph estimates do not vary much for different choices of πthr (results not shown). We thus fix πthr = 0.75. Also, we follow
the suggestion of Meinshausen and Bühlmann (2010) in choosing nsub = 100.

We can then use formula (2) to derive

q =


(2πthr − 1)E[V ] · p · (p − 1)/2


by specifying the value of E[V ] as desired (according to the willingness to accept false positives).

Note that formula (2) is based on two assumptions: (1) the estimation procedure is better than random guessing and
(2) the probability of a false edge to be selected is exchangeable; for details we refer to Meinshausen and Bühlmann (2010).
Also note that πthr is not to be interpreted as an edge probability threshold but solely as a means to assess stability which
allows control of E[V ]. Finally, be aware that our method does not consider the goodness-of-fit of the model but instead
leads to an undirected graph whose edges are controlled for false positive selections.

3. Random Forests, Conditional Forests, LASSO regression, and maximum likelihood

3.1. Random Forests

Random Forests have, to date, not been used to estimate CIGs. They perform a series of recursive binary partitions of
the data and construct the predictions from terminal nodes. Based on classification and regression trees (Breiman et al.,
1984) they allow convenient inference for mixed-type variables, also in the presence of interaction effects. Incorporating
bootstrap (Efron, 1979; Breiman, 1996) and random feature selection (Amit and Geman, 1997), random subsets of both
the observations and the predictors are considered. The relevance of each predictor can be assessed with permutation
importance (Breiman, 2002), ameasure of the error difference between a regular RandomForests fit and a RandomForests fit
withinwhich one predictor has been permuted at random to purge its relationshipwith the response. An implementation of
Random Forests in R (R Development Core Team, 2011) is available in the randomForest package (Liaw and Wiener, 2002).
We chose the number of trees and the number of features randomly selected per tree according to the package defaults.
Further extensions (which we did not incorporate) allow to explicitly use the ordinal information of a categorical response:
see e.g. the R packages party (Hothorn et al., 2006) and rpartOrdinal (Archer, 2010).

Since the goodness-of-fit of continuous and categorical responses is based on mean squared errors and majority votes,
respectively, the goodness-of-fit and importance measures are not directly comparable across mixed-type responses. Thus
a local ranking is derived, where each edge i − j is assigned either the rank of the permutation importance of predictor X (k)

i

for response X (k)
j or of predictor X (k)

j for response X (k)
i (whichever is more conservative, i.e. assigns a worse rank) and finally

aggregated with Stability Selection; the upper index (k) denotes the kth subsample in Stability Selection. We refer to this
procedure as Graphical Random Forests (GRaFo) henceforth.

3.2. Conditional Forests

Strobl et al. (2007) criticized Random Forests to favor variables with many categories. Furthermore, Random Forests
have been criticized to favor correlated predictors, even if not all of them are influential for the response (Strobl et al., 2008),
though this aspect may be considered as both a source of bias and a beneficial effect as correlated predictors may help to
localize relevant structures (Nicodemus et al., 2010).

To overcome the first limitation, Conditional Forests (Strobl et al., 2007) were suggested, which are a modification of the
original Random Forests implementation. They are based on conditional inference trees (Hothorn et al., 2006), an unbiased
tree learning procedure, to obtain an unbiased ensemble of trees.

While the regular marginal permutation importance discussed in the previous section is also applicable to Conditional
Forests, a conditional permutation importance, which aims to preserve the correlation structure among predictors, has
been suggested by Strobl et al. (2008) to overcome the latter critique of forest ensembles favoring correlated predictors.
An implementation of Conditional Forests, including the conditional variable importance, is available in the party package
(Hothorn et al., 2006) in R. However, we found that the computational cost to obtain the conditional variable importance
is a lot higher than for the marginal permutation importance. When drastically reducing the number of trees to 10, the
computations became feasible but the ensemble did hardly produce any true positives (likely due to instability of the small
forest ensemble). As such, all calculations reported further below have been performed using the marginal permutation
importance. To allow a fair comparison, we set the ensemble size to 500 trees (as with Random Forests).

The same ranking rule as for Random Forests can then be used to construct a Stable Conditional Forest (StabcForests)
algorithm.

3.3. Least absolute shrinkage and selection operator (LASSO)

In the case of linear regression for continuous responses and predictors, the LASSO (Tibshirani, 1996) penalizes with the
ℓ1-norm and corresponding penalty parameter λ the coefficients of some less relevant predictors to zero. The larger λ is
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chosen, the more coefficients will be set to zero. This concept has also been extended to logistic regression (Lokhorst, 1999)
and implemented in R in the glmnet package (Friedman et al., 2010). In the case of multinomial and mixed-type data, no
eligible off-the-shelf implementation of the LASSO is available. We hence dichotomize these data according to a median
split for continuous variables and aggregate categories such that the resulting frequency of the −1 and 1 categories was as
balanced as possible for discrete variables. Consequently, a loss of information is to be expected (cf., MacCallum et al., 2002;
Altman and Royston, 2006; Royston et al., 2006).

CIG estimation via the LASSO with Stability Selection was suggested for Gaussian data by Meinshausen and Bühlmann
(2010) and can be represented as a global ranking. For each response X (k)

j , we estimate LASSO regressions with all remaining
X(k)

\{X (k)
j } as predictors andwith a decreasing sequence of penalties λ

(k),max
j , . . . , λ

(k),min
j . Let λ(k)

ij denote the largest penalty
value of the sequence for which the coefficient of predictor X (k)

i for response X (k)
j is non-zero, and if no such penalty exists

let λ
(k)
ij = 0. For each edge i − j we select the more conservative penalty λ

(k)
i−j = min


λ

(k)
ij , λ

(k)
ji


and rank i − j relative

to the global rank of λ(k)
i−j. As before, the upper index (k) denotes the kth subsample from Stability Selection. We denote this

procedure in combination with Stability Selection as Stable LASSO (StabLASSO).

