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ABSTRACT. We propose an �1-penalized estimation procedure for high-dimensional linear mixed-
effects models. The models are useful whenever there is a grouping structure among high-
dimensional observations, that is, for clustered data. We prove a consistency and an oracle
optimality result and we develop an algorithm with provable numerical convergence. Furthermore,
we demonstrate the performance of the method on simulated and a real high-dimensional data set.
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1. Introduction

1.1. High-dimensional statistical inference: some known results for convex loss functions

Substantial progress has been achieved over the last decade in high-dimensional statistical
inference where the number of parameters p is allowed to be of much larger order than
sample size n. To fix ideas, suppose we focus on estimation of a p-dimensional parameter �0

based on n noisy observations where p�n. Although such a problem is ill-posed in general,
it can be accurately solved if the underlying true structure of �0 is sparse. Here, sparsity may
be measured in terms of the `r-norm ‖�‖r = (

∑p
j =1 |�j |r)1/r (0 ≤ r <∞). Very roughly speak-

ing, high-dimensional statistical inference is possible, in the sense of leading to reasonable
accuracy or asymptotic consistency, if

log(p) · sparsity(�0)� �n,

where typically �=2 [cf. (1)] or �=1 [cf. (2)], and assuming that the underlying (e.g. regres-
sion) design behaves reasonably.

A lot of attention has been devoted to high-dimensional linear models

y =X�0 + �,

with n × p design matrix X and p � n. A very popular and powerful estimation method
is the Lasso, proposed by Tibshirani (1996). It is an acronym for least absolute shrinkage
and selection operator and the name indicates that the method does some variable selection
in the sense that some of the regression coefficient estimates are exactly zero. Among the
main reasons why it has become very popular for high-dimensional estimation problems are
its statistical accuracy for prediction and variable selection coupled with its computational
feasibility which involves convex optimization only. The latter is in sharp contrast to exhaus-
tive variable selection based on least squares estimation whose computational complexity is
in general exponential in p. The statistical properties of the Lasso in high-dimensional set-
tings have been worked out in numerous articles. Without (essentially) a condition on the
design X, the Lasso satisfies:
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‖X(�̂−�0)‖2
2/n=OP(‖�0‖1

√
log(p)/n), (1)

where OP(·) is with respect to p ≥ n →∞ (Bühlmann & van de Geer, 2011). That is, if the
model is sparse with ‖�0‖1 �√

log(p)/n, we obtain consistency. Such kind of a result has
been proved by Greenshtein & Ritov (2004). Later, optimality has been established where (1)
is improved to

‖X(�̂−�0)‖2
2/n=OP(s0�

−2 log(p)/n),

and furthermore

‖�̂−�0‖r =OP(s1/r
0 �−2

√
log(p)/n), r ∈{1, 2}, (2)

where s0 equals the number of non-zero coefficients and �2 denotes a restricted eigenvalue of
the design matrix X (Bühlmann & van de Geer, 2011). The rate in (2) is optimal up to the
log(p) factor and the restricted eigenvalue �2: oracle least squares estimation where the rel-
evant variables would be known would have rate OP(s0/n). We emphasize that for obtaining
optimal convergence rates as in (2), we need to make some assumptions on the design that
�2 is not getting too small as p≥n→∞, something we do not require in (1). Works dealing
with various aspects around (2) include Bunea et al. (2007), van de Geer (2008), Zhang &
Huang (2008), Meinshausen & Yu (2009) and Bickel et al. (2009).

A quite different problem is variable selection for inferring the true underlying active set
S0 ={1 ≤ k ≤ p : �0,k /=0}. A simple estimator is Ŝ ={1 ≤ k ≤ p : �̂k /=0} where no significance
testing is involved. Meinshausen & Bühlmann (2006) show for the Lasso that under the
so called neighbourhood stability condition for the design, the Lasso does consistent vari-
able selection in the sense that

P[Ŝ =S0]→1(p≥n→∞), (3)

assuming that the non-zero coefficients in S0 are sufficiently large in absolute value, for ex-
ample, mink∈S0 |�0,k |��−2

√
s0 log(p)/n which is the rate in (2) for r =2. The neighbourhood

stability condition is equivalent to the irrepresentable condition used in Zhao & Yu (2006),
and they are both sufficient and (essentially) necessary for consistent model selection as in
(3). Unfortunately, the neighbourhood stability and the irrepresentable condition are rather
restrictive and many designs X would violate them. In case of (weaker) restrictive eigenvalue
conditions, one still has the variable screening property for the Lasso

P[Ŝ ⊇S0]→1 (p≥n→∞), (4)

again assuming that the non-zero coefficients in S0 are sufficiently large in absolute value.
Equation (4) says that the Lasso does not miss a relevant variable from S0; in addition, for
the Lasso, the cardinality |Ŝ|≤min(n, p) and hence, for p�n, we achieve a huge dimension-
ality reduction in (4). The adaptive Lasso, proposed by Zou (2006) is a two-stage method
which achieves (3) under a weaker restrictive eigenvalue assumption than the irrepresentable
condition (Huang et al., 2008; van de Geer et al., 2010). We summarize the basic facts in
Table 1. Moreover, everything essentially holds in an analogous way when using the Lasso
in generalized linear models, that is, `1-norm penalization of the negative log-likelihood
(van de Geer, 2008). Finally, we note that Bickel et al. (2009) prove equivalent theoretical be-
haviour of the Lasso and the Dantzig selector (Candes & Tao, 2007) in terms of (2), exempli-
fying that properties like (2) hold for other estimators than the Lasso as well.

