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CAUSAL INFERENCE IN PARTIALLY LINEAR STRUCTURAL
EQUATION MODELS

BY DOMINIK ROTHENHÄUSLER1, JAN ERNEST1,2 AND PETER BÜHLMANN

ETH Zürich

We consider identifiability of partially linear additive structural equa-
tion models with Gaussian noise (PLSEMs) and estimation of distribution-
ally equivalent models to a given PLSEM. Thereby, we also include robust-
ness results for errors in the neighborhood of Gaussian distributions. Existing
identifiability results in the framework of additive SEMs with Gaussian noise
are limited to linear and nonlinear SEMs, which can be considered as special
cases of PLSEMs with vanishing nonparametric or parametric part, respec-
tively. We close the wide gap between these two special cases by providing
a comprehensive theory of the identifiability of PLSEMs by means of (A) a
graphical, (B) a transformational, (C) a functional and (D) a causal ordering
characterization of PLSEMs that generate a given distribution P. In particular,
the characterizations (C) and (D) answer the fundamental question to which
extent nonlinear functions in additive SEMs with Gaussian noise restrict the
set of potential causal models, and hence influence the identifiability.

On the basis of the transformational characterization (B) we provide a
score-based estimation procedure that outputs the graphical representation
(A) of the distribution equivalence class of a given PLSEM. We derive its
(high-dimensional) consistency and demonstrate its performance on simu-
lated datasets.

1. Introduction. Causal inference is fundamental in many scientific disci-
plines. Examples include the identification of causal molecular mechanisms in
genomics [24, 25], the investigation of causal relations among activity in brain re-
gions from fMRI data [19] or the search for causal associations in public health [7].

A major research topic in causal inference aims at establishing causal depen-
dencies based on purely observational data. The notion “observational” commonly
refers to the fact that one obtains the data from the system of variables under con-
sideration without subjecting it to external manipulations. Typically, one then as-
sumes that the observed data has been generated by an underlying causal model
and tries to draw conclusions about its structure.
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Two main research tasks in this setting are identifiability and estimation of the
underlying causal model. We consider identifiability of partially linear additive
structural equation models with Gaussian noise (PLSEMs) and estimation of dis-
tributionally equivalent models to a given PLSEM. Thereby, we also include ro-
bustness results for errors in the neighborhood of Gaussian distributions.

So far, there exists a wide “identifiability gap” for PLSEMs, as their identifiabil-
ity has only been characterized for the two special cases where all the functions are
linear or all the functions are nonlinear. We close this “identifiability gap” by pro-
viding comprehensive characterizations of the identifiability of the general class of
PLSEMs from various perspectives.

Unlike in regression where partially linear models are mainly studied because
of efficiency gains in estimation, the use of partially linear models has a deeper
meaning in causal inference. In fact, as we will show, it is closely connected to
identifiability. The functional form of an additive component directly influences
the identifiability of the corresponding (and also other) causal relations. For this
reason, we strongly believe that the understanding of the identifiability of PLSEMs
is important. First and foremost, it raises the awareness of potentially limited (or
increased) identifiability in the presence of linear (or nonlinear) relations in the
data. Second, by not restricting the functions to be either all linear or all nonlinear,
PLSEMs allow for a flexible modeling approach.

We start by reviewing and introducing important concepts in Section 1.1. We
then provide a brief overview of related work in Section 1.2 and explicitly state
the main contributions of this paper in Section 1.3.

1.1. Problem description and important concepts. We consider p random
variables X = (X1, . . . ,Xp) with joint distribution P, which is assumed to be
Markov with respect to an underlying directed acyclic graph (DAG). A DAG
D = (V ,E) is an ordered pair consisting of a set of vertices V = {1, . . . , p} as-
sociated with the variables {X1, . . . ,Xp}, and a set of directed edges E ⊂ V 2 such
that there are no directed cycles. A directed edge between the nodes i and j in D

is denoted by i → j . Node i is called a parent of node j and j is called a child
of i. Moreover, the edge is said to be oriented out of i and into j . If i → j or
i ← j , i and j are called adjacent and the edge is incident to i and j . The degree
of a node i, denoted by degD(i), counts the number of edges incident to node i in
DAG D. A node k that can be reached from i by following directed edges is called
descendant of i. We use the convention that any node is a descendant of itself. The
set paD(j) = {i | i → j in D} consists of all parents of node j . The multi-index
notation XpaD(j) denotes the set of variables {Xi}i∈paD(j). An edge i → j is said
to be covered in D, if paD(i) = paD(j) \ {i}. In that case, paD(i) is a cover for
edge i → j . The process of changing the orientation of a covered edge from i → j

to i ← j is referred to as a covered edge reversal. A triple (i, j, k) is called a v-
structure, if {i, j} ⊆ paD(k) and i and j are not adjacent. The graph obtained by
replacing all directed edges i → j by undirected edges i — j is called skeleton
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of D. The pattern of a DAG D is the graph with the same skeleton as D and i → j

is directed if and only if it is part of a v-structure in D. A permutation σ : V → V

is a causal ordering of D if σ(i) < σ(j) for all i → j in D. DAGs may be used as
underlying structures for structural equation models (SEMs). A SEM relates the
distribution of every random variable {X1, . . . ,Xp} to the distribution of its direct
causes (the parents in the corresponding DAG D) and random noise. In its most
general form,

(1.1) Xj = fj (XpaD(j), εj ), j = 1, . . . , p,

where {fj }j=1,...,p are functions from R
|paD(j)|+1 → R and {εj }j=1,...,p are mu-

tually independent noise variables. Lastly, for a function F : Rp → R
p , we write

DF for the Jacobian of F .

1.1.1. Main focus: PLSEMs. In this paper we study the restriction of the gen-
eral SEM in equation (1.1) to partially linear additive SEMs with Gaussian noise
(PLSEMs) of the form

Xj = μj + ∑
i∈paD(j)

fj,i(Xi) + εj ,(1.2)

where μj ∈ R, fj,i ∈ C2(R), fj,i �≡ 0, with E[fj,i(Xi)] = 0, and εj ∼ N (0, σ 2
j )

with σ 2
j > 0 for j = 1, . . . , p. Likewise, we may write

Xj = μj + ∑
i∈paL

D(j)

αj,iXi + ∑
i∈paNL

D (j)

fj,i(Xi) + εj ,

with αj,i ∈ R \ {0}, μj , fj,i , εj as above, paL
D(j) ∪ paNL

D (j) = paD(j) and
paL

D(j) ∩ paNL
D (j) = ∅. Note that we do not a priori fix the sets paL

D(j) and
paNL

D (j). For P generated by a PLSEM with DAG D, the PLSEM correspond-
ing to D is unique (cf. Lemma B.2 in the supplement [20]). Therefrom, we call
an edge i → j in D a (non)linear edge, if fj,i in the PLSEM corresponding to D

is (non)linear. Note that the concept of (non)linearity of an edge is defined with
respect to a specific DAG D. Depending on the orientations of other edges, the
status of an edge i → j may change from linear to nonlinear. An example is given
in Figure 1.

The restriction to additive SEMs is interesting from both a statistical and com-
putational perspective as the estimation of additive functions is well understood
and one largely avoids the curse of dimensionality. The assumption of Gaussian
noise is necessary for our characterization results in Section 2. In fact, identifi-
ability properties may deteriorate in partially linear models with arbitrary noise
distributions; see Section 1.2.4. We therefore consider PLSEMs to be among the
most general SEMs with reasonable estimation properties. For an extension to er-
ror distributions in the neighborhood of the Gaussian distribution, see Section 4.
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FIG. 1. Two DAGs D1 and D2 with linear edges (dashed) and nonlinear edges (solid). Let us give
a brief outlook: let P be generated by a PLSEM with DAG D1. In this paper we prove that there
exists a PLSEM with DAG D2 that generates the same distribution P. Moreover, we show that D1
and D2 are the only two DAGs with a corresponding PLSEM that generates P. For now, simply note
that 1 → 3 is linear in D1, but nonlinear in D2.

1.1.2. Main task: Characterization of all PLSEMs that generate P. The main
task of this paper is the systematic characterization of all PLSEMs that generate
a given distribution P under very general assumptions. In particular: how do edge
functions in different PLSEMs relate to each other? How does changing a single
linear edge to a nonlinear edge affect the set of potential underlying PLSEMs?
Do causal orderings of different DAGs corresponding to PLSEMs that generate P

share certain properties?
Under faithfulness, it may be natural to characterize all PLSEMs that generate

P by their corresponding DAGs as they are restricted to a subset of the Markov
equivalence class (see Section 1.2.1). For a distribution P that has been generated
by a faithful PLSEM, we call the set of DAGs

D(P) :=
{
D

∣∣∣P is faithful to D and there exists a
PLSEM with DAG D that generates P

}
the (PLSEM) distribution equivalence class. Can we build on characterizations of
the Markov equivalence class to characterize D(P)? For example, can D(P) also
be graphically represented by a single PDAG? Is it possible to efficiently estimate
D(P)? Before we explain our approaches to answer these questions in Section 1.3,
let us briefly summarize related work.

1.2. Related work. First, in Section 1.2.1, we discuss the identifiability of gen-
eral SEMs. We then motivate why our theoretical results close a relevant “gap” by
reviewing existing identifiability results for two special cases of PLSEMs where
either all the functions fj,i are linear (Section 1.2.2) or nonlinear (Section 1.2.3).
Finally, we briefly comment on the assumption of Gaussian noise in Section 1.2.4.