3.4. Maximum likelihood

Ordinary maximum likelihood (ML) estimation does neither impose a penalty (such as the LASSO) nor does it use
subsampling to reduce the number of predictors to consider in each run (such as the Forest-type algorithms). Consequently,
ordinary ML inference can only be applied in the case, where the number of parameters to be estimated is at most as large
as the sample size n.

If the dependent variable is continuous, we use the ordinary linear model, otherwise the multinomial log-linear model.
Local rankings are obtained from the F-Test for each of the predictor variables. The calculations were performed with the
regr0 package (available from R-Forge) in R.

We could wrap a Stability Selection scheme around ML estimation which is computationally demanding in the case of
mixed continuous and categorical variables. Our main goal here, however, is to compare with plain ML estimation.

4. Simulation study

4.1. Simulating data from directed acyclic graphs

We use a directed acyclic graph (DAG; cf., Whittaker, 1990) to embed conditional dependence statements among nodes
representing the p random variables. The associated CIG follows by moralization, i.e. connecting any two parents with a
common child that are not already connected and removing all arrowheads (Lauritzen and Spiegelhalter, 1988).

Let A be a (p×p)-dimensional weightmatrixwith entries aij ∈ {[−1, −0.1]∪{0}∪[0.1, 1]} if i < j and aij = 0 otherwise.
In addition, we sample A to be sparse, i.e. we expect only one percent of its entries to deviate from 0. The non-zeros in A
encode the directed edges in a DAG we simulate from similarly as in Kalisch and Bühlmann (2007); see also Table 1. For the
Gaussian setting with interaction effects, we furthermore sample bikj ∈ {[−1, −0.1] ∪ {0} ∪ [0.1, 1]} for all indices i, k, j
where main effects between i, j and k, j are present (cf., Table 1). Also, for all i, j ∈ {1, . . . , p} in the multinomial and mixed
setting with aij ≠ 0 let uij and vij be vectors that we use to impose some additional structure onmultinomial variables: (1) at
least one category of a multinomial predictor Xi should have an effect opposite to the remainder, (2) the (total) effect of the
categories of a multinomial predictor Xi should be positive on some categories of a multinomial response Xj and negative on
others. For this purpose, we restrict uij = (u(1)

ij , . . . , u(Ci)
ij ) and vij = (v

(1)
ij , . . . , v

(Cj)
ij ):

u(l)
ij ∈ {−1, 1} ∀l = 1, . . . , Ci s.t. − Ci <

Ci
l=1

u(l)
ij < Ci,

v
(s)
ij ∈ {−1, 1} ∀s = 1, . . . , Cj s.t. − Cj <

Cj
s=1

v
(s)
ij < Cj.

With these definitions, we sample data from different distributions using the inverse link function to relate the condi-
tional mean to all previously sampled predictors. Table 1 describes the settings in detail, covering models with purely Gaus-
sian, purely Bernoulli, purely multinomial, and an alternating sequence of Gaussian and multinomial variables (‘‘mixed’’
setting). The Gaussian setting can be further distinguished into a main effects only setting, a main plus interaction effects
setting, and a nonlinear effects setting. For the nonlinear setting the signal was amplified by a factor of 5 to obtain compa-
rable results to the other Gaussian settings. The exact specifications are given in Table 1.
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Table 1
The table shows the six simulation models based on DAGs. N , B, M, and U are the Gaussian, Bernoulli, multinomial, and
discrete uniform distribution, respectively. Initial values for X1 are sampled with µ1 = 0, π1 =

1
2 , and π1 =


1
C1

, . . . , 1
C1


,

respectively, where C1 ∼ U{3, 4, 5}. The weights aij are chosen from {[−1, −0.1] ∪ {0} ∪ [0.1, 1]} to determine the
dependence relationships among the randomvariables. The scalars u(l)

ij and v
(s)
ij are chosen from {−1, 1} to impose additional

structures onmultinomial random variables. Ij is a random set of index numbers, s.t. the number of interactions is about half
as big as the number of associationswith a non-zero coefficient aij by sampling bikj ≠ 0 if and only if (i, k) ∈ Ij . Lj is a random
set of index numbers, s.t. about half of the associations are linear and the other half are nonlinear.

Distribution Model Conditional mean

Gaussian Xj ∼ N (µj, σ
2

= 1) µj =


i<j aijxi
Gaussian Xj ∼ N (µj, σ

2
= 1), with Ij ⊆ {(i, k) : aij ≠ 0, akj ≠ 0} µj =


i<j aijxi

+Interactions s.t. |Ij| ≈ |{(i, k) : aij ≠ 0, akj ≠ 0}|/2 +


(i,k)∈Ij
bikjxixk

Gaussian Xj ∼ N (µj, σ
2

= 1), with Lj ⊆ {1, . . . , j} s.t. |Lj| ≈ j/2 µj =


i∈Lj
5aijxi

+Nonlinear and L̄j = {1, . . . , j} \ Lj +


i∈L̄j
5aij log(|xi|)

Bernoulli Xj = 2Xj − 1, πj =
exp(


i<j aijxi)

1+exp(


i<j aijxi)Xj ∼ B(1, πj)