Having some variable screening property as in (4), we can reduce the false positive
selections by various methods, besides the adaptive Lasso mentioned above, including also
stability selection (Meinshausen & Bühlmann, 2010) based on subsampling or via assigning
p-values (Meinshausen et al., 2009; Wasserman & Roeder, 2009) based on sample splitting.
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Table 1. Properties of the Lasso and required conditions to achieve them. Restricted eigenvalue
assumption is weaker than the neighbourhood stability or irrepresentable condition (van de Geer
& Bühlmann, 2009). For the adaptive Lasso: variable selection as in (3) can be achieved under
restricted eigenvalue conditions

Property Design condition Size of non-zero coefficients

Consistency as in (1) No requirement No requirement
Fast convergence rate as in (2) Restricted eigenvalue No requirement
Variable selection as in (3) Neighbourhood stability Sufficiently large

⇔ irrepresentable condition
Variable screening as in (4) Restricted eigenvalue Sufficiently large

Regarding computation, the Lasso involves convex optimization. Popular algorithms are
based on the homotopy method (Osborne et al., 2000) such as LARS (Efron et al., 2004).
More recently, it has been argued that the coordinate gradient descent approach (in a Gauss–
Seidel manner) is typically more efficient (Meier et al., 2008; Wu & Lange, 2008; Friedman
et al., 2010).

1.2. High-dimensional linear mixed-effects models with non-convex loss function

The underlying assumption that all observations are independent is not always appropri-
ate. We consider here linear mixed-effects models (Laird & Ware, 1982; Pinheiro & Bates,
2000; Verbeke & Molenberghs, 2000; Demidenko, 2004) where high-dimensional data incor-
porate a grouping structure with independent observations between and dependence within
groups. Mixed-effects models, including random besides fixed effects, are a popular exten-
sion of linear models in that direction. For example, many applications concern longitudinal
data where the random effects vary between groups and thereby induce a dependence struc-
ture within groups. It is a crucial and important question how to cope with high-dimensional
linear mixed-effects models. Surprisingly, for this problem, there is no established procedure
which is well understood in terms of statistical properties.

The main difficulty arises from non-convexity of the negative log-likelihood function which
makes computation and theory very challenging. We are presenting some methodology,
computation and theory for `1-norm penalized maximum likelihood estimation in linear
mixed-effects models where the number of fixed effects may be much larger than the overall
sample size but the number of covariance parameters of the random effects part being small.
Based on a framework for `1-penalization of smooth but non-convex negative log-likelihood
functions (Städler et al., 2010), we develop in section 3 analogues of (1), (2) and (4), see also
Table 1, and some properties of an adaptively `1-penalized estimator. In our view, these are
the key properties in high-dimensional statistical inference in any kind of model. For exam-
ple, with (4) at hand, p-values for single fixed-effects coefficients could be constructed along
the lines of Meinshausen et al. (2009), controlling the familywise error or false discovery rate
(but we do not apply such a method in this article). Furthermore, we design in section 4
an efficient coordinate gradient descent algorithm for linear mixed-effects models which is
proved to converge numerically to a stationary point of the corresponding non-convex opti-
mization problem.

We remark that we focus here on the case where it is prespecified which covariates are
modelled with a random effect and which are not. In some situations, this is fairly realis-
tic: for example, a random intercept model is quite popular and often leads to a reasonable
model fit. Without prespecification of the covariates having a random effect, one could do
variable selection based on penalized likelihood approaches on the level of random effects:
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this has been developed from a methodological and computational perspective by Bondell
et al. (2010) and Ibrahim et al. (2010) for low-dimensional settings. Addressing such prob-
lems in the truly high-dimensional scenario is beyond the scope of this article. However, we
present in section 6 a real high-dimensional data problem where some exploratory analy-
sis is used for deciding which covariates are to be modelled with a random effect. This ex-
ample also illustrates empirically that there is a striking improvement if we incorporate
random effects into the model, in comparison with a high-dimensional linear model fit.

The rest of this article is organized as follows. In section 2, we define the `1-penalized
linear mixed-effects estimator. In section 3, we present the theoretical results for this esti-
mator before describing the details of a computational algorithm in section 4. After some
simulations in section 5 we apply the procedure to a real data set. The technical proofs are
deferred to an Appendix in the online Supporting Information on the journal website.

2. Linear mixed-effects models and �1-penalized estimation

2.1. High-dimensional model set-up

We assume that the observations are inhomogeneous in the sense that they are not indepen-
dent, but grouped. Let i =1, . . . , N be the grouping index and j =1, . . . , ni the observation
index within a group. Denote by NT =∑N

i =1 ni the total number of observations. For each
group, we observe an ni ×1 vector of responses yi , and let Xi be an ni ×p fixed-effects design
matrix, � a p × 1 vector of fixed regression coefficients, Zi an ni × q random-effects design
matrix and bi a group-specific vector of random regression coefficients.

Using the notation from Pinheiro & Bates (2000), the model can be written as:

yi =Xi�+Zibi + �i i =1, . . . , N , (5)

assuming that

(i) �i ∼Nni (0, �2Ini ) and uncorrelated for i =1, . . . , N ,
(ii) bi ∼Nq(0, �) and uncorrelated for i =1, . . . , N ,

(iii) �1, . . . , �N , b1, . . . , bN are independent.

Here, �=�� is a general covariance matrix where � is an unconstrained set of parameters
(with dimension q∗) such that �� is positive definite (i.e. by using the Cholesky decompo-
sition). Possible structures for � may be a multiple of the identity, a diagonal or a general
positive definite matrix. We would like to remark that assumption (i) can be generalized to
(i’) �i ∼Nni (0, �2�i) with �i =�i(�) for a parameter vector �. This generalization still fits into
the theoretical framework presented in section 3. Nonetheless, for the sake of notational
simplicity, we restrict ourselves to assumption (i). As indicated by the index i, the bi are
different among the groups. All observations have the coefficient � in common whereas the
value of bi depends on the group that the observation belongs to. In other words, for each
group there are group-specific deviations bi from the overall effects �. We assume throughout
the article that the design matrices Xi and Zi are deterministic, that is, fixed design. The
case with random design does neither change the methodology (i.e. we can use the same
methods presented next) nor alter much the theory, although the latter needs an adaptation
of mathematical arguments.