1.2.1. Identifiability of general SEMs. In the general SEM as defined in equa-
tion (1.1), one cannot draw any conclusions about D given P without making fur-
ther assumptions. One such assumption commonly made is faithfulness (cf. Sec-
tion 2.1). Under faithfulness, one can identify the Markov equivalence class of D

(a set of DAGs that all entail the same conditional independences); see, for exam-
ple, [15]. Markov equivalence classes are well characterized. In fact, the Markov
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equivalence class of a DAG D consists of all DAGs with the same skeleton and
v-structures as D [28] and can be graphically represented by a single partially di-
rected graph (cf. Section 2.1). Moreover, any two Markov equivalent DAGs can be
transformed into each other by a sequence of distinct covered edge reversals [6].

The estimation of the general SEM is difficult due to the curse of dimensionality
in fully nonparametric estimation. In combination with the unidentifiability, this
motivates the use of restricted SEMs, which have better estimation properties and
for which it is possible to achieve (partial) identifiability of the SEM (even without
assuming faithfulness); see Section 2.2 or [18] for an overview.

1.2.2. Special case of PLSEM: Linear Gaussian SEM. A widespread specifi-
cation of PLSEMs are linear Gaussian SEMs, which have the same identifiability
properties as the general SEMs: without additional assumptions they are uniden-
tifiable, whereas under faithfulness, their distribution equivalence class equals the
Markov equivalence class; see, for example, [23].

The estimation of the Markov equivalence class of linear Gaussian SEMs in
the low-dimensional case has been addressed in, for example, [5, 22], whereas
the high-dimensional scenario (requiring sparsity of the true underlying DAG) is
discussed in, for example, [2, 10, 13, 27].

An exception of identifiability of linear Gaussian SEMs occurs if all εj have
equal variances σ 2

j = σ 2 > 0,∀j . Under this assumption, the true underlying DAG
D is identifiable [16]. Yet, the assumption of equal noise variances seems to be
overly restrictive in many scenarios. In general, the linearity assumption may be
rather restrictive if not implausible in some cases.

1.2.3. Special case of PLSEM: Nonlinear additive SEM with Gaussian noise.
Interestingly, the assumption of exclusively nonlinear functions fj,i in equation
(1.2) greatly improves the identifiability properties; see [9] for the bivariate case
and [18] for a general treatment. In fact, if all fj,i are nonlinear and three times dif-
ferentiable, D(P) only consists of the single true underlying DAG D [18], Corol-
lary 31(ii). The nonlinearity assumption is crucial, though. The authors provide
an example where two DAGs are distribution equivalent if one of the nonlinear
functions is replaced by a linear function [18], Example 26.

Various estimation methods have been introduced for additive nonlinear SEMs
to infer the underlying DAG [14, 18, 26]. In particular, a restricted maximum
likelihood estimation method called CAM, which is consistent in the low- and
high-dimensional setting (assuming a sparse underlying DAG), has been proposed
specifically for nonlinear additive SEMs with Gaussian noise [3].

1.2.4. Identifiability of PLSEMs with non-Gaussian or arbitrary noise. The
identifiability properties of linear SEMs generally improve if one allows for non-
Gaussian noise distributions. In fact, if all but one εj are assumed to be non-
Gaussian (commonly referred to as LiNGAM setting), the underlying DAG D is
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identifiable [21]. A general theory for linear SEMs with arbitrary noise distribu-
tions is presented in [8]. Both papers also propose estimation procedures for the
respective model classes.

Unfortunately, the situation is different for PLSEMs: identifiability can be lost
if one considers PLSEMs with non-Gaussian (or arbitrary) noise distributions.
This can be seen from a specific example of a bivariate linear SEM with Gumbel-
distributed noise, which is identifiable in the LiNGAM framework, but for which
there exists a nonlinear additive backward model [9]. Still, this example seems to
be rather particular. In fact, for bivariate additive SEMs, all unidentifiable cases
of additive models can be classified into five categories; see [18, 31]. Based on
bivariate identifiability, it has been shown that one can conclude multivariate iden-
tifiability under an additional assumption referred to as IFMOC assumption [17].
For instance, this approach allows to conclude identifiability of the multivariate
LiNGAM and CAM settings and as such covers settings with both, Gaussian or
non-Gaussian noise and all linear or all nonlinear functions. However, it is less
explicit than the results presented in Section 2. In particular, it does not allow for
a characterization of the distribution equivalence class of a PLSEM with Gaussian
noise where some of the edge functions are linear and some are nonlinear.

1.3. Our contribution. As discussed in Section 1.2, there exists a wide “iden-
tifiability gap” for PLSEMs. Their identifiability has only been studied for the two
special cases of linear SEMs and entirely nonlinear additive SEMs. Moreover, to
the best of our knowledge, it has not yet been understood to what extent (single)
nonlinear functions in additive SEMs with Gaussian noise restrict the underlying
causal model. We close the “identifiability gap” for PLSEMs and answer the ques-
tions raised in Section 1.1.2 with the following theoretical results:

(A) A graphical representation of D(P) with a single partially directed graph
GD(P) in Section 2.1.1 (analogous to the use of CPDAGs to represent Markov
equivalence classes).

(B) A transformational characterization of D(P) through sequences of covered
linear edge reversals in Section 2.1.2 (analogous to the characterization of Markov
equivalence classes via sequences of covered edge reversals in [6]).

(C) A functional characterization of PLSEMs in Section 2.2.1: all PLSEMs that
generate the same distribution P are constant rotations of each other.

(D) A causal orderings characterization of PLSEMs in Section 2.2.2. In partic-
ular, it precisely specifies to what extent nonlinear functions in PLSEMs restrict
the set of potential causal orderings.

The first two characterizations hold only under faithfulness, the third and fourth
are general. We will give details on the precise interplay between nonlinearity
and faithfulness in Section 2.3. Building on the transformational characterization
result in (B), we provide an efficient score-based estimation procedure that outputs
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the graphical representation GD(P) in (A) given P and one DAG D ∈ D(P). The
proposed algorithm only relies on sequences of local transformations and score
computations, and hence is feasible for large graphs with numbers of variables in
the thousands (assuming reasonable sparsity). We demonstrate its performance on
simulated data. Moreover, we provide some robustness results for identifiability in
the neighborhood of Gaussian noise and we derive (high-dimensional) consistency
based on the consistency proof of the CAM methodology in [3].

2. Comprehensive characterization of PLSEMs. In this section, we present
our main theoretical results. They consist of characterizations of PLSEMs that gen-
erate a given distribution P from various perspectives. In Section 2.1, we assume
that P is faithful to the underlying causal model and demonstrate that this leads
to a transformational characterization and a graphical representation of D(P) very
similar to the well-known counterparts characterizing a Markov equivalence class.
Our main theoretical contributions, which hold under very general assumptions
and, in particular, do not rely on the faithfulness assumption, are presented in Sec-
tion 2.2. They fully characterize all PLSEMs that generate a given distribution P

on a functional level. Moreover, they explain how nonlinear functions impose very
specific restrictions on the set of potential causal orderings. Section 2.3 brings to-
gether the two previous sections by discussing the precise interplay of nonlinearity
and faithfulness.

2.1. Characterizations of D(P) under faithfulness. Let P be generated by a
PLSEM with DAG D ∈ D(P). The goal of this section is to characterize D(P).
Recall that D(P) is the set of all DAGs D such that P is faithful to D and there ex-
ists a PLSEM with DAG D that generates P. In words, faithfulness means that no
conditional independence relations other than those entailed by the Markov prop-
erty hold; see, for example, [22]. In particular, it implies that D(P) is a subset of
the Markov equivalence class and all DAGs in D(P) have the same skeleton and
v-structures [28]. Markov equivalence classes can be graphically represented with
single graphs, known as CPDAGs (also referred to as essential graphs, maximally
oriented graphs or completed patterns) [1, 6, 12, 28], where an edge is directed
if and only if it is oriented the same way in all the DAGs in the Markov equiv-
alence class, else it is undirected. The Markov equivalence class then equals the
set of all DAGs that can be obtained from the CPDAG by orienting the undirected
edges without creating new v-structures. In Section 2.1.1, we derive an analogous
graphical representation of D(P).

Another useful (transformational) characterization result says that any two
Markov equivalent DAGs can be transformed into each other by a sequence of
distinct covered edge reversals [6]. We will demonstrate in Section 2.1.2 that a
very similar principle transfers to D(P).
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FIG. 2. Graphical representation of D(P) with the single PDAG GD(P). D(P) equals the set of all
consistent DAG extensions of GD(P). The graph with 2 → 3 → 1 is not a consistent DAG extension
of GD(P) as it contains a cycle. Linear edges are dashed, nonlinear edges are solid.

2.1.1. Graphical representation of D(P). The distribution equivalence class
D(P) can be graphically represented by a single partially directed acyclic graph
(PDAG). A PDAG is a graph with directed and undirected edges that does not
contain any directed cycles. A consistent DAG extension of a PDAG is a DAG
with the same skeleton, the same edge orientations on the directed subgraph of the
PDAG and no additional v-structures.

DEFINITION 2.1. Let E be a set of Markov equivalent DAGs. We denote by
GE the PDAG that has the same skeleton as the DAGs in E and i → j in GE if
and only if i → j in all the DAGs in E , else, i — j . We say that GE is maximally
oriented with respect to E .

For a given distribution equivalence class D(P), the corresponding PDAG
GD(P) is uniquely defined by Definition 2.1. Moreover, GD(P) is a graphical rep-
resentation of D(P) in the following sense.

THEOREM 2.1. D(P) equals the set of all consistent DAG extensions of
GD(P).

A proof can be found in Section A in the supplement. Theorem 2.1 states that
one can represent D(P) with a single PDAG GD(P) without loss of information, as
D(P) can be reconstructed from GD(P) by listing all consistent DAG extensions.
An example is given in Figure 2. Note that GD(P) can be interpreted as a maximally
oriented graph with respect to some background knowledge as defined in [12]. For
details, we refer to Section 3.2.