Multinomial Xj ∼ M(πj = (π
(1)
j , . . . , π

(Cj)
j )), π

(s)
j =

exp(η(s)
j )Cj

r=1 exp(η(r)
j )

η
(s)
j =


i<j v

(s)
ij aij

Ci
l=1 u

(l)
ij (2I{xi=l} − 1),

Cj ∼ U{3, 4, 5}, s = 1, . . . , Cj

Mixed Xj ∼

N (µj, σ
2

= 1), if
j
2

∉ N

M(πj = (π
(1)
j , . . . , π

(Cj)
j )), else

µj = η
(1)
j

π
(s)
j =

exp(η(s)
j )Cj

r=1 exp(η
(r)
j )

η
(s)
j =


i:i<j∧ i

2 ∉N v
(s)
ij aijxij+

+


i:i<j∧ i
2 ∈N v

(s)
ij aij

Ci
l=1 u

(l)
ij (2I{xi=l} − 1)

Cj ∼ U{3, 4, 5}, s = 1, . . . , Cj

4.2. Simulating data from the Ising model

A common approach tomodel pairwise dependences between a set of binary variables is the Isingmodel with probability
function

p(x, Θ) = exp


θiixi +


θijxixj − Γ (Θ)


(3)

for realizations x ∈ X, normalization constant Γ (Θ), and (p × p)-dimensional symmetric parameter matrix Θ =

{θij}i,j∈{1,...,p}. From the conditional densities of Eq. (3) if follows that θij = 0 (θij ≠ 0) implies the absence (presence) of
edge i − j in the associated CIG. See also Ravikumar et al. (2010).

We sample the diagonal and the upper-triangular matrix of Θ uniformly from {−1, 0, 1} such that the average neigh-
borhood size for each node equals 4. The lower-triangular matrix equals its upper counterpart. We use the Gibbs sampler
(cf., Givens and Hoeting, 2005) to sample realizations from Eq. (3). Höfling and Tibshirani (2009) provide an implementation
in the BMN package in R.

4.3. Simulation results: Gaussian, binomial, multinomial, mixed, and Ising

For p ∈ {50, 100, 200} variables and samples of size n = 100, each of the 5 simulation models was averaged over
50 repetitions. More precisely, for a given q, the number of observed true and false positives across the 50 repetitions was
averaged. In this section, the Gaussian setting refers to the firstmodel in Table 1, i.e. the Gaussian settingwithout interaction
effects and without nonlinear effects. The results for all 5 models are shown in Figs. 1–6. Error control for small bounds on
the expected number of false positives E[V ] could be achieved for both GRaFo and StabLASSO in all but the mixed setting
with p = 200 in Fig. 6.

In the Gaussian, Bernoulli and Ising settings, StabLASSO seems to perform slightly better than GRaFo for small error
bounds and rather similar across the figures for the true/false positive rates (third column of Figs. 1–3). Note that StabLASSO
sets many coefficients to 0. As a consequence, a large proportion of edges cannot be selected for false positive rates smaller
than 1 resulting in some StabLASSO curves not covering the entire range of the rates.

In themultinomial andmixed setting (Figs. 4–6), GRaFo returned satisfactory results while StabLASSO performed poorly,
presumably caused by dichotomization. In general, both procedures seem to perform best in the Gaussian setting, followed
by the mixed, multinomial, Bernoulli, and Ising setting, respectively. The latter seems especially hard for both procedures
if the upper error bound in formula (2) for E[V ] is chosen small. Nevertheless, given one’s willingness to expect more er-
rors, the rate figures indicate the potential to recover (parts of) the true structure (cf., Ravikumar et al., 2010; Höfling and
Tibshirani, 2009).

The ‘‘raw’’ counterparts, Random Forests and LASSO, correspond to estimations and rankings performed on the full data
set without Stability Selection. Consequently, these approaches lack any guidance on choosing q. The rate figures were
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Fig. 1. The rows correspond to the Gaussian, Bernoulli, and Ising model with p = 50. Their true CIGs have 16, 16 and 89 edges, respectively. The first
two columns report the observed number of true and false positives (‘‘o’’) relative to the bound in (2) for the expected number E[V ] of false positives (‘‘]’’)
for GRaFo and StabLASSO, respectively, averaged over 50 simulations. The third column reports the averaged true and false positive rates of GRaFo and
StabLASSO relative to the performance of their ‘‘raw’’ counterparts without Stability Selection.

obtained by evaluation of the graphs arising from various values of q. We provide them as a means to check if introducing
Stability Selection has any additional (positive or negative) effect on the performance of the Random Forests and LASSO
methods besides enabling us to choose q. From the rate figures, we can deduce that the rawmethods performquite similar to
GRaFo and StabLASSO across all settings. Hence, the use of Stability Selection did not introduce any surprising new behavior
of Random Forests or LASSO.

A violation of condition (A) of Theorem 1 in the mixed setting could explain the failure of both GRaFo and StabLASSO to
achieve error control for p = 200. However, both the mixed setting with p = 50 and p = 100 returned very few observed
errors and remained well below the error bounds indicating the problematic behavior may be linked to larger values of p.
Also, for any setting it is unlikely that the exchangeability assumption holds. Meinshausen and Bühlmann (2010) argue that
Stability Selection appears to be robust to violations, but did not study mixed data which may be particularly affected. We
study this aspect more closely further below.
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Fig. 2. The rows correspond to the Gaussian, Bernoulli, and Ising model with p = 100. Their true CIGs have 58, 58 and 182 edges, respectively. The first
two columns report the observed number of true and false positives (‘‘o’’) relative to the bound in (2) for the expected number E[V ] of false positives (‘‘]’’)
for GRaFo and StabLASSO, respectively, averaged over 50 simulations. The third column reports the averaged true and false positive rates of GRaFo and
StabLASSO relative to the performance of their ‘‘raw’’ counterparts without Stability Selection.