We allow that the number p of fixed-effects regression coefficients may be much larger than
the total number of observations, that is, NT �p. Furthermore, the number q of random-effects
variables might be as large as q ≤ p, but the dimension q∗ of the variance–covariance para-
meters is assumed to be small (q∗ �NT ). We aim at estimating the fixed regression parameter
vector �, the random effects bi and the variance–covariance parameters � and �2. Therefore,
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�̃ := (�T , �T , �2)T defines the complete parameter vector with at most length p+q(q +1)/2+1.
From model (5) we deduce that y1, . . . , yN are independent and yi ∼Nni (Xi�, Vi(�, �2)) with
Vi(�, �2)=Zi��ZT

i +�2Ini . Denote the stacked vectors y = (yT
1 , . . . , yT

N )T , b = (bT
1 , . . . , bT

N )T ,
�= (�T

1 , . . . , �T
N )T and the stacked matrices X = (XT

1 , . . . , XT
N )T , Z=diag(Z1, . . . , ZN ) and

V =diag(V1, . . . , VN ). Then model (5) can be written as:

y =X�+Zb + � (6)

and the negative log-likelihood is given by

−`(�̃)=−`(�, �, �2)= 1
2
{NT log(2�)+ log |V|+ (y −X�)T V−1(y −X�)}, (7)

where |V|=det(V).

2.2. `1-penalized maximum likelihood estimator

Because of the possibly large number of covariates (NT �p setting), we cannot use the clas-
sical maximum likelihood or restricted maximum likelihood (REML) approach. Assume that
the fixed regression coefficients are sparse in the sense that many parameters are zero. We then
attenuate these difficulties by adding an `1-penalty on the fixed regression coefficients. By
doing so, we achieve a sparse solution with respect to the fixed effects. This leads us to
consider the following objective function:

Q�(�, �, �2) := 1
2

log |V|+ 1
2

(y −X�)T V−1(y −X�)+�
p∑

k =1

|�k |, (8)

where � is a non-negative regularization parameter. Consequently, we estimate the fixed regres-
sion coefficient vector � and the variance components � and �2 by

ˆ̃
�= (�̂, �̂, �̂2)= arg min

�,�,�2 > 0,�> 0
Q�(�, �, �2). (9)

For fixed variance parameters � and �2, the minimization with respect to � is a convex opti-
mization problem. Since we want to make use of this convexity (see section 4), we do not
profile the likelihood function, as usually performed in the mixed-effects model framework
(Pinheiro & Bates, 2000). However, with respect to the full parameter vector �̃, we have a
non-convex objective function and hence, we have to deal with a non-convex problem. This
requires a more general framework in theory as well as in computation. In the following
sections, we discuss how to address this issue.

2.3. Prediction of the random-effects coefficients

We predict the random-effects coefficients bi , i =1, . . . , N by the maximum a posteriori (MAP)
principle. Denoting by f the density of the corresponding Gaussian random variable, we
define

b̃i =arg max
bi

f (bi |y1, . . . , yN , �, �, �2)=arg max
bi

f (bi |yi , �, �, �2)

=arg max
bi

f (yi |bi , �, �2) · f (bi |�)
f (yi |�, �, �2)

=arg min
bi

{
1
�2

‖yi −Xi�−Zibi‖2 +bT
i �−1

� bi

}
.
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From this we get b̃i = [ZT
i Zi +�2�−1

� ]−1ZT
i ri , where ri = (yi − Xi�) is the (marginal) residual

vector. Since the true values of �, � and �2 are unknown, the bis are predicted by b̂i = [ZT
i Zi +

�̂2�−1
�̂

]−1ZT
i r̂i with r̂i = (yi −Xi �̂), using the estimates from (9).

2.4. Selection of the regularization parameter

The estimation requires to choose a regularization parameter �. We propose to use the
Bayesian information criterion (BIC) defined by

BIC� :=−2`(�̂, �̂, �̂2)+ log NT · ˆdf �, (10)

where ˆdf � := |{1 ≤ k ≤ p : �̂k /=0}|+dim(�) is the sum of the number of the non-zero fixed
regression coefficients and the number of variance–covariance parameters. The use of |{1 ≤
k ≤p : �̂k /=0}| as a measure of the degrees of freedom is motivated by the work of Zou et al.
(2007) who show that the expected number of degrees of freedom for the Lasso in a linear
model is given by the number of non-zero estimated coefficients.

Obviously, there are other tuning parameter selection methods, for example cross-
validation and Akaike information-type criteria, among others. Advocating the BIC as selection
criterion is based on our empirical experience that it performs best in both simulations and
real data examples (see sections 5 and 6).

2.5. Adaptive `1-penalized maximum likelihood estimator

Because of the bias of the Lasso, Zou (2006) proposed the adaptive Lasso. For some given
weights w1, . . . , wp, the adaptive `1-penalized maximum likelihood estimator has the follow-
ing objective function instead of (8):

Qw1, ...,wp
� (�, �, �2) := 1

2
log |V|+ 1

2
(y −X�)T V−1(y −X�)+�

p∑
k =1

wk |�k |,

and hence

ˆ̃
�= (�̂, �̂, �̂2)= arg min

�,�,�2 > 0,�> 0
Qw1, ...,wp

� (�, �, �2). (11)

The weights w1, . . . , wp may be calculated from an initial estimator �̂init in (9) with wk :=
1/|�̂init,k(�)| for k =1, . . . , p. Unless specified otherwise, we employ these weights.

3. Theoretical results

In the high-dimensional setting with p � NT , the theory for penalized estimation based on
convex loss functions with an `1-penalty is well studied, see for example van de Geer (2008).
From (8) and (9) we see that we are dealing with a non-convex loss function, because
of the variance parameters � and �2, and a convex `1-penalty. To the best of our knowledge,
only Städler et al. (2010) consider high-dimensional non-convex `1-penalized smooth
likelihood problems. In this section, we build upon the theory presented in Städler et al.
(2010) and extend their results to prove an oracle inequality for the adaptive `1-penalized
estimator (11).