Conceptually, this is analogous to the use of CPDAGs to represent Markov
equivalence classes. There are important differences, though: first of all, necessary
and sufficient conditions have been derived for a graph to be a CPDAG of a Markov
equivalence class [1], Theorem 4.1. These properties do not all transfer to GD(P).
For example, GD(P) typically is not a chain graph; see Figure 2. Second, given a
DAG D, the CPDAG (and hence a full characterization of the Markov equivalence
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class) can be obtained by an iterative application of three purely graphical orienta-
tion rules (R1–R3 in Figure 6) applied to the pattern of D [12]. This is not true for
GD(P) and D(P). It is still feasible to obtain GD(P) from a DAG D ∈ D(P), but
it is crucial to know which of the functions in the (unique) corresponding PLSEM
(cf. Lemma B.2 in the supplement) are linear and which are nonlinear. We will
show in Section 3 that the transformational characterization in Theorem 2.2 gives
rise to a consistent and efficient score-based procedure to estimate GD(P) based on
D ∈ D(P) and samples of P.

2.1.2. Transformational characterization of D(P). Given D ∈ D(P), the dis-
tribution equivalence class D(P) can be comprehensively characterized via se-
quences of local transformations of DAGs.

THEOREM 2.2. Assume that P has been generated by a PLSEM and that it is
faithful to the underlying DAG. Then the following two results hold:

(a) Let D ∈ D(P), i → j covered in D, and D′ be the DAG that differs from D

only by the reversal of i → j . Then D′ ∈ D(P) if and only if i → j is linear in D.
Furthermore, if i → j is covered and nonlinear in D, then i → j in all DAGs in
D(P).

(b) Let D,D′ ∈ D(P). Then there exists a sequence of distinct covered linear
edge reversals that transforms D to D′.

A proof can be found in Section B in the supplement and an illustration is
provided in Figure 3. Note that the interesting part of this result is that D(P) is
connected with respect to covered linear edge reversals. It will be of particular im-
portance in the design of score-based estimation procedures for D(P) and GD(P)

in Section 3.
Theorem 2.2 covers the two special cases discussed in Section 1.2: if all the

functions fj,i in equation (1.2) are linear, D(P) (which, in this setting, is equal to
the Markov equivalence class) can be fully characterized by sequences of covered
edge reversals of D (as all the edges are linear). If, on the contrary, all the functions
fj,i in equation (1.2) are nonlinear, D(P) only consists of the DAG D as there is
no covered linear edge in D.

2.2. General characterizations not assuming faithfulness. In this section, we
give general characterizations of PLSEMs that generate the same distribution P,
both, from the perspective of causal orderings and from a functional viewpoint.
The functional characterization in Section 2.2.1 describes how the fj,i of different
PLSEMs relate to each other. The characterization via causal orderings in Sec-
tion 2.2.2 describes the set of causal orderings, such that there exists a correspond-
ing PLSEM that generates the given distribution P. It will show that nonlinear
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FIG. 3. Transformational characterization of D(P) from Figure 2. Let 1 → 2 in D be nonlinear
(solid) and all other edges in D be linear (dashed). Then D1 and D2 can be reached from D by the
displayed sequence of covered linear edge reversals. Note that in D and D2, 1 → 2 is covered but
nonlinear, and hence cannot be reversed by Theorem 2.2(a). Moreover, 2 → 4 is not covered in any
of D,D1 and D2, and hence cannot be reversed.

functions impose a very specific structure on the model, which (perhaps surpris-
ingly) is compatible with some of the previous theory on graphical models, as de-
scribed in Section 1.2. Furthermore, it will help us understand in the general case
how nonlinear functions restrict the set of PLSEMs that generate P. Section 2.2.3
gives some intuition on the functional characterization in Section 2.2.1. Through-
out this section, we assume that P is generated by a PLSEM as defined in equation
(1.2).

2.2.1. Functional characterization. Let us first characterize the result on the
level of SEMs. Consider a PLSEM that generates P,

Xj = μj + ∑
i∈paD(j)

fj,i(Xi) + εj ,

where fj,i,D, εj ,μj , σ
2
j = Var(εj ) satisfy the assumptions from Section 1.1.1.

Let us define the function F :Rp →R
p by

(2.1) F(x)j := 1

σj

(
xj − μj − ∑

i∈paD(j)

fj,i(xi)

)
.

It turns out to be convenient to work with this function F . Notably, we do not
lose any information by working with F instead of fj,i , paD(j),μj and σj as
these quantities can be recovered from F . Specifically, we can easily obtain the
distribution of the errors from the function F as

σj := 1/∂jFj .(2.2)

By definition, F(X) ∼ N (0, Idp). Note that F maps the observed random variable
X ∈ R

p to the scaled residuals εj

σj
. As for every ε ∈ R

p , there exists exactly one

X ∈ R
p that satisfies equation (1.2), F is invertible. Hence, if Z ∼ N (0, Idp), it
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holds that F−1(Z) ∼ X. Using this, we obtain μj = EZ[F−1(Z)j ] and we can
recover the functions fj,i from the function F using the equations

f ′
j,i = −σj∂iFj and EZfj,i

(
F−1(Z)i

) = 0.(2.3)

Note that the equation on the left-hand side determines fj,i up to a constant,
whereas the equation on the right-hand side determines the constant using only
quantities that can be calculated from F . In the same spirit, paD(j) can be recov-
ered from F via

paD(j) = {i �= j : ∂iFj �≡ 0}.(2.4)

In this sense, instead of describing the PLSEM by fj,i,paD(j),μj and σj it can
simply be described by the function F :Rp →R

p . Now let us define

F(P) := {
F :Rp �→R

p : F suffices (2.1) for a PLSEM that generates P
}
.

We call the functions in this set PLSEM-functions. Let us define the set of orthonor-
mal matrices On(R) = {O ∈ R

p×p : OOt = Id}. The following theorem follows
from Lemma C.1 in the supplement. See also Remark C.4 in the supplement for
details. It states that we can construct all PLSEMs that generate P by essentially
rotating F .

THEOREM 2.3 (Characterization of potential PLSEMs). For a given F ∈
F(P), there exists a set of (constant) rotations OF(P) ⊂ On(R) such that

F(P) = {O · F : O ∈ OF(P)}.
A description and explicit formulae for each O ∈ OF(P) can be found in Re-
mark C.4 in the supplement.

Astonishingly, in this sense, all PLSEMs that generate P are rotations of each
other. The importance of this result lies in its simplicity: There are very simple lin-
ear relationships between the fj,i in one PLSEM and the f̃j,i in another PLSEM.
The formulae in Section C in the supplement permit to fully characterize these
matrices OF(P). In fact, the characterization in Lemma C.1 in the supplement is
the first step toward all other characterizations.

2.2.2. Characterization via causal orderings. This section discusses a charac-
terization of all potential causal orderings of a given PLSEM. Let us define the set
of potential causal orderings as

S(P) :=
{
σ permutation on {1, . . . , p} : there is a PLSEM with DAG D

that generates P such that σ(i) < σ(j) for all i → j in D

}
.

Without assuming faithfulness, if all fj,i are linear, all permutations of {1, . . . , p}
are a causal ordering of a DAG corresponding to a PLSEM that generates P. That
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is, S(P) is equal to the set of all permutations of {1, . . . , p}. Roughly, the more
nonlinear functions in the PLSEM, the smaller the resulting set S(P). The inter-
esting point is that nonlinear edges restrict S(P) in a very specific way. Before
we state the theorem, consider a PLSEM that generates P, define the function
F :Rp →R

p as in equation (2.1) and define the set

V := {
(i, j) ∈ {1, . . . , p}2 : et

j (DF)−1∂2
i F �≡ 0

}
,(2.5)

where ej , j = 1, . . . , p is the standard basis of Rp , t stands for the transpose and
DF denotes the Jacobian of F . We will discuss the interpretation of the set V and
the expression et

j (DF)−1∂2
i F in more detail later. For now, the potential causal

orderings can be characterized as follows.

THEOREM 2.4 (Characterization of potential causal orderings).

S(P) = {
σ permutation on {1, . . . , p} : σ(i) < σ(j) for all (i, j) ∈ V

}
.

The proof of this theorem can be found in Section D in the supplement. In
words, all permutations of the indices that do not swap any of the tuples in V are a
causal ordering of a DAG corresponding to a PLSEM that generates P. And for all
permutations of indices for which one of the tuples in V is switched, there exists
no PLSEM with this causal ordering that generates P. Moreover, by Lemma E.1(b)
in the supplement, if (i, j) ∈ V , then j is a descendant of i in every PLSEM that
generates P.

Now, let us give some intuition on the set V . For et
j (DF)−1∂2

i F to be nonzero,
it is necessary that there is a directed path from node i to node j that begins with
a nonlinear edge. However, the existence of such a path is not sufficient, due to
potential cancellations. An example is given in Figure 4 where the causal ordering
of nodes 1 and 3 is not fixed even though ∂2

1F3 �≡ 0. In particular, the requirement
that the direct effect of i on j (the function fj,i in the PLSEM) is nonlinear, that is,
the requirement that ∂2

i Fj �≡ 0, is not sufficient to fix the causal ordering between

1

2 3 2

1

3

D1 D2

FIG. 4. Nonlinear edges can be reversed if nonlinear effects cancel out. X1 = ε1,
X2 = X2

1 + X1 + ε2, X3 = X2 − X2
1 + ε3 with ε ∼ N (0, Id3) generates the same joint dis-

tribution of (X1,X2,X3) as X3 = ε̃3, X1 = X3/3 + ε̃1, X2 = X1/2 + X2
1 + X3/2 + ε̃2 with

ε̃3 ∼ N (0,3), ε̃1 ∼ N (0,2/3), ε̃2 ∼ N (0,1/2) independent. This stems from the fact that the non-
linear parts of the functions f2,1(x) and f3,1(x) cancel out, that is, f ′′

2,1 + f ′′
3,1 = 0. Note that this

example does not contradict the previous theoretical results. It holds that et
3(DF)−1∂2

1F ≡ 0 for
the PLSEM-function F corresponding to D1. Hence, the causal ordering of D2 does not contradict
Theorem 2.4.
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i and j . Also, it is not sufficient to require that the total effect of variable i on
variable j is nonlinear. This is shown in part (a) of the following example.