The computational cost is growing rather quickly with growing p. The runtime of a single of the 50 repetitions per setting
is in the order of 15min for GRaFo and 20min for StabLASSO for p = 50 and increases to several hours for GRaFo and 30min
for StabLASSO in the case of p = 200. Each batch of 50 repetitions was run in parallel on 50 cores of the BRUTUS high-
performance cluster comprising quad-core AMD Opteron 8380 2.5 Ghz CPUs with 1 GB of RAM per core using the Rmpi
package (Yu, 2010) available in R.

4.4. Simulation results: Gaussian with interaction effects

For p ∈ {50, 100, 200} variables and samples of size n = 100, each graph in Fig. 7 was averaged over 50 repetitions. The
results appear very similar to our findings for the Gaussian model without interactions and without nonlinear effects.
However, here the number of true positives is somewhat lower for both GRaFo and StabLASSO with an (arguably) slightly
smaller drop for the GRaFo procedure. This does not seem too surprising, given that Random Forests have the ability to
incorporate interactions naturally,whereas they have to be specified explicitly for the LASSO (which has not been donehere).
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Fig. 3. The rows correspond to the Gaussian, Bernoulli, and Ising model with p = 200. Their true CIGs have 334, 334 and 369 edges, respectively. The first
two columns report the observed number of true and false positives (‘‘o’’) relative to the bound in (2) for the expected number E[V ] of false positives (‘‘]’’)
for GRaFo and StabLASSO, respectively, averaged over 50 simulations. The third column reports the averaged true and false positive rates of GRaFo and
StabLASSO relative to the performance of their ‘‘raw’’ counterparts without Stability Selection.

However, overall the total number of interaction terms is relatively small, ranging from roughly 5% to 10% of all model
terms. For a larger number of interaction terms, we would thus expect a further gain of the GRaFo over the StabLASSO
procedure.

4.5. Simulation results: Gaussian with nonlinear effects

For p ∈ {50, 100, 200} variables and samples of size n = 100, each graph in Fig. 8 was averaged over 50 repetitions.
Here, GRaFo clearly outperforms StabLASSO in terms of true positives for all considered p. However, for GRaFo the number
of false positives is not controlled by a small bound on E[V ] anymore for p > 50, which is especially apparent in the case
where p = 200. For StabLASSO there seems to be a similar behavior, but only for p = 200 the number of false positives
clearly violates E[V ]. The ‘‘raw’’ Random Forests and LASSO estimates show very similar results to their Stability Selection
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Fig. 4. The rows correspond to the multinomial and mixed-type model with p = 50. Their true CIGs both have 16 edges. The first two columns report the
observed number of true and false positives (‘‘o’’) relative to the bound in (2) for the expected numberE[V ] of false positives (‘‘]’’) for GRaFo and StabLASSO,
respectively, averaged over 50 simulations. The third column reports the averaged true and false positive rates of GRaFo and StabLASSO relative to the
performance of their ‘‘raw’’ counterparts without Stability Selection.

counterparts. Note that the signal has been amplified by a factor of 5 to achieve comparable performance of the estimation
procedures to the linear Gaussian setting.

4.6. Simulation results: mixed-setting with ML and StabcForests

The first row of Fig. 9 reports for p = 50 and n = 500 the results of ML estimation, GRaFo, and StabLASSO, averaged over
50 runs. Not surprising, both GRaFo and StabLASSO perform better than in the setting where n = 100, though StabLASSO
remains at a clear disadvantage due to the unfavorable dichotomization. On the other hand, the performance of GRaFo (and
also its ‘‘raw’’ Random Forests counterpart) is on par with the ML estimation. Stability Selection was not applied to ML
estimation due to the immense computational burden and thus no bounds on E[V ] could be specified. However, for both
GRaFo and StabLASSO we find that the number of false positives are typically well below the specified bounds.

The second and third row of Fig. 9 report the performance of StabcForests and GRaFo for p = 50 and p = 100 with
n = 100, averaged over 50 runs. The GRaFo results from above are reproduced for better readability. We find that both
GRaFo and StabcForests show very similar results. In the first two columns we see that GRaFo seems to perform somewhat
better for very small bounds onE[V ]. The performance of the two ‘‘raw’’ methods is very similar to their stable counterparts.

The computational burden of StabcForests is much larger than for GRaFo and amounts to roughly 2 h for p = 50 and
roughly 6 h for p = 100. Also note that the reported results within the Conditional Forests framework use the marginal
permutation importance due to the very heavy computational burden of the conditional variable importance.