We use the following framework and notation. Let i =1, . . . , N as before. In the remain-
der of this article, we assume that ni ≡ n > 1 the same for all i. This assumption eases the
mathematical presentation while all theoretical and computational results remain valid for
different nis. Denote by yi ∈Y ⊂ Rn the response variable. Let Xi be the fixed covariates in
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some space X n ⊂ Rn×p and Zi ⊂ Xi . The latter can be assumed without loss of generality,
since we can assign to every variable a fixed effect being equal to zero. Define the parameter
�T := (�T , �T , 2 log �)= (�T , �T , �)= (�T , �T ) ∈ Rp+q∗ +1 and denote by �0 the true parameter
vector. For a constant 0 < K <∞, consider the parameter space

�={�T = (�T , �T ) : sup
x∈X

|xT �|≤K , ‖�‖∞ ≤K , �> 0}∈Rp+q∗ +1, (12)

where ‖�‖∞ =maxl |�l |. We modify the estimators in (9) and (11) by restricting the solution
to lie in the parameter space �:

�̂ :=arg min
�∈�

{
1
2

log |V|+ 1
2

(y −X�)T V−1(y −X�)+�
p∑

k =1

|�k |
}

, (13)

�̂weight :=arg min
�∈�

{
1
2

log |V|+ 1
2

(y −X�)T V−1(y −X�)+�
p∑

k =1

wk |�k |
}

. (14)

Now, let f�,Xi ,Zi be the Gaussian density for yi with respect to the aforegiven parameteriza-
tion. Since we use the negative log-likelihood as loss function, the excess risk coincides with
the Kullback–Leibler distance:

EX,Z(� |�0)=
∫

log
(

f�0,X,Z

f�,X,Z

)
f�0,X,Z d	, (15)

where 	 denotes the Lebesgue measure, and we define the average excess risk as:

EX1, ...,XN ,Z1, ...,ZN (� |�0)= 1
N

N∑
i =1

EXi ,Zi (� |�0).

In the sequel, we drop the indices X,Z and X1, ..., XN , Z1, ..., ZN , respectively.

3.1. Consistency for the `1-penalized estimator

We require only one condition for consistency. It is a condition on the random-effects design
matrices Zi .

Assumption 1. The eigenvalues of ZT
i Zi , denoted by (
(i)

j )q
j =1 for i =1, . . . , N , are bounded:


(i)
j ≤K <∞ for all i and j, with K from (12).

Now we consider a triangular scheme of observations from (5):

yi =Xi�N +Zibi + �i , i =1, . . . , N , (16)

where the parameters �N and �N are allowed to depend on N. We study consistency as N →∞
but the group size n is fixed (in general, (ni)i≥1 are fixed). Moreover, let us use the notation
a ∨b :=max{a, b}.

Theorem 1 (consistency). Consider model (16) and the estimator (13). Under assumption 1 and
assuming

‖�0,N‖1 =o

(√
N

log4(N) log(p∨N)

)
, �N =C

√
log4(N) log(p∨N)

N

for some C > 0, any global minimizer �̂ as in (13) satisfies Ē(�̂ |�0)=oP(1) as N →∞.
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A proof is given in the Appendix in the online Supporting Information. The condition on
‖�0,N‖1 is a sparsity condition on the true underlying fixed-effects coefficients.

3.2. Oracle inequality for the adaptive `1-penalized estimator

We now present an oracle optimality result in non-asymptotic form for the adaptive estimator
(and thereby covering also the non-adaptive case). Preliminarily, we introduce some notation
and two further assumptions.

Assumption 2.

(a) Let (�(i)
j )n

j =1 be the eigenvalues of Zi�ZT
i for i =1, . . . , N . At least two eigenvalues are

different, that is, for all i ∃ j1 /=j2 ∈{1, . . . , n} such that �(i)
j1 /=�(i)

j2
.

(b) For i =1, . . . , N , the matrices �i defined by

(�i)r,s = tr
(

V−1
i

∂Vi

∂�p+ r
V−1

i
∂Vi

∂�p+ s

)
r, s =1, . . . , q∗ +1

are strictly positive definite.

Remark. In the special case �=
2I, assumption 2(b) automatically holds.
Let S(�)={1≤k ≤p :�k /=0} be the active set of �, that is, the set of non-zero coefficients,

and �K ={�k : k ∈K} for K⊂{1, . . . , p}. We denote by S0 =S(�0) the true active set and by
s0 = |S0| its cardinality. Write XT

i = (xi
1, . . . , xi

n) and define

�N ,n := 1
NT

N∑
i =1

n∑
j =1

xi
j(x

i
j)

T ∈Rp×p.

Assumption 3 (restricted eigenvalue condition). There exists a constant �≥1, such that for all
�∈Rp satisfying ‖�Sc

0
‖1 ≤6‖�S0

‖1 it holds that ‖�S0
‖2

2 ≤�2�T �N ,n�.

A discussion of this assumption can be found in Bickel et al. (2009) and van de Geer &
Bühlmann (2009). Define

�0 =MN log N

√
log(p∨N)

N
, (17)

where MN is of order log N and an exact definition is given in the proof of theorem 1. For any
T ≥a1, let J be a set defined by the underlying empirical process (see (A.6) in the Supporting
Information). It is shown in the proof of theorem 1 that the set J has large probability,

P[J ]≥1−a2 exp

[
−T 2 log2 N log(p∨N)

a2
3

]
− �

log N
1

N1−2�

for N sufficiently large and some constants a1, a2, a3, �, �> 0; see lemmas 2 and 3 in appendix
A (in the Supporting Information).

At this point, we could conclude an oracle result in the way of Städler et al. (2010). How-
ever, we extend that result and present an oracle inequality involving ‖�̂ − �0‖1 instead of
‖�̂Sc

0
‖1 for the `1-penalized as well as the adaptive `1-penalized estimator.

Theorem 2 (oracle result). Consider the weighted `1-penalized estimator (14). Suppose that for
some �> 0,
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wk

{≤1/�, k ∈S0,
≥1/�, k �∈S0.

Under assumptions 1, 2 and 3, and for �≥2T��0, we have on the set J defined in (A.6),

Ē(�̂weight |�0)+2(�/�−T�0)‖�̂weight −�0‖1 ≤9(�/�+T�0) 2c2
0�

2s0.

The proof is given in appendix B. Application of theorem 2 with all weights equal to one
(�=1) gives an oracle result for the `1-penalized estimator, which we will use as initial values
for the adaptive Lasso procedure.