EXAMPLE 2.1. Consider the DAG 1 → 2 → 3 and P that has been generated
by a PLSEM of the form X1 = ε1,X2 = f2,1(X1) + ε2,X3 = f3,2(X2) + ε3 with
ε ∼ N (0, Id3):

(a) Let f2,1(x) = 0.5x be linear, f3,2(x) = x3 be nonlinear. The correspond-
ing PLSEM-function is F(x) = (x1, x2 − 0.5x1, x3 − x3

2)t . Using elementary cal-
culations, it can be seen that et

j (DF)−1∂2
i F �≡ 0 only for (i, j) = (2,3). Hence,

V = {(2,3)} and all permutations σ respecting σ(2) < σ(3) are a causal order-
ing of a DAG corresponding to a PLSEM that generates P. For example, for the
causal ordering σ(2) < σ(3) < σ(1), there exists a (unique) PLSEM with DAG
1 ← 2 → 3 that generates P. In particular, the causal ordering of variables 1 and 3
is not fixed even though there is a nonlinear total effect of variable 1 on variable 3.

(b) Let f2,1(x) = x3 be nonlinear, f3,2(x) = 0.5x be linear. The correspond-
ing PLSEM-function is F(x) = (x1, x2 − x3

1 , x3 − 0.5x2)
t . We obtain V =

{(1,2), (1,3)} and all permutations σ with σ(1) < σ(2) and σ(1) < σ(3) are a
causal ordering of a DAG corresponding to a PLSEM that generates P. In par-
ticular, for σ(1) < σ(3) < σ(2) we obtain that the PLSEM corresponding to the
(unfaithful) DAG 1 → 3 → 2 with 1 → 2 generates P.

Let us make several concluding remarks: in (a), the causal ordering between
nodes 1 and 3 is not fixed, whereas in (b), it is fixed. Hence, the set V sometimes
also fixes the causal ordering between two nodes that are not adjacent in the DAG
corresponding to F . Second, in both examples, the causal ordering of nodes inci-
dent to nonlinear edges is fixed. This raises the question whether it is true in gen-
eral that nonlinear edges cannot be reversed. The answer is no (see Figure 4), but
in some sense, the models with “reversible nonlinear edges” are rather particular.
Finally, if we make additional mild assumptions, stronger statements can be made
about the index tuples in V . We will discuss these issues further in Section 2.3.

2.2.3. Intuition on the functional characterization. This section motivates
Theorem 2.3. Consider two functions F,G ∈ F(P) that correspond to two dif-
ferent PLSEMs. By Proposition C.1 in the supplement,

F(X) ∼N (0, Id) and G(X) ∼ N (0, Id).(2.6)

Moreover, it follows from the definition of PLSEMs that F is invertible. Let Z ∼
N (0, Idp). Using equation (2.6) twice,

F−1(Z) ∼ X and G
(
F−1(Z)

) ∼ N (0, Id).

Hence, the function J : Rp → R
p , J := G(F−1) suffices J (Z) ∼ Z ∼ N (0, Id).

Furthermore, it can be shown that |det DJ | = 1. Then, using the transformation
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formula for probability densities, we obtain

1

(2π)p/2 exp
(
−‖J (x)‖2

2

2

)
= 1

(2π)p/2 exp
(
−‖x‖2

2

2

)
for all x ∈ R

p.

By rearranging, ∥∥J (x)
∥∥

2 = ‖x‖2 for all x ∈ R
p.

If we admit that J must be a linear function (which requires some work), this for-
mula gives us J ∈ On(R) := {O ∈ R

p×p : OOt = Id} and it immediately follows
that G = JF . This reasoning shows that the main work in proving Theorem 2.3
lies in showing that J is a linear function.

2.3. Understanding the interplay of nonlinearity and faithfulness. As indi-
cated in Section 2.2.2, without further assumptions, some nonlinear edges can be
reversed. An example is given in Figure 4. There, the edge 1 → 3 can be reversed
even though f3,1 is a nonlinear function in the PLSEM corresponding to D1. The
issue here arises because the nonlinear effect from X1 to X3 in D1 cancels out
over two paths. If we write X3 as a function of ε1, ε2, ε3, that function is linear.
The setting of D1 in Figure 4 is rather particular as ∂2

1f2,1 and ∂2
1f3,1 are linearly

dependent. As the function space C2(R) is infinite dimensional, this is arguably a
degenerate scenario. Note that faithfulness does not save us from this cancellation
effect as P is faithful to both, D1 and D2.

Nevertheless, we can rely on a different, rather weak assumption: consider a
node i in a DAG D and assume that the corresponding functions in the set{

∂2
i fj ′,i : j ′ is a child of i in D and fj ′,i is nonlinear

}
are linearly independent. In other words: assume that the “nonlinear effects” from
Xi on its children are linearly independent functions. Then these nonlinear edges
cannot be reversed.

The following theorem is a direct implication of Lemma E.1(a) and (b) in the
supplement.

THEOREM 2.5. Consider a PLSEM and the corresponding distribution P. Let
j be a child of i in D and let fj,i be a nonlinear function. If the functions in
the set {∂2

i fj ′,i : j ′ is a child of i in D and fj ′,i is nonlinear} are linearly indepen-
dent, then j is a descendant of i in any other DAG D′ of a PLSEM that generates P.

Intuitively, this should not be the end of the story: if an edge i → j is non-
linear, then usually there should also be a nonlinear relationship between i and
the descendants of j . Hence, it should be possible to infer some statements about
the causal ordering of i and the descendants of j . In general, this is not true as
demonstrated in Figure 5.
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1

2

3 4 3

2

4

1
D1 D2

FIG. 5. If P is not faithful to D, descendants are not fixed. Node 4 is a descendant of node 1 in D1
but not in D2. On the left-hand side, X1 = ε1, X2 = X2

1 + ε2, X3 = X2 + ε3, X4 = X3 − X2 + ε4,

with ε ∼ N (0, Id4). On the right-hand side, X1 = ε̃1, X2 = X2
1 + ε̃2, X3 = X2 + 1/2 · X4 + ε̃3,

X4 = ε̃4, where ε̃1 ∼ N (0,1), ε̃2 ∼ N (0,1), ε̃3 ∼ N (0,1/2) and ε̃4 ∼ N (0,2). Both PLSEMs gen-
erate the same distribution. Note that in this case, additional assumptions on the nonlinear function
f2,1 would not resolve the issue.

Under the assumption of faithfulness, additional statements can be made about
descendants of j . In some sense the nonlinear effect from i on the descendants of
j , mediated through some of the descendants of j , cannot “cancel out.” Hence,
all descendants of j are fixed. The following theorem is a direct implication of
Lemma E.1(c) and (d) in the supplement.

THEOREM 2.6. Let the assumptions of Theorem 2.5 be true. In addition, let P
be faithful to the DAG D. Fix k �= i. Then k is a descendant of i in each DAG D′
of a PLSEM that generates P if and only if k is a descendant of a nonlinear child
of i in D.

Note that we use the convention that a node is a descendant of itself. Theo-
rem 2.6 guarantees that certain descendants of i are descendants of i in all DAGs
D′ of PLSEMs that generate P. In that sense, it provides a simple criterion that
tells us whether or not k is descendant of i in all of these DAGs. It is crucial to be
precise: we do not assume that P is faithful to D′, which means, we search over
all PLSEMs that generate P. If we search over the smaller space D(P), that is,
additionally assume that P is faithful to D′, the set of potential PLSEMs usually
gets smaller. In many cases, there are some edges that are not fixed if we search
over all PLSEMs, but fixed if we only search over PLSEMs with DAGs in D(P).

As discussed in Section 2.1.1, D(P) can be represented by a single PDAG
GD(P). In the following, we will discuss the estimation of D(P) and GD(P).

3. Score-based estimation of D(P) and GD(P). Consider P that has been
generated by a PLSEM and assume that P is faithful to the underlying DAG. We
denote by {X(i)}i=1,...,n i.i.d. copies of X ∈R

p and by Pn their empirical distribu-
tion. The goal of this section is to derive a consistent score-based estimation proce-
dure for the distribution equivalence class D(P) based on Pn and one (true) DAG
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D0 ∈ D(P). We first describe a “naive” recursive solution that lists all members
of D(P) and motivate the score-based approach in Section 3.1. We then present a
more efficient procedure that directly estimates the graphical representation GD(P)

as defined in Section 3.2. Both methods rely on the transformational characteriza-
tion result in Theorem 2.2.

In practice, we may replace the true D0 by an estimate, for example, from the
CAM methodology [3]. If the estimate is consistent for a DAG in D(P), we obtain
consistency of our method for the entire distribution equivalence class D(P).

3.1. Estimation of D(P). Theorem 2.2 provides a straightforward way to list
all members of D(P). Starting from the DAG D0, one can search over all se-
quences of distinct covered linear edges reversals. By Theorem 2.2(a), all DAGs
that are traversed are in D(P) and by Theorem 2.2(b), D(P) is connected with
respect to sequences of distinct covered linear edge reversals. Moreover, by Theo-
rem 2.2(a), an edge that is nonlinear and covered in a DAG in D(P) has the same
orientation in all the members of D(P). These simple observations immediately
lead to a recursive estimation procedure. Its population version is described in Al-
gorithm 1. The inputs are D0 (with all its edges marked as “unfixed”) and an oracle
that answers the question if a specific edge in a DAG in D(P) is linear or nonlinear.