5. Functional health in the Swiss general population

5.1. The importance of functional health

According to the World Health Organization’s (WHO) new framework of the International Classification of Functioning,
Disability andHealth (ICF; cf.,WHO, 2001) the lived experience of health (Stucki et al., 2008) can be structured in experiences
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Fig. 5. The rows correspond to themultinomial andmixed-typemodel with p = 100. Their true CIGs both have 58 edges. The first two columns report the
observed number of true and false positives (‘‘o’’) relative to the bound in (2) for the expected numberE[V ] of false positives (‘‘]’’) for GRaFo and StabLASSO,
respectively, averaged over 50 simulations. The third column reports the averaged true and false positive rates of GRaFo and StabLASSO relative to the
performance of their ‘‘raw’’ counterparts without Stability Selection.

related to body functions and structures as well as to activity and participation in society. All of these are, in turn, influenced
by a variety of so-called personal factors such as gender, income, or age and environmental factors including individual social
relations and supports as well as properties of larger macro social systems such as the economy (see Fig. 10). Also, theWHO
and The World Bank recommend in their recent World Report on Disability (2011) that functional health state descriptors
are analyzed in conjunction with other health outcomes and, particularly, that more research is conducted on ‘‘[. . . ] the
interactions among environmental factors, health conditions, and disability [. . . ]’’ (p. 267 WHO and The World Bank, 2011).
Under these prerequisites it is of interest which variables are conditionally dependent on each other. For instance, ‘‘Does
the income distribution affect participation, conditional on known impairments, environmental, and personal factors?’’.

5.2. Study population

We use GRaFo for a secondary analysis of cross-sectional observational data on functional health from the Swiss Health
Survey (SHS) in 2007. Datawere obtained from the Federal Statistics Office of Switzerland. The original studywas based on a
stratified random sample of all private Swiss households with fixed line telephones. Within each household one household
member aged 15 or older was randomly selected. The survey was completed by a total of 18760 persons, corresponding to
a participation rate of 66% (Graf, 2010). The mean age of study participants was 49.6 years (±18.5). The data were mostly
collected with computer assisted telephone interviews. Further information is available elsewhere (Storni, 2011).

5.3. Variables

The SHS included various information on symptoms (in particular pain), impairments, and activity limitations. Since
the respective items were sometimes nominal, sometimes ordinal, and sometimes (e.g. body mass index) metric, we
dichotomized each item so that 1 was indicative of having any kind of problem. As overall summary scores on functioning
and disability were not recommendable (Reinhardt et al., 2010), we followed the framework of the WHO’s biopsychosocial
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Fig. 6. The rows correspond to the multinomial and mixed-type model with p = 200. Their true CIGs both have 334 edges. The first two columns
report the observed number of true and false positives (‘‘o’’) relative to the bound in (2) for the expected number E[V ] of false positives (‘‘]’’) for GRaFo
and StabLASSO, respectively, averaged over 50 simulations. The third column reports the averaged true and false positive rates of GRaFo and StabLASSO
relative to the performance of their ‘‘raw’’ counterparts without Stability Selection.

model of health, outlined in the ICF (WHO, 2001, see Fig. 10), and other theoretical considerations (WHO and The World
Bank, 2011; Reinhardt et al., 2010) in constructing sum indices (see Table 2). The plausibility of all indices was checked
using the Stata 11 confirmatory factor analysis module confa (Kolenikov, 2009). In each case the index construction was
tested and the null hypothesis of a diagonal structure of the covariance matrix rejected.

We created a dummy variable for labor market participation restrictions such that 1 identified persons who gave up
work, reduced the number of working hours, or changed jobs because of health reasons. We also created a dummy variable
for participation in leisure physical activity (LPA) differentiating between people participating in leisure activities leading to
sweating at least once a week and those who do not. General health perception was measured with the following question
and answer options: ‘‘How would you rate your health in general? Very good, good, fair, poor, or very poor?’’. We further
included indicators of socio-economic status (SES) in our analysis: equivalence household income, years of formal education,
employment status, and migration background (foreign origin of at least one parent). On the macro- or cantonal-level we
obtained information on the Swiss counties’ (cantons) gross domestic products (GDP), Gini coefficients, and crime rates for
2006. Moreover, we considered information on gender, age, marital status (being married), alcohol consumption (in grams
per day), and current smoking (yes/no).

Of these, in total, 20mixed-type variables (see Table 3), incomehad thehighest number ofmissing valueswith roughly 6%.
Overall, less than 0.85% of replies weremissing corresponding to 2687 caseswith one ormoremissing values. To assess their
effect, we estimated the CIG once with casewise deletion and once with imputation of missing values with the missForest
procedure (Stekhoven and Bühlmann, 2012) available in R. An alternative would be to use surrogate splits, which may be
particularly feasible if the speed of the imputation method is of importance (Hapfelmeier et al., 2012).

5.4. Research hypothesis

From theWHO’s ICF model (WHO, 2001, see Fig. 10), we hypothesized that all variables on functional and general health
perception, and all variables on social status, networks, and supports were connected via paths within the same component
of the CIG.
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Fig. 7. Gaussian model with interactions with p = 50, 100, and 200. Their true CIGs have 16, 58, and 334 edges, respectively, with 1, 6, and 21 first-order
interaction terms. The first two columns report the observed number of true and false positives (‘‘o’’) relative to the bound in (2) for the expected number
E[V ] of false positives (‘‘]’’), respectively, averaged over 50 simulations. The third column reports the averaged true and false positive rates of GRaFo and
StabLASSO relative to the performance of their ‘‘raw’’ counterparts without Stability Selection.