Corollary 1. Let

�̂init := (�̂init, �̂init, �̂init) :=arg min
�∈�

Q1, ...,1
�init

(�, �, �),

be the initial estimator in (14) (i.e. the estimator with all the weights equal to 1). Under assump-
tions 1, 2 and 3, and for �init ≥2T�0, we have on J ,

Ē(�̂init |�0)+2(�init −T�0)‖�̂init −�0‖1 ≤9(�init +T�0) 2c2
0�

2s0. (18)

It is clear that the `1-estimation error bound implies a bound for the `∞ estimation error as
well. When the underlying true coefficients �0,k , k ∈S0 are sufficiently much larger in absolute
value than the `∞-estimation error bound, one can perfectly distinguish between the active
and non-active sets. This argument is applied in the next corollary to the adaptive Lasso with
estimated weights.

Corollary 2. Let

�̂adap := (�̂adap, �̂adap, �̂adap) :=arg min
�∈�

Qw1, ...,wp
�adap

(�, �, �),

be the adaptive estimator with weights wk =1/|�̂init, k |, k =1, . . . , p as in (13). Assume that for
all k ∈S0,

|�0,k |≥2�init, (19)

where

�init := 9(�init +T�0) 2c2
0�

2s0

2(�init −T�0)
≥‖�̂init −�0‖1

is a bound of the `1-estimation error of the initial �̂init. Suppose moreover that assumptions 1,
2 and 3 are met. Then, for �adap ≥2T�init�0, and on the set J ,

Ē(�̂adap |�0)+2(�adap/�init −T�0)‖�̂adap −�0‖1 ≤9(�adap/�init +T�0) 2c2
0�

2s0. (20)

We call condition (19) a ‘betamin’ condition. It is clearly very restrictive, but allows for
an easy derivation of the oracle result. The ‘betamin’ condition can indeed be substantially
refined. In van de Geer et al. (2010), one can find similar oracle results, and in addition
variable selection results, for the adaptive Lasso in the linear model, without ‘betamin’ con-
ditions. These results require introducing various versions of restricted eigenvalues and sparse
eigenvalues, and can be generalized to the current setting. Since a full presentation is rather
involved, we have confined ourselves to the simplest case.

Recall that in (17), we choose �0 of order log2 N
√

log(p∨N)/N . When we also choose �init

of this order, we find, modulo the restricted eigenvalue � and the constants T and c0, that
the right-hand side of the oracle result (18) for the initial estimator is of order
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log4 N
log(p∨N)

N
s0,

and that

�init � log2 N

√
log(p∨N)

N
s0.

The tuning parameter for the adaptive Lasso can then be taken of order

�adap � log4 N
log(p∨N)

N
s0.

The right-hand side (20) of the oracle result for the adaptive estimator is then of the same
order as that for the initial estimator.

Assuming ‘betamin’ conditions, the results in corollaries 1 and 2 imply the variable screen-
ing property motivated already in (4).

Corollary 3.

(1) For the `1-penalized (initial) estimator (13), assume

min
k

|�0,k |>�init = 9(�init +T�0) 2c2
0�

2s0

2(�init −T�0)
.

Then, under the assumptions of corollary 1, on the set J ,

S0 ⊂ Ŝ init ={1≤k ≤p : �̂init, k /=0}.

(2) For the adaptive `1-penalized estimator in corollary 2, assume

min
k

|�0,k |>
9(�adap/�init +T�0) 2c2

0�
2s0

2(�adap/�adap −T�0)
.

Then, under the assumptions of corollary 2, on the set J ,

S0 ⊂ Ŝadap ={1≤k ≤p : �̂adap, k /=0}.

The proof of corollary 3 is given in appendix B.

4. Computational algorithm

The algorithm for the estimators in (9) and (11) is based on the Block Coordinate
Gradient Descent (BCGD) method from Tseng & Yun (2009). The main ideas of our BCGD
algorithm are that we cycle through the coordinates and minimize the objective function
Q�(·) with respect to only one coordinate while keeping the other parameters fixed (i.e. a
Gauss–Seidel algorithm). In each such step, we approximate Q�(·) by a strictly convex qua-
dratic function. Then, we calculate a descent direction and we employ an inexact line search
to ensure a decrease in the objective function.

BCGD algorithms are used in Meier et al. (2008) for the group Lasso as well as in
Wu & Lange (2008) and Friedman et al. (2010) for the ordinary Lasso. We remark that
Meier et al. (2008) have a block structure because of the grouped variables whereas we
only focus on ungrouped covariates. Thus the word ‘block’ has no meaning in our context
and consequently, we omit it in the subsequent discussion. Furthermore, the ordinary Lasso
has only regression parameters to cycle through in contrast to our problem involving two
kinds of parameters: fixed regression and variance–covariance parameters.

Let us first introduce the notation and give an overview of the algorithm before prov-
ing that our optimization problem achieves numerical convergence. All the details as well as
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some computational aspects are deferred to appendix C in the Supporting Information on the
journal website.

Let �T = (�T , �T ) ∈ Rp+q∗ +1 be the parameterization introduced in the previous section.
Define the functions

P(�) :=
p∑

k =1

|�k |, g(�) := 1
2

log |V(�)|+ 1
2

(y −X�)T V(�)−1(y −X�).

Now (9) can be written as �̂� =arg min� Q�(�) :=g(�)+�P(�). Letting ej be the jth unit
vector, the algorithm can be summarized in the following way:

Algorithm 1 (coordinate gradient descent).

(0) Let �0 ∈Rp+q∗ +1 be an initial value.
For `=0, 1, 2, . . . , let S` be the index cycling through the coordinates {1}, {2}, . . . , {p+q∗},
{p+q∗ +1}
(1) Approximate the second derivative ∂2/∂(�S` ) 2Q�(�`) by h` > 0.
(2) Calculate the descent direction

d ` :=arg min
d∈R

{
g(�`)+ ∂

∂�S`

g(�`)d + 1
2

d2h` +�P(�` +deS` )
}

.

(3) Choose a stepsize �` > 0 and set �`+1 =�` +�`d `eS` such that there is a decrease in the
objective function;

until convergence.

The details of (0)–(3) and further computational issues are given in appendix C of the
online Supporting Information. An implementation of the algorithm can be found in the
R package lmmlasso, which is available from R-Forge (http://lmmlasso.R-forge.R-project.org).

The convergence properties of the CGD algorithm are described in the following theorem.

Theorem 3 (convergence of the CGD algorithm). If (�`)`≥0 is chosen according to algorithm
1, then every cluster point of {�`}`≥0 is a stationary point of Q�(�).