Unfortunately, the (true) information whether a selected covered edge i → j in
a DAG D ∈ D(P) is linear or not is generally not available. Also, it cannot simply
be deduced from the starting DAG D0 as the status of the edge may have changed
in D. For an example, see Figure 1: edge 1 → 3 is not covered and linear in D1

but nonlinear and covered (and hence irreversible) in D2 ∈ D(P).

Algorithm 1 listAllDAGsPLSEM (population version)

1: if there is no covered edge in DAG D0 that is marked as unfixed then
2: Add D0 to the distribution equivalence class D(P) and terminate.
3: end if
4: Choose a covered edge i → j in DAG D0 that is marked as unfixed.
5: if the edge i → j is linear in D0 then
6: Define a DAG D0

1 := D0 with edge i → j in D0
1 marked as fixed and a

DAG D0
2 equal to D0 except for a reversed edge i ← j marked as fixed in

D0
2 .

7: Call the function listAllDAGsPLSEM recursively for both DAGs D0
1

and D0
2 .

8: else
9: Mark the edge i → j in D0 as fixed and call listAllDAGsPLSEM for

DAG D0.
10: end if
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To check the status of a covered edge in a given DAG D ∈ D(P), one could
either test (non)linearity of the functional component in the (unique) PLSEM cor-
responding to D or rely on a score-based approach. In the following, we are going
to elaborate on the latter. We closely follow the approach presented in [3].

We assume that the functions fj,i in equation (1.2) are from a class of smooth
functions Fi ⊆ {f ∈ C2(R),E[f (Xi)] = 0}, which is closed with respect to the
L2(PXi

)-norm and closed under linear transformations. For a set of given basis
functions, we denote by Fn,i ⊆ Fi the finite-dimensional approximation space
which typically increases as n increases. The spaces of additive functions with
components in Fi and Fn,i , respectively, are closed assuming an analogue of a
minimal eigenvalue condition. All details are given in [3]. Without loss of gen-

erality, we assume μj = 0 as in the original paper. For D0 ∈ D(P), let θD0 :=
({f D0

j,i }j=1,...,p,i∈pa
D0 (j), {σD0

j }j=1,...,p) be the infinite-dimensional parameter of
the corresponding PLSEM. The expected negative log-likelihood reads

E
[− logp

θD0 (X)
] =

p∑
j=1

log
(
σD0

j

) + C, C = p

2
log(2π) + p

2
.

All D0 ∈ D(P) lead to the minimal expected negative log-likelihood, as by def-
inition, the corresponding PLSEM generates the true distribution P. For a mis-
specified model with wrong DAG D /∈ D(P), we obtain the projected parameter
θD = ({f D

j,i}j=1,...,p,i∈paD(j), {σD
j }j=1,...,p) as

{
f D

j,i

}
i∈paD(j) = argmin

gj,i∈Fi

E

[(
Xj − ∑

i∈paD(j)

gj,i(Xi)

)2]
,

(
σD

j

)2 = E

[(
Xj − ∑

i∈paD(j)

f D
j,i(Xi)

)2]

with expected negative log-likelihood

E
[− log

(
pD

θD(X)
)] =

p∑
j=1

log
(
σD

j

) + C, C = p

2
log(2π) + p

2
,

where all expectations are taken with respect to the true distribution P. We refer to
E[− log(pD

θD(X))] as the score of D and to log(σD
j ) as score of node j in D. For

a DAG D0 ∈ D(P), let

C
(
D0) = {

D | D and D0 differ by one covered nonlinear edge reversal
}
.

Then, for D0 ∈ D(P) and D ∈ C (D0) that (without loss of generality) only differ
by the orientation of the covered edge between the nodes i and j , the difference in
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expected negative log-likelihood is given as

E
[− log

(
pD

θD(X)
)] −E

[− log
(
p

θD0 (X)
)]

= log
(
σD

i

) + log
(
σD

j

) − log
(
σD0

i

) − log
(
σD0

j

)
.

(3.1)

Since the score is decomposable over the nodes, the reversal of a covered edge
only affects the scores locally at the two nodes i and j incident to the covered
edge. We denote by

ξp : = min
D0∈D(P)

D∈C (D0)

(
E

[− log
(
pD

θD(X)
)] −E

[− log
(
p

θD0 (X)
)])

(3.2)

the degree of separation of true models in D(P) and misspecified models in
C (D(P)) that can be reached by the reversal of one covered nonlinear edge in
any DAG D0 ∈ D(P). From the transformational characterization in Theorem 2.2,
it follows that ξp > 0. Combining equations (3.1) and (3.2) motivates the estima-
tion procedure in Algorithm 2 that takes as inputs n samples X(1), . . . ,X(n) and
a DAG D0 ∈ D(P) (with all its edges marked as “unfixed”) and outputs a score-
based estimate D̂n,p of D(P). To make the algorithm more robust with respect to

Algorithm 2 listAllDAGsPLSEM

1: if there is no covered edge in DAG D0 that is marked as unfixed then
2: Add D0 to D̂n,p and terminate.
3: end if
4: Choose a covered edge i → j in DAG D0 that is marked as unfixed. Denote

by D′ the DAG that equals D0 except for a reversed edge i ← j .
5: Additively regress Xi on Xpa

D0 (i), Xj on Xpa
D0 (j), Xi on Xpa

D0 (i)∪{j}, Xj on
Xpa

D0 (i)

6: Compute the standard deviations of the residuals to obtain σ̂D0

i , σ̂D0

j , σ̂D′
i and

σ̂D′
j .

7: Compute the score difference 	 := log(σ̂D′
i ) + log(σ̂D′

j ) − log(σ̂D0

i ) −
log(σ̂D0

j )

8: if 	 < α then
9: Set D0

1 := D0 with i → j marked as fixed, D0
2 := D′ with i ← j marked as

fixed, α1 := α and α2 := α − 	.
10: Call the function listAllDAGsPLSEM recursively for both, DAG D0

1
with parameter α = α1 and DAG D0

2 with parameter α = α2.
11: else
12: Mark the edge i → j in D0 as fixed and call listAllDAGsPLSEM for

DAG D0 with parameter α = α1.
13: end if
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misspecifications of the noise distributions (cf. Section 4), we only perform one-
sided tests in line 8 of Algorithm 2.

To prove the (high-dimensional) consistency of the score-based estimation pro-
cedure, we make the following assumptions. For a function h : R → R, we write
P(h) = E[h(X)] and Pn(h) = 1

n

∑n
i=1 h(X(i)).

ASSUMPTION 3.1. (i) Uniform upper bound on node degrees:

max
D∈D(P)∪C (D(P))

j=1,...,p

degD(j) ≤ M for some positive constant M < ∞.

(ii) Uniform lower bound on error variances:

min
D∈D(P)∪C (D(P))

j=1,...,p

(
σD

j

)2 ≥ L > 0.

(iii) Empirical process bound:

max
D∈D(P)∪C (D(P))

j=1,...,p

	D
n,j = oP (1),

where 	D
n,j = supgj,i∈Fi

|(Pn − P)((Xj − ∑
i∈paD(j) gj,i(Xi))

2)|.
(iv) Control of approximation error:

max
D0∈D(P)
j=1,...,p

∣∣γ D0

n,j

∣∣ = o(1),

where

γ D0

n,j = E

[(
Xj − ∑

i∈pa
D0 (j)

f D0

n;j,i(Xi)

)2]
−E

[(
Xj − ∑

i∈pa
D0 (j)

f D0

j,i (Xi)

)2]

with

f D0

n;j,i = argmin
gj,i∈Fn,i

E

[(
Xj − ∑

i∈pa
D0 (j)

gj,i(Xi)

)2]

and Fn,i are the approximation spaces as introduced before.

Assumption 3.1(i) is satisfied if D0 has bounded node degrees, as all DAGs
under consideration are restricted to the same skeleton, and hence all have equal
node degrees. In the low-dimensional setting, Assumption 3.1(iii) is justified by
[3], Lemma 5, under the assumptions mentioned there. These assumptions en-
tail smoothness conditions on the functions in Fi and tail and moment condi-
tions on X. In the high-dimensional setting, it follows from [3], Lemma 6, and
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√
log(p)/n = o(1) together with Assumption 3.1(i) and the assumptions men-

tioned in the original paper. Assumption 3.1(iv) can be ensured by requiring a
smoothness condition on the coefficients of the basis expansion for the true func-
tions [3], Section 4.2. A proof of Theorem 3.1 can be found in Section F.1 in the
supplement.

THEOREM 3.1. Under Assumption 3.1 and ξp ≥ ξ0 > 0, for any constant α ∈
(0, ξ0),

P
[
D̂n,p = D(P)

] → 1 (n → ∞).

In case of a high-dimensional setting, for which the uniformity in Assumption 3.1
is required, the convergence should be understood as poth p → ∞ and n → ∞.

REMARK 3.1. The assumption on the gap between log-likelihoods of true
and wrong models in [3] is stricter and would imply the uniform bound ξp/p ≥
ξ0 > 0, whereas here we only require ξp ≥ ξ0 > 0. As we are given a true DAG
D0 ∈ D(P), we solely perform local transformations of DAGs thanks to the trans-
formational characterization result in Theorem 2.2. This only affects the scores of
two nodes and allows us to rely on this much weaker gap condition.

3.2. Estimation of GD(P). The estimation of all DAGs in D(P) is feasible but
may be computationally intractable in the presence of many linear edges. For ex-
ample, if D0 is a fully connected DAG with p nodes and all its edges are linear,
the number of DAGs in D(P) corresponds to the number of causal orderings of p

nodes which is p!. It therefore would be desirable to have a procedure that works
without enumerating all DAGs in D(P). In this section, we are going to describe
such a procedure that directly estimates the maximally oriented PDAG GD(P) de-
fined in Section 2.1.1. Recall that by Theorem 2.1, this fully characterizes D(P),
as D(P) can be recovered from GD(P) by listing all consistent DAG extensions.