5.5. Findings

Fig. 11 shows the resulting graph from our application of GRaFo to the (non-imputed) data on functional health from
the SHS with casewise deletion of missing values regularized for a bound (as in formula (2)) for an expected number of
false positives E[V ] ≤ 5. The selected edge sets for the imputed and casewise deleted data were quite similar for various
bounds on E[V ] and even identical for E[V ] ≤ 5 (not shown). In the following, we thus focus on the CIG derived from the
complete observations remaining after casewise deletion of missing values. As the data contains mixed-type variables we
did not perform a similar analysis with the LASSO (clearly non-favorable dichotomization was used in the simulations in
Section 4.3).
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Fig. 8. The rows correspond to theGaussianwith nonlinear associationswith p = 50, 100, and 200. Their true CIGs have 16, 58, and 334 edges, respectively.
The first two columns report the observed number of true and false positives (‘‘o’’) relative to the bound in (2) for the expected numberE[V ] of false positives
(‘‘]’’) for GRaFo and StabLASSO, respectively, averaged over 50 simulations. The third column reports the averaged true and false positive rates of GRaFo
and StabLASSO relative to the performance of their ‘‘raw’’ counterparts without Stability Selection.

The resulting edges forE[V ] ≤ 1 depict relatively obvious associations known from everyday observations. Interestingly,
general health perception is conditionally dependent on activity limitation but conditionally independent of impairment
and pain. In the larger graph for E[V ] ≤ 5, one sees that general health perception, impairments, and pain are connected
through a path of several environmental and personal factors such as social support, being married, age, etc. That implies,
for instance, that we do not need information on impairment to predict general health perception if we have information
on activity limitation and the remaining predictors, whereas activity limitation is an essential predictor of general health
perception even if information on all the remaining predictors is provided. For instance, a person with a spinal cord injury
who has no activity limitation because of social and technological supports, could thus still report good health. This finding
is supported by other sources reporting that many people with disabilities do not consider themselves to be unhealthy



146 B. Fellinghauer et al. / Computational Statistics and Data Analysis 64 (2013) 132–152

Fig. 9. The rows correspond to applications of ML (first row) and StabcForests (rows 2 and 3) to data from the mixed model with varying p and n. For
p = 50 (p = 100), the true CIG has 16 (58) edges. The first two columns report the observed number of true and false positives (‘‘o’’) relative to the bound
in (2) for the expected number E[V ] of false positives (‘‘]’’) for GRaFo and StabLASSO or StabcForests, respectively, averaged over 50 simulations. The third
column reports the averaged true and false positive rates.

(WHO and The World Bank, 2011; Watson, 2002). In the 2007–2008 Australian National Health Survey, 40% of people with
a severe or profound impairment rated their health as good, very good, or excellent (Australian Bureau of Statistics, 2009).

As regards our hypothesis derived from the ICF model (WHO, 2001), we can confirm that the bulk of individual level
variables form one component and support the biopsychosocial model of health: Functional and general health influence
each other and are connected with a variety of environmental and personal factors. However, not all candidate personal
and environmental factors were related in our study. This may be due to our conservative upper bound on the error that
is likely to favor false negatives, i.e. missing edges. There may also be an issue with our selection of variables that was
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Fig. 10. The International Classification of Functioning, Disability and Health (ICF) model relates aspects of human functioning and provides a common
language for practitioners.

restricted by the choices of the original survey team. In particular, macro-level variables pertaining information about the
counties, in which the individuals are nested, form a second component. It may be that their effect is already contained
in the individual-level variables, for example paid work. Five variables do not appear in the graph entirely: social network
utilization, migration background, smoker, work restriction, and LPA. If we remove the three macro-level variables GDP,
Gini, and crime rate from the model, the connectivity of the individual-level component does not change. Instead, the two
variables migration background and social network utilization are now present as a separate component (not shown).

Unfortunately, lack of information on the directions of relationships is a weakness of CIGs. Also, condition (A) of Theo-
rem 1 and the exchangeability condition have likely been violated. One disadvantage of the randomForest implementation
is the inability to model continuous variables with <6 unique values, which may oftentimes be an issue for the sum indices
in combination with subsampling. Consequently, we chose to model them as categorical variables. Regardless, given the
high face validity of the findings and the achievement of error control in the mixed setting for small p in Section 4.3, the
results seem satisfactory.

The runtime of GRaFo depends also on n, even if p is small. Hence, estimation of the SHS graph was executed in parallel
on 10 cores of the BRUTUS cluster with a runtime of roughly 8 h.

6. Modeling neurodevelopment in children experiencing open-heart surgery

Herewe demonstrate an application of GRaFo to a research question, where p is much larger than n. It is thus of particular
interest, whether GRaFo can suggest meaningful associations or tends to produce seemingly spurious associations.

6.1. Neurodevelopment after open-heart surgery

In children with complex congenital heart disease (CHD) neurological and developmental alterations are common
(Bellinger et al., 2003; Snookes et al., 2010; Ballweg et al., 2007). The observed cognitive, behavioral, and motor deficits can
significantly impact daily routine and educational perspectives and lead to a high rate of special schooling and supportive
therapies in this population (von Rhein et al., 2012; Hövels-Gürich et al., 2006, 2008). In severe congenital heart disease
requiring open-heart surgery, factors can be further subdivided into pre-, peri-, and post-operative factors. One of themajor
limitations of studies on patient specific risk-factors (Ballweg et al., 2007; Hövels-Gürich et al., 2006, 2008), treatment
and bypass protocols (Bellinger et al., 2003; Snookes et al., 2010), and post-operative complications (Bellinger et al., 2003;
Snookes et al., 2010) is the inability to provide a full picture of the interplay of all potentially relevant risk-factors available
in the data. Thus, understanding their common association structure is of large interest.