The proof is given in appendix C.

In general, because of the non-convexity of the optimization problem, the CGD algorithm
may not achieve the global optimum.

5. Simulation study

In this section, we assess the empirical performance of the `1-penalized maximum likelihood
estimators (9) and (11) in different kinds of simulation examples. We study several performance
measures and compare the proposed method with Lasso and linear mixed-effects methods,
if possible. After some introductory remarks, we focus on high-dimensional examples. The
simulation study for the low-dimensional setting is provided in the online Supporting Infor-
mation. The application of the new procedure on a real data set is illustrated in the next
section.

Hereafter, we denote by lmmLasso the `1-penalized maximum likelihood estimator (9),
by lmmadLasso the adaptive `1-penalized maximum likelihood estimator (11) and by lme
the classical linear mixed-effects model provided by the R package nlme (Pinheiro & Bates,
2000). Furthermore, let Lasso denote the standard Lasso (Efron et al., 2004) and adLasso
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the adaptive Lasso (Zou, 2006) where the regularization parameter is chosen by minimizing
the BIC.

As an overview, let us summarize the most important conclusions from the simulation
studies:

(a) The variability of the estimated fixed-effects parameters �̂k is much smaller if there
is no corresponding random effect (b̂i)k for i =1, . . . , N , for all lme, lmmLasso and
lmmadLasso.

(b) In the high-dimensional framework, the following aspects appear (and are virtually
not observable in the low-dimensional setting):

1. Penalizing fixed-effects covariates which also incorporate a random effect causes
bias problems. To be more specific, let us assume that the penalized kth covari-
ate has a fixed and a random-effects coefficient, that is, �k and (bi)k , respectively.
If the regularization parameter � is large and �k subject to penalization, then �̂k

is shrunken towards zero. Thereby, the estimate of the corresponding variance
parameter gets large and (b̂i)k has a bias related to the amount of shrinkage in
�̂k . As a consequence, covariates with fixed and random effect should no be sub-
ject to penalization.

2. An adaptive procedure (11) with appropriate weights may reduce this adverse
effect, but it does not overcome the aforementioned problem completely. The work
of Bondell et al. (2010) covers only the low-dimensional case and the authors do
not present any parameter estimates in the simulation study.

3. The results are sensitive to the starting value. Nonetheless, choosing the starting
value as described in appendix C of the online Supporting Information performs
well in all simulation examples.

(c) There is a remarkable reduction of the estimated error variance �̂2 when incorporating
the random-effects structure in lmmLasso, lmmadLasso and lme compared with Lasso
and adLasso.

(d) The variability of the Lasso and adLasso coefficient estimators are larger than the cor-
responding variability of the mixed-effects model approaches.

(e) If we focus on the identification of random-effects covariates, we suggest using a dia-
gonal structure for � and then eliminating those random-effects covariates with a
small variance. An elaborate discussion of the selection of the random-effects struc-
ture is beyond the scope of this article. In section 6, we suggest a strategy how to
remedy this problem.

In all subsequent simulation schemes, we restrict ourselves to the case where all groups have
the same number of observations, that is, we set ni ≡n for i =1, . . . , N . Let the first column
of Xi be the (non-penalized) intercept. We assign Zi ⊂Xi such that the columns of Zi corres-
pond to the first q columns of Xi . This means that the first q variables have both a fixed-
effects coefficient �k and a random-effects coefficient (bi)k for i =1, . . . , N and k =1, . . . , q.
The covariates are generated from a multivariate normal distribution with mean zero and
covariance matrix � with the pairwise correlation �kk′ =�|k−k′ | and �=0.2. Denote by �0 the
true fixed effects and by s0 :=#{1≤k ≤p :�0,k /=0} the true number of non-zero coefficients.
Unless otherwise stated, we set �=
2I. In all subsequent tables, a non-penalized fixed-effects
coefficient is marked by an asterisk (∗).

5.1. High-dimensional setting

We study four examples in the high-dimensional setting (�0,1 =1 is the unpenalized intercept).
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H1: N =25, n=6, NT =150, p=300, q =2, �2 =0.25, 
2 =0.56 and s0 =5 with �0 =
(1, 2, 4, 3, 3, 0, . . . , 0)T .

H2: N =30, n=6, NT =180, p=500, q =1, �2 =0.25, 
2 =0.56 and s0 =5 with �0 =
(1, 2, 4, 3, 3, 0, . . . , 0)T .

H3: N =30, n=6, NT =180, p=1000, q =3, �2 =0.25, 
2 =0.56 and s0 =5 with �0 =
(1, 2, 4, 3, 3, 0, . . . , 0)T .

H4: N =25, n=6, NT =150, p=300, �2 =0.25,

�=
⎛
⎝3 0 0

0 3 0
0 0 2

⎞
⎠

and s0 =5 with �0 = (1, 2, 4, 3, 3, 0, . . . , 0)T . In contrast to the previous examples, we fit a
wrong model assuming that � is diagonal with dimension 4.

The results in the form of means and standard deviations (in parentheses) over 100 simula-
tion runs are depicted in Tables 2–4. Therein, |S(�̂)| denotes the cardinality of the estimated
active set and TP is the number of true positives.

Let us sum up the simulation results for the models H1–H4. As in the low-dimensional
setting (see appendix D), the estimated active set is sparse and all methods include the true
non-zero coefficients.