The main idea is the following: instead of traversing the space of DAGs, we
traverse the space of maximally oriented PDAGs that represent sets of distribution
equivalent DAGs. As an example, let D0 ∈ D(P) and i → j be covered and linear
in D0. By Theorem 2.2(a), the DAG D′ that only differs from D0 by the reversal of
i → j is in D(P). Instead of memorizing both, D0 and D′, and recursively search-
ing over sequences of covered linear edge reversals from both of these DAGs as in
Algorithms 1 and 2, we represent D0 and D′ by the PDAG G that is maximally
oriented with respect to the set of DAGs {D0,D′}. By Definition 2.1, G equals D0

but for an undirected edge i — j . To construct GD(P), the idea is now to iteratively
modify G by either fixing or removing orientations of directed edges if they are
nonlinear or linear in one of the consistent DAG extensions of G in which they are
covered. For that to work based on G only, that is, without listing all consistent
DAG extensions of G, the two key questions are the following:
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FIG. 6. Orientation rules R1–R4 for Markov equivalence classes with background knowledge from
[12]. If there is an edge constellation as in the top row, i — j is oriented as i → j when closing
orientations under R1–R4.

(Q1) For i → j in a maximally oriented PDAG G, can we decide based on G

only if there is a consistent DAG extension of G in which i → j is covered?
(Q2) If i → j is known to be covered in a consistent DAG extension of G:

can we derive a score-based check if i → j is linear or nonlinear in this extension
based on G?

Interestingly, the answer to both questions is yes (cf. Lemma 3.1) and can be de-
rived from a related theory on how background knowledge on specific edge ori-
entations restricts the Markov equivalence class. It was shown in [12], Theorems
2 and 4, that for a pattern P of a DAG, consistent background knowledge K (in
our case: additional knowledge on edge orientations due to nonlinear functions in
the PLSEM) can be incorporated by simply orienting these edges in P and clos-
ing orientations under a set of four sound and complete graphical orientation rules
R1–R4, which are depicted in Figure 6. The resulting PDAG, which we denote by
GP,K, is maximally oriented with respect to the set of all Markov equivalent DAGs
with edge orientations that comply with the background knowledge. It is impor-
tant to note that we generally do not obtain GD(P) if we simply add all nonlinear
edges in D0 as background knowledge K and close orientations under R1–R4. The
resulting maximally oriented PDAG GP,K is typically not equal to GD(P). For an
example, consider D1 in Figure 1 and denote by P1 its pattern. For K = {1 → 2},
we obtain the PDAG GP1,K with undirected edge 1 — 3. But 1 → 3 in GD(P) by
Definition 2.1 as D(P) = {D1,D2}. This illustrates that we have to add all edges
to K that are nonlinear in a DAG in D(P) in which they are covered (1 → 3 is
covered and nonlinear in D2).

LEMMA 3.1. Let P be the pattern of a DAG and K a consistent set of back-
ground knowledge (not containing directed edges of P ). Let GP,K denote the max-
imally oriented graph with respect to P and K with orientations closed under
R1–R4:
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(a) Edge i → j in K is not covered in any of the consistent DAG extensions of
GP,K if and only if GP,K = GP,K\{i→j}.

(b) If GP,K �= GP,K\{i→j}, there exists a consistent DAG extension of GP,K in
which paGP,K(j) \ {i} is a cover for i → j .

A proof is given in Section F.2 in the supplement. By construction, GP,K =
GP,K\{i→j} if and only if the orientation of i → j in GP,K\{i→j} is implied by
one of R1–R4 applied to GP,K with undirected edge i — j . Hence, Lemma 3.1(a)
answers (Q1) as it provides a simple graphical criterion to check whether i → j

in GP,K is covered in one of the consistent DAG extensions of GP,K based on
GP,K only. Note that part (a) is closely related to [1], Section 5, where the authors
construct the CPDAG (representing the Markov equivalence class) from a given
DAG by removing edge orientations that are not implied by a set of graphical
orientation rules, which contain R1–R3 in Figure 6. Lemma 3.1(b) answers (Q2):
it allows us to implement a score-based check whether i → j is linear or nonlinear
in a DAG extension of GP,K in which it is covered by simply reading off the
parents of j in GP,K and use them as a cover for i → j . Details are given in
Remark 3.2.

We now propose the following iterative estimation procedure for GD(P): let
D0 ∈ D(P) be given, P denote its pattern and define K1 := Kinit

1 ∪ Knonl
1 , where

Kinit
1 contains all directed edges in D0 that are undirected in P and Knonl

1 := ∅.
By construction, GP,K1 = D0. For k ≥ 1, in each iteration k to k + 1, we apply
Lemma 3.1(a) and use R1–R4 to select {i → j} ∈ Kinit

k (i → j in GP,Kk
) that

is covered in a consistent DAG extension of GP,Kk
(i.e., not implied by any of

R1–R4). If Kinit
k = ∅ or no such edge exists, we stop and output GP,Kk

. Else,
we check whether i → j is linear or nonlinear in a consistent DAG extension in
which it is covered and construct a new set of background knowledge Kk+1 :=
Kinit

k+1 ∪Knonl
k+1 ⊆ Kk according to the following rules:

Case 1: If i → j is linear, Knonl
k+1 = Knonl

k and Kinit
k+1 = Kinit

k \ {i → j}.
Case 2: If i → j is nonlinear, Knonl

k+1 = Knonl
k ∪ {i → j}; Kinit

k+1 =Kinit
k \ {i → j}.

In particular, by construction, Case 1 implies that i — j in all GP,Kl
for l > k,

whereas Case 2 fixes the orientation i → j in all GP,Kl
for l > k.

LEMMA 3.2. Let {Kk}k be constructed as above. Then the corresponding se-
quence of maximally oriented PDAGs {GP,Kk

}k converges to GD(P).

A proof is given in Section F.3 in the supplement and an illustration is provided
in Figure 7. As in both cases, |Kinit

k+1| = |Kinit
k | − 1, {GP,Kk

}k converges to GD(P)

after at most |Kinit
1 | iterations, where |Kinit

1 | is the number of undirected edges in P .

REMARK 3.2. Let {i → j} ∈ Kinit
k be the edge chosen in iteration k to k + 1.

By Lemma 3.1(b), S := paGP,Kk
(j)\{i} is a cover of i → j in one of the consistent
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(d) Kinit
2 ={ 2→3, 4→5,

6→5, 5→7 } (e) Kinit
3 ={2→3, 6→5,

5→7 } (f) Kinit
4 ={2→3, 5→7}

FIG. 7. Illustration of Algorithm 3. (a) DAG D0 with linear edges (dashed) and nonlinear edges
(solid). (b) step 2: pattern P of D0. (c) step 3: directed edges in D0 that are undirected in P are
added to Kinit

1 . By construction, Ĝn,p = D0. (c)–(f) steps 4–12: 4 ← 6 is covered and linear in
(c), hence, orientation is removed in Ĝn,p in (d). 4 → 5 is covered and nonlinear in (c), hence,
orientation is fixed in Ĝn,p in (e). 6 → 5 is covered and linear in a consistent DAG extension of (e),
hence, orientation is removed in Ĝn,p in (f). As both edges in Kinit

4 are implied by R1 in (f), they are
not covered in any of the consistent DAG extensions of Ĝn,p in (f). Concludingly, Ĝn,p = GD(P)

in (f).

DAG extensions of GP,Kk
. From that, we easily obtain a score-based version: we

simply regress Xi on XS and Xj on XS∪{i} to obtain the estimates σ̂i , σ̂j of the
standard deviations of the residuals at nodes i and j for i → j . Similarly, we
regress Xi on XS∪{j} and Xj on XS to get σ̂ ′

i , σ̂
′
j for i ← j . If the estimated

score difference | log(σ̂ ′
i ) + log(σ̂ ′

j ) − log(σ̂i) − log(σ̂j )| is smaller than α, we
conclude that i → j is linear, else nonlinear. The pseudo-code of the score-based
procedure is provided in Algorithm 3. It outputs an estimate Ĝn,p of GD(P) based
on n samples X(1), . . . ,X(n) and D0 ∈ D(P).

A major advantage of Algorithm 3 is that it can be implemented based on one
adjacency matrix only that is updated in every iteration.

THEOREM 3.2. Under Assumption 3.1 and ξp ≥ ξ0 > 0, for any constant α ∈
(0, ξ0),

P[Ĝn,p = GD(P)] → 1 (n → ∞)

PROOF. The correctness of Algorithm 3 is proved in Lemma 3.2. The consis-
tency of the score-based estimation follows from the proof of Theorem 3.1. �
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Algorithm 3 computeGDPX

1: Initialize Ĝn,p ← D0, k ← 1, Kinit
1 ←∅ and Knonl

1 ←∅.
2: Construct the pattern P of D0.
3: Add directed edges in D0 that are undirected in P to Kinit

1 .
4: while There is i → j in Kinit

k , such that its orientation is not implied by apply-
ing rules R1, R2, R3 or R4 to Ĝn,p with undirected edge i — j do

5: Use paĜn,p
(j) \ {i} to cover i → j and estimate the standard deviations

σ̂i , σ̂j , σ̂
′
i and σ̂ ′

j of the residuals as described in Remark 3.2.
6: if | log(σ̂ ′

i ) + log(σ̂ ′
j ) − log(σ̂i) − log(σ̂j )| < α then

7: Set Kinit
k+1 ← Kinit

k \ {i → j} and replace i → j by i — j in Ĝn,p .
8: else
9: Set Kinit

k+1 ← Kinit
k \ {i → j} and keep i → j in Ĝn,p .