6.2. Study population

Agroupof 221 infantswith a congenital heart disease that underwent open-heart surgerywith full-flowcardiopulmonary
bypass prior to their first birthday from a study of the Children Hospital Zurich from 2004 to 2008 (von Rhein et al., 2012).
We restricted our sample to a more homogeneous sub-population of 34 infants suffering from trisomy 21 of whom 14 were
male and 31 caucasian.
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Table 2
Construction rules of sum indices for functioning (pain, impairment, activity and
participation limitation) and social integration (social support and social network
utilization) from 37 dichotomous (yes = 1/no = 0) variables.

Construct Variable specification

Impairment Problems with. . .
. . . vision
. . .hearing
. . . speaking
. . .body mass index (i.e. over 30 or under 16)
. . .urinary incontinence
. . .defecation
. . . feeling weak, tired, or a lack of energy
. . . sleeping
. . . tachycardia
Range of sum index: 0–9

Pain Pain in. . .
. . .head
. . . chest
. . . stomach
. . .back
. . .hands
. . . joints
Range of sum index: 0–6

Activity & Problems with independently. . .
participation . . .walking
limitation . . . eating

. . . getting up from bed or chair

. . .dressing

. . .using the toilet

. . . taking a shower or bath

. . .preparing meals

. . .using a telephone

. . .doing the laundry

. . . caring for finances/accounting

. . .using public transport

. . .doing major household tasks

. . .doing shopping
Range of sum index: 0–13

Social support Having. . .
. . .no feelings of loneliness
. . .no desire to turn to someone
. . . at least one supportive family member
. . . someone to turn to
Range of sum index: 0–4

Social network utilization At least weekly. . .
. . . visits from family
. . .phone calls with family
. . . visits from friends
. . .phone calls with friends
. . .participation in clubs/associations/parties
Range of sum index: 0–5

6.3. Variables

In total, 133 variables were used for modeling. They can further be subdivided into 40 variables describing basic
characteristics (e.g. birth parameters, family information), 10 variables characterizing a child’s neurodevelopment prior
to surgery, 69 peri-operative factors (i.e. data on pre-operative, intra-operative, and post-operative course), 13 variables
characterizing a child’s neurodevelopment 1 year post surgery, and 1 variable summarizing quality of life based on the
TAPQOL questionnaire (TNO, 2004).

To ease interpretation, we focus in Table 4 on the 29 variables which had at least one adjacent node in the resulting graph
which we discuss below. These variables are of mixed-type, with 23 continuous variables and 6 factors with more than 2
levels.

Outcome variables of primary interest are themental and themotor subscore of the Bayley scales of infant development II
(Bayley, 1993). Both scores were assessed at one year of age.

In total, 3.4% of the data were missing, ranging from 87 completely observed variables to 3 variables with 11 missing
observations (two Apgar score variables (see also Apgar, 1953) and the child’s head circumference at birth (not in graph)).
Case-wise exclusion of children with missing values seems infeasible as this would result in the loss of 26 children. Data
were thus imputed using the missForest procedure (Stekhoven and Bühlmann, 2012).
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Table 3
List of all 20 variables used in the CIG estimation, their type, and their percentage of missing values.

Type Variable % Missing

>2 categories Impairment index 5.92
Pain index 0.37
Activity limitation index 0.69
Social support index 5.84
Social network utilization index 2.32
General health perception 0.05

Dichotomous Male 0.00
Married 0.09
Paid work 0.03
Migration background 4.73
Smoker 0.07
Work restriction 0.00
Leisure physical activity 0.00

Continuous Age 0.00
Years of formal education 0.07
Income 5.94
Alcohol consumption (in grams per day) 2.59
Gross domestic product 0.00
Gini coefficient 0.00
Crime rate 0.00

Fig. 11. Conditional independence graph of the p = 20 variables (nodes) remaining after construction of indices based on the 2007 Swiss Health Survey
estimated with GRaFo. Edges were selected with respect to an upper bound of 5 on the expected number of false positives; see formula (2). Five nodes
(social network utilization, migration background, smoker, work restriction, and LPA) were isolated (no edges) and thus neglected.

6.4. Objective

To identify risk-factors associated with reduced cognitive and motor development of infants that have undergone open-
heart surgery in the first 12 months after birth due to a congenital heart disease using GRaFo.

Due to the large number of variables, many methods of analysis (such as bivariate correlations) may be prone to yield
various spurious associations. It is here thus also of interest to demonstrate that, whenever GRaFo suggests an association,
it tends to have a high face validity (which is judged by the collaborating health professionals).

6.5. Findings

For an upper bound of 5 on the expected number of false positives E[V ] we find that the Bayley scores for motor and
cognitive development are only associated with each other, but not with any other node in the graph (conditional the
remainder) in Fig. 12. We do, however, find 10 small clusters of high face-validity. For example, the age of each child’s
father and mother form a common cluster. Likewise, the children’s Apgar score after 1 min is connected with the Apgar
score after 5 min. The latter furthermore connects with the Apgar score after 10 min. It thus seems that GRaFo manages to
identify many edges which appear intuitively correct, but it fails to provide new insights into the association structure of
the Bayley scores. On the other hand, no apparent ‘‘odd’’ associations were suggested.
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Table 4
List of all 29 variableswhich appear in the graph, their scale type (>2 for categorical; cont. for continuous),
variable group, and their percentage of missing values.