Table 2 reveals that lmmLasso and lmmadLasso reduce the error variance remarkably in
comparison with Lasso and adLasso. Nevertheless, lmmLasso overestimates the true value of
�2 whereas lmmadLasso underestimates �2. We observe, in particular for H4, that a maximum

Table 2. Simulation results for H1, H2 and H3 (an asterisk indicates that the fixed-effects coefficient is
not subject to penalization)

Method |S(�̂)| TP �̂2 
̂
2

�̂1 �̂2 �̂3 �̂4 �̂5

Model True 5 5 0.25 0.56 1 2 4 3 3

H1 lmmLasso 6.70 5 0.29 0.52 1.01∗ 2.05∗ 3.86 2.90 2.88
(2.14) (0) (0.05) (0.12) (0.16) (0.16) (0.06) (0.06) (0.06)

lmmadLasso 6.59 5 0.22 0.52 1.01∗ 2.03∗ 3.98 2.99 3.00
(2.02) (0) (0.04) (0.12) (0.16) (0.16) (0.06) (0.05) (0.05)

Lasso 6.29 5 1.36 – 1.01∗ 2.07∗ 3.76 2.84 2.79
(1.46) (0) (0.27) – (0.17) (0.19) (0.10) (0.11) (0.10)

adLasso 6.29 5 1.16 – 1.01∗ 2.02∗ 3.98 3.00 2.99
(1.46) (0) (0.24) – (0.17) (0.18) (0.10) (0.11) (0.10)

H2 lmmLasso 6.65 5 0.28 0.56 1.00∗ 1.90 3.91 2.92 2.89
(1.71) (0) (0.04) (0.17) (0.15) (0.04) (0.05) (0.04) (0.05)

lmmadLasso 6.53 5 0.22 0.55 1.00∗ 2.00 3.99 3.00 2.99
(1.64) (0) (0.03) (0.17) (0.15) (0.04) (0.04) (0.04) (0.04)

Lasso 6.84 5 0.87 – 1.00∗ 1.84 3.88 2.88 2.83
(2.02) (0) (0.19) – (0.15) (0.08) (0.07) (0.09) (0.08)

adLasso 6.84 5 0.72 – 1.00∗ 2.00 4.00 3.00 2.98
(2.02) (0) (0.17) – (0.15) (0.07) (0.07) (0.08) (0.08)

H3 lmmLasso 6.17 5 0.29 0.52 1.02∗ 2.00∗ 4.04∗ 2.84 2.84
(1.74) (0) (0.05) (0.10) (0.15) (0.15) (0.15) (0.07) (0.06)

lmmadLasso 6.12 5 0.23 0.53 1.02∗ 2.00∗ 4.00∗ 2.99 2.99
(1.70) (0) (0.04) (0.10) (0.15) (0.15) (0.15) (0.07) (0.06)

Lasso 5.93 5 1.94 – 1.03∗ 2.02∗ 4.06∗ 2.70 2.70
(1.48) (0) (0.36) – (0.17) (0.18) (0.19) (0.11) (0.13)

adLasso 5.93 5 1.69 – 1.03∗ 2.02∗ 3.99∗ 2.98 2.97
(1.48) (0) (0.32) – (0.16) (0.17) (0.18) (0.12) (0.12)

TP, true positives; Lasso, least absolute shrinkage and selection operator.
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Table 3. Simulation results for H4 (an asterisk indicates that the fixed-effects coefficient is not subject to
penalization)

Method |S(�̂)| TP �̂2 �̂1 �̂2 �̂3 �̂4 �̂5

True 5 5 0.25 1 2 4 3 3

lmmLasso 5.56 5 0.26 0.95∗ 1.99∗ 3.97∗ 3.04∗ 2.82
(0.97) (0) (0.05) (0.31) (0.38) (0.31) (0.07) (0.07)

lmmadLasso 5.56 5 0.22 0.95∗ 1.99∗ 3.97∗ 3.00∗ 3.00
(0.97) (0) (0.04) (0.31) (0.38) (0.30) (0.07) (0.06)

Lasso 6.84 5 7.85 0.94∗ 2.01∗ 3.99∗ 3.11∗ 2.36
(12.18) (0) (1.81) (0.38) (0.47) (0.38) (0.23) (0.28)

adLasso 6.79 5 7.25 0.95∗ 2.02∗ 4∗ 2.98∗ 3.01
(11.68) (0) (1.76) (0.37) (0.47) (0.38) (0.22) (0.29)

TP, true positives; Lasso, least absolute shrinkage and selection operator.

Table 4. Mean covariance estimates for H4

Method �11 �22 �33 �44

True 3 3 2 0

lmmLasso 2.82 2.94 1.85 0.01
(0.80) (0.88) (0.62) (0.02)

lmmadLasso 2.81 2.94 1.84 0.01
(0.79) (0.88) (0.62) (0.02)

Lasso, least absolute shrinkage and selection operator.

likelihood approach (in contrast to a restricted maximum likelihood approach) gives biased
variance–covariance estimators. It is possible to implement an REML-type approach (Ni
et al., 2010) in the high-dimensional setting to reduce the bias in the variance parameters.
However, we have observed that (i) the number of (Gauss–Seidel) cycles increases and (ii) the
algorithm may fail to converge. In all models, we do not penalize the covariates with both a
fixed and random effect. Without doing this (not shown here), the fixed effects would be set to

zero whereas the estimated between-subject variability 
̂
2

would increase. As a consequence,
the predicted random effects are too large and are not centered at zero, but around the true
fixed effect. Hence this would result in a model which does not fulfill the assumptions in (5)
anymore.

Tables 2 and 3 reveal that the variability of the fixed effects with no corresponding random
effect is approximately half of the non-penalized coefficients. This difference of estimation
variability is also observed in the classical linear mixed-effects framework (see lme in Tables
7 and 8 in appendix D). Besides, lmmLasso has a bias towards zero, which is notably smaller
than that from the Lasso. As expected, this bias can be reduced by lmmadLasso. Concern-
ing H4, it is worth pointing out that although not knowing the true covariance structure, we
may use a diagonal structure for � and then drop the variances which are close to zero. A
suggestion how to use this idea in a real data set is presented in the next section.

5.2. Within-group prediction performance

We now turn to consider the performance of the proposed methodology concerning within-
group prediction. We compare the predictive performance between six different Lasso
procedures. In doing so, denote by lmmLasso, lmmadLasso, Lasso and adLasso the pro-
cedures from the previous subsection. In addition, let cv-Lasso be a cross-validated Lasso
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Table 5. Mean squared prediction error for three simulation examples

lmmad cv-ad
Model 
2 lmmLasso Lasso Lasso adLasso cv-Lasso Lasso

P1(p=10) 0 1.01 1.02 1.00 1.01 1.05 1.01
0.25 1.33 1.29 1.76 1.84 1.81 1.84
1 1.66 1.55 3.74 3.74 3.88 3.77
2 1.67 1.80 5.92 6.25 5.94 6.25

P2(p=100) 0 1.12 1.02 1.26 1.09 1.20 1.14
0.25 1.51 1.38 1.75 1.75 2.06 1.75
1 1.94 1.86 4.35 4.53 4.61 4.23
2 2.49 1.95 7.04 7.02 7.09 6.98

P3(p=500) 0 1.22 1.07 1.18 1.26 1.24 1.58
0.25 1.83 1.58 2.63 2.67 2.98 3.58
1 2.00 1.85 4.35 3.78 4.14 4.85
2 2.54 2.04 10.30 8.26 9.47 11.28

Lasso, least absolute shrinkage and selection operator.

and cv-adLasso a cross-validated adaptive Lasso whose �-value is chosen by 10-fold cross-
validation.