10: end if
11: k ← k + 1.
12: end while
13: return Estimated PDAG Ĝn,p representing D(P).

4. Model misspecification. In this section, we will discuss how small devi-
ations from a Gaussian error distribution affect the distribution equivalence class
and how the output of the algorithm listAllDAGsPLSEM should be interpreted
in this case. We define a generalized PLSEM by essentially dropping the assump-
tion of Gaussianity of the noise variables from the definition of a PLSEM.

DEFINITION 4.1 (generalized PLSEM). A generalized PLSEM with DAG D

is a partially linear additive SEM of the form

X̊j = μ̊j + ∑
i∈paD(j)

f̊j,i(X̊i) + ε̊j ,(4.1)

where μ̊j ∈ R, f̊j,i ∈ C2(R), f̊j,i �≡ 0, with E[f̊j,i(Xi)] = 0, and the noise vari-
ables ε̊j are centered with variance σ̊ 2

j > 0, have positive density on R and are
jointly independent for j = 1, . . . , p.

In analogy to before, without loss of generality, we assume μ̊j = 0, j = 1, . . . , p

and define projected parameters. Furthermore, for a DAG D, we will define the
projected density p̊D

θ̊D
. Consider X̊ ∼ P̊ generated by a generalized PLSEM with

DAG D0. For each DAG D that is Markov equivalent to D0, define

{
f̊ D

j,i

}
i∈paD(i) = argmin

gj,i∈Fi

E

[(
X̊j − ∑

i∈paD(i)

gj,i(X̊i)

)2]
,
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(
σ̊D

j

)2 = E

[(
X̊j − ∑

i∈paD(j)

f̊j,i(X̊i)

)2]
,

p̊D

θ̊D(x) =
p∏

j=1

q̊j

(
xj − ∑

i∈paD(j)

f̊j,i(xi)

)
,

where q̊j denotes the density of X̊j − ∑
i∈paD(j) f̊j,i(X̊i) for j = 1, . . . , p. Anal-

ogously, define the projected density pD
θD of X ∼ P generated by a (Gaussian)

PLSEM. Note that here pD
θD denotes the projected density of X with respect to

generalized PLSEMs, in contrast to Section 3 where it denotes the projected den-
sity of X with respect to (Gaussian) PLSEMs.

The first question we answer is: How does the algorithm
listAllDAGsPLSEM behave when the error distributions are non-Gaussian (and
the algorithm wrongly assumes Gaussianity)? The following result answers this
question in the population case. Let X ∼ P be generated by a PLSEM with the
same DAG, same edge functions, same error variances as the generalized PLSEM
that generates X̊, but with Gaussian errors. It turns out that the DAGs in the distri-
bution equivalence class D(P) have an interesting property. For all D ∈ D(P), the
computed scores are lower than the score for D0. The proof of Theorem 4.1 can
be found in Section G in the supplement.

THEOREM 4.1. For all D ∈ D(P),
p∑

j=1

log σ̊D
j ≤

p∑
j=1

log σ̊D0

j .

Hence, if the algorithm listAllDAGsPLSEM starts at D0 with α ≥ 0, it will
never reject any D ∈ D(P). The output of the algorithm will hence be a superset
of D(P).

From a theoretical perspective, the other question might be more interesting:
what statements can be made about the distribution equivalence class of X̊ ∼ P̊?
To be more precise, for a distribution P̊ that has been generated by a faithful gen-
eralized PLSEM, we call the set of DAGs

D̊(P̊) :=
{
D

∣∣∣ P̊ is faithful to D and there exists a
generalized PLSEM with DAG D that generates P̊

}
the (generalized PLSEM) distribution equivalence class. How do small violations
of Gaussianity affect the distribution equivalence class? Intuitively, identification
of certain edges should get easier, in the sense that previously identified edges
stay identified. This intuition turns out to be correct. The following theorem tells
us that small deviations from the Gaussian error distribution can only make the
distribution equivalence class smaller.
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THEOREM 4.2. Let∣∣E[
logpD

θD(X)
] −E

[
log p̊D

θ̊D(X̊)
]∣∣ < ζ

for all DAGs D ∼ D0 (all DAGs D that are Markov equivalent to D0) for ζ > 0
sufficiently small. Then we have

D̊(P̊) ⊆ D(P).

The proof of Theorem 4.2 and the definition of a feasible ζ > 0 can be found in
Section G in the supplement. In words, the assumption requires that the projected
log-likelihoods of X and X̊ do not differ too much for all DAGs D ∼ D0. If the
error distribution of ε̊ is close to Gaussian, then the distributions of X and X̊ are
close and the assumption is fulfilled.

We now collect the implications of these theorems for the population case. By
Theorem 4.1, the output of the algorithm listAllDAGsPLSEM is a superset of
D(P). Furthermore, under the assumptions of Theorem 4.2, D(P) is a superset of
D̊(P̊). Hence, the algorithm is conservative in the sense that it will return a superset
of the true underlying distribution equivalence class D̊(P̊). In particular, it will not
draw any wrong causal conclusions as it will not return incorrectly oriented edges.

Does listAllDAGsPLSEM sometimes return a proper superset of D̊(P̊)?
Intuitively, the algorithm only orients edges that are identified due to nonlin-
ear edge functions. However, edges in generalized PLSEMs can sometimes be
identified due to non-Gaussianity of certain error distributions. The algorithm
listAllDAGsPLSEM does not take the latter into account. In such a case, un-
der the assumptions of Theorem 4.2, the algorithm will usually output a proper
superset of the distribution equivalence class. An example can be found below.
To compute the distribution equivalence class D̊(P̊), we recommend to compute
the log-likelihoods of the output of listAllDAGsPLSEM with a nonparametric
log-likelihood estimator (e.g., in the spirit of [14]) and keep the DAGs with the
largest corresponding log-likelihoods. Under the assumptions of Theorem 4.2, this
would return the exact generalized PLSEM distribution equivalence class D̊(P̊).
In this case, the main benefit of listAllDAGsPLSEM is to reduce the compu-
tational burden compared to more naive approaches, such as computing nonpara-
metric log-likelihood estimates of all DAGs in the Markov equivalence class.

EXAMPLE 4.1. Consider the generalized PLSEM X1 ← ε1, X2 ← 1√
2
X1 +

ε2, where ε1 and ε2 both follow a scaled t-distribution, with Var(ε1) = 1 and
Var(ε2) = 1

2 . From [9], it follows that there exists no additive backward model, that
is, there exists no generalized PLSEM with X2 → X1 that generates the given dis-
tribution of (X1,X2). However, the “residuals” r1 := X2 and r2 := X1 − 1√

2
X2 sat-

isfy Var(r1) = 1 and Var(r2) = 1
2 . Hence, the projected (Gaussian) log-likelihoods

of these two models match. In this case, listAllDAGsPLSEM would return
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the two DAGs X1 → X2 and X2 → X1, which is a strict superset of D̊(P̊) =
{X1 → X2}.

5. Simulations. In this section, we empirically analyze the performance of
computeGDPX (Algorithm 3) in various settings. Consider P that has been gen-
erated by a faithful PLSEM with known DAG D0. The goal is to estimate the
corresponding distribution equivalence class D(P) based on D0 and samples of P.
In Section 5.1, we start with a description of the simulation setting. We then briefly
comment on a population version of Algorithm 3 in Section 5.2, which is used to
obtain the underlying true distribution equivalence class D(P). In the subsequent
sections, we examine the role of the tuning parameter α (Section 5.3), the perfor-
mance in low- and high-dimensional settings (Section 5.4) and the computation
time (Section 5.5).

5.1. Simulation setting and implementation details. Throughout the section,
let p denote the number of variables, n the number of samples, nrep the num-
ber of repetitions of an experiment, pc the probability to connect two nodes by
an edge and plin the probability that an edge is linear. For each experiment, we
generate nrep random true DAGs D0 with the function randomDAG in the R-
package pcalg [11] with parameters n = p and prob = pc. For each of the
random DAGs, we generate n samples of P from a PLSEM with edge functions
chosen as follows: with probability plin, fj,i(x) = αj,i · x is linear with αj,i ran-
domly drawn from [−1.5,−0.5] ∪ [0.5,1.5]. Otherwise, fj,i(x) is nonlinear and
randomly drawn from the set {c0 · cos(c1 · (x − c2)), c0 · tanh(c1 · (x − c2))} to
have a mix of monotone and nonmonotone functions in the PLSEM. In order to
be able to empirically support our theoretical findings, we choose the parameters
c0 ∼ Unif([−2,−1] ∪ [1,2]), c1 ∼ Unif([1,2]) and c2 ∼ Unif([−π/3, π/3]) such
that the nonlinear functions are “sufficiently nonlinear” and not too close to linear
functions. Exemplary randomly generated nonlinear functions are shown in Fig-
ure 8. The noise variables satisfy εj ∼ N (0, σ 2

j ) with σ 2
j ∼ Unif([1,2]) for source

nodes (nodes with empty parental set) and σ 2
j ∼ Unif([1/4,1/2]) otherwise.

In order to estimate the residuals in step 5 of computeGDPX, we use additive
model fitting based on the R-package mgcv with default settings [29, 30]. The
basis dimension for each smooth term is set to 6.