Scale Group Variable Missing

cont birth/family Apgar score 5 min 11
cont birth/family Apgar score 1 min 11
cont birth/family Apgar score 10 min 10
cont birth/family birth weight 1
cont birth/family gestational age 0
cont birth/family birth length 1
cont birth/family father age 1
cont birth/family mother age 0
>2 birth/family father school education 2
>2 birth/family father professional education 2
cont birth/family socio economic status 1
>2 birth/family mother school education 1
>2 birth/family mother number pregnancies 1
>2 birth/family mother number births gestational age >24 weeks 1
cont peri-operative time aorta occlusion 0
>2 peri-operative operation risk 0
cont peri-operative lactate max during surgery 1
cont peri-operative lactate max 24 h post surgery 0
cont peri-operative age at surgery 0
cont peri-operative lowest SO2 during surgery 0
cont peri-operative lowest SO2 24 h post surgery 0
cont peri-operative length at surgery 0
cont peri-operative weight at surgery 0
cont peri-operative head circumference at surgery 0
cont 1 year post surgery weight at 1 year 5
cont 1 year post surgery length at 1 year 5
cont 1 year post surgery head circumference at 1 year 5
cont 1 year post surgery Bayley motor score 5
cont 1 year post surgery Bayley cognitive score 6

This result mirrors current knowledge about the neurodevelopment of infants after open heart surgery: genetic defects
(Bellinger et al., 2003; Snookes et al., 2010; Ballweg et al., 2007) and ethnicity (Ballweg et al., 2007) have been described
as relevant risk-factors for adverse neurodevelopment. As we mostly worked with caucasian children, all of whom have
trisomy 21, these factors have already been controlled for by the design. Even if we increase the upper bound on E[V ] to 50
we still cannot find any additional variables connected to the Bayley scores. The plausibility of the other observed clusters
would thus suggest, that no stable associations with the Bayley scores can be identified using GRaFo.

However, potential bias induced by the imputation method which also utilizes Random Forests cannot be excluded. For
example, all Apgar scores showed a large number of missing values. The identified cluster may thus also be an artifact of the
missing value imputation. Furthermore, our choice of variableswas determined by the original study design. Also, we cannot
guarantee that the exchangeability assumption (Meinshausen and Bühlmann, 2010) and assumption (A) from Theorem 1
hold.

The small number of children (n ≪ p) allowed to run this analysis on an AMD Athlon 64 X2 5600+ PC with 6 GB of
memory in just under 14 min.

7. Conclusion

We propose GRaFo (Graphical Random Forests) performed satisfactory, mostly on par or superior to StabLASSO,
StabcForests, LASSO, Conditional Forests, Random Forests, and ML estimation. Error control of false positive edges could
be achieved in all but the mixed-type simulation with p = 200 and the nonlinear Gaussian setting with p ≥ 100. Violation
of assumption (A) in Theorem 1 and of the exchangeability condition might be responsible for this behavior. In contrast, in
most of the other settings GRaFo was very conservative and observed false positive edges were well below their expected
upper bound. The Ising model, the sole model not based on DAGs, was particularly hard for both GRaFo and StabLASSO
resulting in few true positives if error bounds were chosen very small.

Results in the Gaussian setting with interactions were very similar to the main effects Gaussian setting, which is likely
due to the small number of interactions in our simulation model. On the contrary, GRaFo shows a clear gain over StabLASSO
in the nonlinear setting, where half of the associations were nonlinear in nature.

Poor results for the LASSO in the multinomial and mixed case, where we need dichotomization, may be improved by
feasible modifications of the LASSO, such as an extension of the group LASSO (Meier et al., 2008) to multinomial responses
(Dahinden et al., 2010). However, penalization if both discrete and continuous variables are included is not a straightforward
task (including the issue of scaling).
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Fig. 12. The figure shows the conditional independence graph of childrenwith trisomy 21 experiencing open-heart surgery. The reported p = 29 variables
(nodes) have at least one adjacent node for an upper bound of 5 on the expected number of false positives E[V ].

The ML results indicate that both GRaFo and StabcForests perform very well in the mixed setting, though the compu-
tational cost of StabcForests notably exceeds the cost of GRaFo. Both Forests-based algorithms used marginal permutation
importance as the conditional permutation importance turned out impractical due to its high computational cost.

The Swiss Health Survey graph consists of an individual- and a macro-level variable cluster which were highly stable
with respect to the way of handling missing values. Exclusion of the macro-level cluster did not affect the individual-level
cluster. For a small error bound, our hypothesis that all factors should connect could not be fully confirmed, though a strong
tendency toward the ICF’s biopsychosocial model of health was evident in the individual-level cluster.

The children hospital graph consists of many clusters of high face-validity. We believe this emphasizes GRaFo’s potential
to isolate true and stable associations. However, we failed to identify any new potential risk factors that may help to explain
adverse neurodevelopment (since no edges connect to the corresponding outcome measures). The known risk factors
ethnicity and genetic defects were controlled for by the design. This may be a consequence of the available pool of variables.
Also, it is imaginable, that some associations are only of importance for a sub-group of the study population. In this case,
they would appear to be instable to GRaFo and consequently not be reported.

8. Proof of Theorem 1

Proof. We know that Xj y Xi|X \ {Xj, Xi} is equivalent to

P[Xj ≤ xj|{xh; h ≠ j}] = P[Xj ≤ xj|{xh; h ≠ j, i}] (4)

for all realizations xj of Xj and {xh; h ≠ j} of X \ {Xj}. Due to assumption (A) we can rewrite (4):

Fj(xj|mj({xh; h ≠ j})) = Fj(xj|mj({xh; h ≠ j, i})) (5)

for all xj and all {xh; h ≠ j}. But (5) is equivalent to

mj({xh; h ≠ j}) = mj({xh; h ≠ j, i}) (6)

for all {xh; h ≠ j}. This completes the proof. �
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Appendix. Supplementary data
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