We fix the following scenario: N =25, ni ≡6 for i =1, . . . , N , q =3, s0 =5 with �0 = (1, 1.5,
1.2, 1, 2, 0, . . . , 0)T , �2 =1 and �=0.2. We only alter the number of fixed covariates p and the
variance component 
2. For measuring the quality of prediction, we generate a test set with
50 observations per group and calculate the mean squared prediction error. The three models
considered are:

P1 : p=10, P2 : p=100, P3 : p=500.

The results are shown in Table 5. We see that the methods differ slightly for 
2 =0 which
corresponds to no grouping structure. As 
2 increases, the mean squared prediction error
increases less for the lmmLasso and the lmmadLasso than for the other methods. These results
highlight that we can indeed achieve prediction improvements using the suggested mixed-
effects model approach if the underlying model is given by (5).

6. Application: riboflavin data

6.1. Data description

We illustrate the proposed procedure on a real data set which is provided by DSM (Switzerland).
The goal is to genetically modify the bacterium Bacillus subtilis to increase its production rate
for riboflavin (vitamin B2). A first step to achieve this purpose is to identify genes which are
most relevant for the production rate. A linear mixed-effects model is appropriate because
several observations at different time points are available (i.e. longitudinal data). The re-
sponse variable is the logarithm of the riboflavin production rate and there are p=4088 cova-
riates (genes) measuring the gene expression levels. We have N =28 groups with ni ∈{2, . . . , 6}
and NT =111 observations. We standardize all covariates to have mean zero and variance one.

6.2. Model selection strategy

Preliminarily, we address the issue of determining those covariates which have both a fixed
and a random-effects coefficient. In other words, we specify the matrices Zi ⊂ Xi . Since we
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have to deal with high-dimensional, low sample size data, the various tools proposed in
Pinheiro & Bates (2000) for determining Zi can hardly be applied. Instead, we suggest the
following strategy:

(i) Calculate an ordinary Lasso solution �̂
Lasso

(with cross-validation) and define the

active set Ŝ init :={1≤k ≤p : �̂
Lasso
k /=0}.

(ii) For each l ∈ Ŝ init, fit a model in which only the lth covariate has a random-effects

coefficient. Denote the corresponding variance estimate by 
̂
2
l .

(iii) Let 
̂
2
[1] ≥ 
̂

2
[2] ≥· · ·≥ 
̂

2
[|Sinit |] be the ordered estimated variances from (2). Then for �> 0

define the set R� :={l ∈Sinit : 
̂
2
l >�}∩{l ∈ Ŝ init : BIC


̂
2
l
≤BIC0}, where BIC0 is the BIC

of the Lasso solution in (1).
(iv) Fit a model with Zi =XR�

i (where XR�
i consists of the variables included in R�) and

� being diagonal and keep the non-zero elements of �̂.

By doing so (and setting �=0.05), it seems reasonable to fit a model wherein two covariates
have an additional random effect. Denoting these variables as k1 and k2, the model can be
written as:

yij =xT
ij �+bik1 zijk1 +bik2 zijk2 + �ij , i =1, . . . , N , j =1, . . . , ni (21)

with bik1 ∼N (0, 
2
k1

), bik2 ∼N (0, 
2
k2

) and �ij ∼N (0, �2).

6.3. Results

We compare the results of lmmLasso and lmmadLasso with Lasso and adLasso. The variance
component estimates, the cardinality of the active set and the rank R of five fixed-effects
coefficients are shown in Table 6. The ranking is determined by ordering the absolute values
of the fixed-effects coefficients.

From Table 6, we see that the error variance of the Lasso may be considerably reduced by

the lmmLasso. Although the variance 
̂
2
k2

is small, the BIC of this model is smaller than that
of the model including only k1 as random covariate. It is noteworthy that 53 per cent of the
total variability in the data set is because of the between-group variability. This strongly indi-
cates that there is indeed some variability between the groups. As might have been expected
from the simulation results, the active set of lmmLasso and lmmadLasso is smaller than the
active set from Lasso and adLasso. The ranking indicates that there is one dominating co-
variate whereas the other coefficients differ only slightly between the four procedures (not
shown).

Table 6. Results for lmmLasso, lmmadLasso, Lasso and adLasso
of the riboflavin data set

lmmLasso lmmadLasso Lasso adLasso

�̂2 0.18 0.15 0.30 0.20


̂
2
k1

0.17 0.08 – –


̂
2
k2

0.03 0.03 – –

|S(�̂)| 18 14 21 20
R�̂1

1 1 1 1
R�̂2

2 2 4 6
R�̂3

3 3 3 5
R�̂4

4 13 – –
R�̂5

5 6 6 7

Lasso, least absolute shrinkage and selection operator.

© 2011 Board of the Foundation of the Scandinavian Journal of Statistics.



Scand J Statist 38 High-dimensional mixed-effects models 213

7. Discussion

We present an `1-penalized maximum likelihood estimator for high-dimensional linear mixed-
effects models. The proposed methodology copes with the difficulty of combining a non-
convex loss function and an `1-penalty. Thereby, we deal with theoretical and computational
aspects which are substantially more challenging than in the linear regression setting. We
prove theoretical results concerning the consistency of the estimator and we present a non-
asymptotic oracle result for the adaptive `1-penalized estimator. Moreover, by developing a
coordinate gradient descent algorithm, we achieve provable numerical convergence of our
algorithm to at least a stationary point. Our simulation studies and real data example show
that the error variance can be remarkably reduced when incorporating the knowledge about
the cluster structure among observations.
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