There exists no state-of-the-art method that we can compare our algorithm with.
In principle, given D0, we can estimate the corresponding PLSEMs for all DAGs
in the Markov equivalence class of D0 and compute their scores. This also gives
us an estimate for D(P), but as explained in Section 3.2, is less efficient than
computeGDPX. We therefore only evaluate how accurately computeGDPX es-
timates GD(P). For that, let GD(P) and Ĝ denote the true and estimated graphical
representations of D(P), respectively. We count (i) the number of edges that are
undirected in GD(P) but directed in Ĝ (“falsely kept orientations”) and (ii) the
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FIG. 8. Exemplary nonlinear functions used in simulated PLSEMs.

number of edges that are directed in GD(P) but undirected in Ĝ (“falsely removed
orientations”). Note that as we assume faithfulness, all DAGs in D(P) have the
same CPDAG. By construction, computeGDPX does not falsely remove orienta-
tions on the directed part of the CPDAG as all these edges are not covered in any
of the consistent DAG extensions. To obtain the percentages shown in Figures 9
to 11, we therefore only divide by the number of undirected edges in the CPDAG.
The percentages then reflect a measure for the fraction of “correct score-based
decisions.”

5.2. Reference method for true distribution equivalence class D(P). To be
able to characterize the true distribution equivalence class based on D0 and the
corresponding PLSEM, we assume that for each i ∈ {1, . . . , p}, the functions in the
set {∂2

i fj,i : j is a child of i in D0 and fj,i is nonlinear}i are linearly independent
for the PLSEM with DAG D0 that generates P. As all functions in our simulations
are randomly drawn (cf. Section 5.1), the assumption is satisfied with probability
one for D0 and the corresponding edge functions.

This additional assumption rules out cases where nonlinear effects in D0 exactly
cancel out over different paths, and hence excludes cases as in Figure 4 where
nonlinear edges may be reversed. In particular, it allows us to obtain GD(P) only
based on D0 and knowledge of the functions in the corresponding PLSEM: first,
we use Theorem E.1(c) in the supplement to construct the set V . For all nodes i

in D0, corresponding sets of nonlinear children Ci (as defined in Section E in the
supplement) and k �= i, we add (i, k) to V if k is a descendant of a node in Ci . In
principle, we now apply Algorithm 3, but instead of the score-based decision in
steps 6–9, we use the set V to decide about edge orientations. Let i → j be the
edge chosen in step 4 and D one of the consistent DAG extensions in which i → j

is covered. If (i, j) ∈ V , by Theorem E.1(d) and Remark E.1 in the supplement,
i → j in all DAGs of a PLSEM that generates P. Hence, in particular, i → j in
all DAGs in D(P) and by definition, i → j in GD(P). If (i, j) /∈ V , by Lemma B.1
in the supplement, the DAG D′ that differs from D only by reversing i → j is in
D(P). Hence, by definition, i — j in GD(P).
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5.3. The role of α for varying sample size. In computeGDPX, the score-
based decision whether a selected covered edge is linear or nonlinear is based
on a comparison of the absolute difference of the expected negative log-likelihood
scores of two models with a parameter α. Optimally, one would choose α close
to ξp [see equation (3.2)], but ξp depends on the setting (number of variables,
sparsity of the DAG, degree of nonlinearity of the nonlinear functions, etc.) and
is unknown. In practice, the parameter α reflects a measure of how conservative
the estimate Ĝ of GD(P) is (in the sense of how many causal statements can be
made). For example, choosing α large results in a conservative estimate Ĝ with
many undirected edges [a large set D(P) of equivalent DAGs]. In Figures 9 and
10, we empirically analyze the dependence of Ĝ on α for different sample sizes
for sparse and dense graphs, respectively.
computeGDPX exhibits a good performance for a wide range of values of α. In

particular, as the sample size increases, choosing α small results in very accurate

FIG. 9. Performance of computeGDPX for varying sample sizes and values of α (x-axis) in sparse
DAGs with plin = 0.2 (top) and plin = 0.8 (bottom). Parameters: p = 10, nrep = 100 and pc = 2/9
(expected number of edges: 10).
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FIG. 10. Performance of computeGDPX for varying sample sizes and values of α (x-axis) in
dense DAGs for plin = 0.2 (top) and plin = 0.8 (bottom). Parameters: p = 10, nrep = 100 and
pc = 6/9 (expected number of edges: 30).

estimates Ĝ of GD(P). The sparsity of the DAG does not strongly influence the
results.

5.4. The dependence on p: Low- and high-dimensional setting. From the fact
that computeGDPX only relies on local score computations, we expect that its
performance does not strongly depend on the number of variables p as long as
the neighborhood sizes in the DAGs (the node degrees) are similar for different
values of p. We simulate nrep = 100 random DAGs with p = 10, p = 100 and
p = 1000 nodes, respectively. Moreover, we set pc = 2/(p − 1) which results in
an expected number of p edges and an expected node degree of 2 for all settings.
As demonstrated in Figure 11, the accuracy of computeGDPX with respect to
varying values of α is barely affected by the number of variables p. In particular,
computeGDPX exhibits a good performance even in high-dimensional settings
with p = 1000 and sample sizes in the hundreds. The same conclusions hold for
pc = 6/(p − 1) with an expected node degree of 6 (not shown).
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FIG. 11. Performance of computeGDPX for varying sample sizes and values of α (x-axis) for
p = 10 (top), p = 100 (middle) and p = 1000 (bottom). Parameters: plin = 0.5, nrep = 100 and
pc = 2/(p − 1) (expected number of edges: p).

5.5. Computation time. Finally, we analyze the computation time of com-
puteGDPX depending on the number of variables p and sparsity pc. We ex-
amine two scenarios: (i) most of the functions in the PLSEM are nonlinear
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TABLE 1
Median CPU times [s] for computeGDPX and for dag2cpdag that iteratively applies R1 to R3 in

Figure 6. nrep = 100 repetitions for plin = 0.2 and nrep = 20 repetitions for plin = 1

plin = 0.2 plin = 1

computeGDPX computeGDPX dag2cpdag

E[|edges|] p 4p p 4p p 4p

p = 10 0.092 0.785 0.157 1.101 0.007 0.005
p = 20 0.150 0.105 0.174 0.162 0.006 0.006
p = 50 0.300 0.164 0.332 0.223 0.008 0.009
p = 100 0.604 0.281 0.665 0.325 0.014 0.016
p = 250 1.446 0.630 1.740 0.717 0.072 0.087
p = 500 2.705 1.253 3.486 1.523 0.395 0.599
p = 1000 5.616 2.513 6.603 2.974 3.464 4.231
p = 2000 11.504 5.380 13.493 6.331 25.463 31.591
p = 5000 29.226 16.276 35.094 18.462 400.324 591.574

(plin = 0.2) and (ii) the worst-case scenario (w.r.t. computation time) where all
the functions in the PLSEM are linear (plin = 1) and D(P) is equal to the
Markov equivalence class (GD(P) equals the CPDAG). For all combinations of
p ∈ {10,20,50,100,250,500,1000,2000,5000} and pc ∈ {2/(p − 1),8/(p − 1)}
and for both scenarios (i) and (ii), we measure the time consumption of com-
puteGDPX for n = 400 and α = 0.05. In the scenario where all the functions
are linear, we additionally compare it to dag2cpdag in the R-package pcalg,
which constructs the CPDAG based on iterative application of R1-R3 in Figure 6.
The median CPU times are shown in Table 1. computeGDPX is able to estimate
GD(P) in less than a minute even if the number of variables is in the thousands.
In general, the speed of our implementation heavily depends on the sparsity of
the DAGs. This can be seen from the case with p = 10 and expected number of
edges 40. In this setting, the DAGs are almost fully connected. This in turn implies
that not many of the edges are fixed due to v-structures and a lot of score-based
tests have to be performed. On the other hand, if the underlying DAGs are sparse,
we observe that computeGDPX even outperforms dag2cpdag with respect to
computation time if the number of variables is large. Note that this only holds for
sparse DAGs. In general, dag2cpdag is much faster than our implementation
(not shown).

6. Conclusion. We comprehensively characterized the identifiability of par-
tially linear structural equation models with Gaussian noise (PLSEMs) from vari-
ous perspectives. First, we proved that under faithfulness we obtain graphical and
transformational characterizations of distribution equivalent DAGs similar to well-
known characterizations of Markov equivalence classes of DAGs. More generally,
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we demonstrated that reinterpreting PLSEMs as PLSEM-functions leads to an in-
teresting geometric characterization of all PLSEMs that generate the same distribu-
tion P, as they can all be expressed as constant rotations of each other. Therefrom
we derived a precise condition how PLSEM-functions (and hence also how single
nonlinear additive components in PLSEMs) restrict the set of potential causal or-
derings of the variables and showed how it can be leveraged to conclude about the
causal relations of specific pairs of variables under mild additional assumptions.
We also provided some robustness results when the noise terms are in the neighbor-
hood of Gaussian distributions. The theoretical results were complemented with an
efficient algorithm that finds all equivalent DAGs to a given DAG or PLSEM. We
proved its high-dimensional consistency and evaluated its performance on simu-
lated data.

From an application perspective, the algorithms listAllDAGsPLSEM and
computeGDPX can serve two purposes. First, they can be used in conjunction
with any causal structure learning procedure in the DAG space. This has been
proposed in [4] and it can also be used in the context of PLSEMs. In comparison
to the Markov equivalence class, the algorithms can potentially identify additional
directed edges. In addition, the proposed methods can play an important role for
the output of the CAM algorithm [3] (with pruning). In particular, if some of the
edge functions are close to linear or the sample size is low, the CAM algorithm
will output one DAG even though there might be many DAGs with similar scores.
In that scenario, the proposed algorithms provide a simple and important criterion
to assess the reliability of oriented edges.

More broadly speaking, our characterizations of PLSEMs (and corresponding
DAGs) that generate the same distribution P are crucial for further algorithmic de-
velopments in structure learning. For example, as mentioned before, in the spirit of
[4], or also for Monte Carlo sampling in Bayesian settings, see a related discussion
in [1], Section 1.

SUPPLEMENTARY MATERIAL

Supplement to “Causal inference in partially linear structural equation
models” (DOI: 10.1214/17-AOS1643SUPP; .pdf). This supplemental article con-
tains all proofs.
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